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Abstract. In this paper we use different decimation strategies in irreg-
ular pyramid segmentation framework, to produce perceptually impor-
tant groupings. These graph decimation strategies, based on the max-
imum independent set concept, used in Bor̊uvka’s minimum spanning
tree based partitioning method, show similar discrepancy segmentation
errors. Global and local consistency error measures do not show big dif-
ferences between the methods although human visual inspection of the
results show advantages for one method. To a certain extent this subjec-
tive impression is captured by the new criteria of ’region size variation’.

1 Introduction

It is suggested in [1] to bridge and not to eliminate the representational gap, and
to focus efforts on region segmentation, perceptual grouping, and image abstrac-
tion. The segmentation process results in ’homogeneous’ regions with respect to
the low-level cues using some similarity measures. Problems occur since the ho-
mogeneity of low levels does not always lead to semantically plausible regions and
the difficulty of defining the degree of homogeneity of a region. Thus, using only
low-level vision cues cannot produce a complete final ’good’ segmentation [2],
since there is an intrinsic ambiguity in the exact location of region boundaries
as well as the problems in defining the context of a digital image. Although
the methods that do not use the context of the image cannot produce a ’good’
segmentation, they can be valuable tools in image analysis just like efficient
edge detectors are. Hence, the low-level coherence of brightness, color, texture
or motion attributes should be used to come up sequentially with partitions [4].
A grouping method should have the following properties [3]: capture perceptu-
ally important groupings (encoding global views of an image); be highly efficient
(running in time (near) linear), and create hierarchical partitions [4]. Computer
vision problems could benefit from an efficient computation of segmentation.

Regular image pyramids are an efficient representation for fast grouping and
access to image objects in top-down and bottom-up processes. However, it is
shown that regular image pyramids are confined to globally defined sampling
grids and lack shift invariance [5], and that they have to be rejected as general-
purpose segmentation algorithms. To avoid these drawbacks, [6] proposes irregu-
lar image pyramids (adaptive pyramids), where the hierarchical structure of the
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pyramid is not a priori known but recursively built based on the data. [7] shows
that irregular pyramids can be used for segmentation and feature detection.

In the same sense, segmentation can be evaluated purely1 as segmentation
by comparing the segmentation done by humans with those done by a partic-
ular method [9]. There is a consistency of segmentation done by humans, even
thought humans segment images at different granularity (refinement or coarsen-
ing) (Fig. 2, rows 3 − 4). This refinement or coarsening could be thought of as
hierarchical structure of the image, i.e. the pyramid. Thus in [9] a segmentation
evaluation framework that does not penalize this granularity is used (Sec. 5).

In order to achieve efficiency in image partitioning, Bor̊uvka’s algorithm[10]
is combined with dual graph contraction (DGC) [11] for building in a hierar-
chical way a minimum weight spanning tree (of the region)(Sec. 3). We use the
idea of building a minimum weight spanning tree (MST) to find region borders
quickly and effortlessly in a bottom-up way based only on local differences in a
specific feature. Different stochastic strategies (MIS, MIES, D3P, Sec. 2) for
contraction kernels are used within the DGC, thus yielding different partitioning
methods. We evaluate the normalized cut [4](NCutSeg) and the method based
on the Bor̊uvka’s MST [12](Bor̊uSeg) (all three flavors depending on the deci-
mation strategy used: MIS, MIES or D3P (Bor̊uSeg (MIS), Bor̊uSeg (MIES)
and Bor̊uSeg (D3P)). We compare these methods following the framework of [9],
and show that the methods have similar discrepancy error. Although, qualita-
tive inspection of the produced segmentations showed differences between the
methods which the pixel-based discrepancy measures did not show (Sec. 5).

2 Irregular Graph Pyramid

In a regular image pyramid, the number of pixels at any level k is λ times higher
than the number of pixels at the next (reduced) level k +1. The so called reduc-
tion factor λ is greater than one and it is the same for all levels k. If s denotes the
number of pixels in an image I, the number of new levels on top of I amounts to
logλ(s). This implies that an image pyramid is build in O[log(image diameter)]
time [8], as well as algorithms running on this representation (Fig. 1a).

An irregular pyramid should be used instead of regular ones for segmentation
methods [6]. Irregular pyramids can perform all the operations for which their
regular counterparts are employed [13]. Each level represents a partition of the
pixel set into cells, i.e.connected subsets of pixels. The construction of an irregular
pyramid is iteratively local [14]. On the base level (level 0) of an irregular pyramid
the cells represent single pixels and the neighborhood of the cells is defined by
the 4(8)-connectivity of the pixels. A cell on level k + 1 (parent) is a union of
some neighboring cells on level k (children). This union is controlled by so called
contraction kernels (CK) [11]. Every parent computes its values independently
of other cells on the same level. We assume that there is a highest level h.
Although adaptive pyramids overcome the drawbacks of their regular ancestors
and although they grow to a reasonable height as long as the base is small,

1 The context of the image is not taken into consideration during segmentation.
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Fig. 1. a,b) Pyramid concept, and c) partition of pixel set into cells and representation
of the cells and their neighborhood relations by a dual pair (Gk, Gk) of plane graphs

they grow higher than the logarithm of base diameter with a larger input size
because the progressive deviation from the regular base favors configurations
that slow down the contraction process. As a consequence of the greater height
the efficiency of pyramids degrades. It is shown in [15] that this problem can
be resolved by a new selection mechanism (MIES) which guarantees logarithmic
heights. The maximal independent set concept from graph theory is the main
principle behind the methods to find the set of CKs: the maximal independent
vertex set (MIS)[14]; the maximal independent edge set (MIES) [15] and the
data driven decimation process (D3P) [16]. Irregular graph pyramids build by
MIS may have a very poor reduction factor and small reduction factors are
likely, especially when the images are large [15]. The MIES method guarantees
a reduction factor of at least 2.0, proved theoretically, but is applicable only if
the edges may be contracted in both directions as in the case of segmentation.
The D3P method is proposed to speed up the process of finding the set of CKs.

A level of the graph pyramid consists of a pair (Gk, Gk) of plane graphs
Gk and its geometric dual Gk (Fig. 1c). The planarity of graphs restricts us
to use only the 4-connectivity of the pixels. The vertices of Gk represent the
cells on level k and the edges of Gk represent the neighborhood relations of the
cells, depicted with square vertices and dashed edges in Fig. 1c. The edges of
Gk represent the borders of the cells on level k, solid lines in Fig. 1c, possibly
including so called pseudo edges needed to represent neighborhood relations to
a cell completely enclosed by another cell. Finally, the vertices of Gk (circles in
Fig. 1c), represent junctions of boundary segments of Gk. Moreover the graph is
attributed, G = (V, E, av, ae), where av : V → R

+ is a weighted function defined
on vertices and ae : E → R

+ is a weighted function defined on edges (similar
applies for Gk). The sequence (Gk, Gk), 0 ≤ k ≤ h is called irregular (dual)
graph pyramid and is build using Alg. 1. For simplicity of the presentation the
dual G is omitted afterward.

3 MST Based Segmentation Algorithm

The segmentation method is supposed to find natural groupings from the pixel
set. It is expected that, the measures of dissimilarity capture the expectation
that the similarity of pixels within a segment (internal) is less than the similarity
between pixels in different segments (external). The goal is to find the segments
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Algorithm 1 – Constructing Dual Graph Pyramid
Input : Graphs (G0, G0)

1: while further abstraction is possible do
2: select contraction kernels by an iterative local method

/* use MIS, MIES or D3P to determine contraction kernels */
3: perform dual graph contraction and simplification of dual graph (DGC [11])
4: apply reduction functions to compute content of new reduced level

Output : Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h.

that have strong internal similarities, which optimize the criterion function. The
pairwise comparison of neighboring vertices, i.e. partitions, is used to check for
similarities [3]. This function measures the difference along the boundary of
two components relative to a measure of differences of components’ internal
differences, i.e. tries to capture the notion of contrast: a contrasted zone is a
region containing two connected components whose inner differences (internal
contrast) are less than differences within it’s context (external contrast).

Let G = (V, E, av, ae) be a given attributed graph. The goal is to find par-
titions P = {C1, C2, ..., Cn} such that these elements are disjoint and satisfy
certain properties. Moreover P is a partition of V ∈ G, ∀i �= j, Ci ∩ Cj = φ
and

⋃
Ci = V , ∀i = 1, ..., n. The graph on level k of the pyramid is denoted

by Gk. Every vertex u ∈ Gk is a representative of a component Ci of the parti-
tion Pk. The equivalent contraction kernel of a vertex u ∈ Gk, N0,k(u) is a set
of edges forming a tree on the base level e ∈ E0 that contracts the subgraph
G′ ⊆ G = N0,k(u) onto the vertex u.

The internal contrast of the Ci ∈ Pk is the largest dissimilarity of component
Ci i.e. the largest edge weight of the N0,k(u) of vertex u ∈ Gk:

I(Ci) = max{ae(e), e ∈ N0,k(u)}. (1)

Let ui, uj ∈ Vk be the end vertices of an edge e ∈ Ek. The external contrast
between two components Ci, Cj ∈ Pk is the smallest dissimilarity between
component Ci and Cj i.e. the smallest edge weight connecting the trees N0,k(ui)
and N0,k(uj) of vertices ui ∈ Ci and uj ∈ Cj :

E(Ci, Cj) = min{ae(e), e = (v, w) : v ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}. (2)

The I(Ci) is the maximum of edge weights of the tree within Ci, whereas
E(Ci, Cj) is the minimum of weights of the edges (bridges) connecting com-
ponent Ci and Cj on the base level G0. Vertices ui and uj are representative of
the components Ci and Cj .

The pairwise comparison function B(·, ·) is defined as:

B(Ci, Cj) =
{

1 if E(Ci, Cj) > PI(Ci, Cj),
0 otherwise, (3)

where PI(·, ·) is the minimum internal contrast between two components, defined
as PI(Ci, Cj) = min(I(Ci) + τ(Ci), I(Cj) + τ(Cj)). For the function B(·, ·) to
be true, i.e. for the border to exist, the external contrast must be greater than
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Algorithm 2 – Construct Hierarchy of Partitions (Bor̊uSeg) [12]
Input : attributed graph G0.

1: k ← 0
2: repeat
3: for all vertices u ∈ Gk do
4: Emin(u)← argmin{ae(e) | e = (u, v) ∈ Ek or e = (v, u) ∈ Ek}
5: Emin = Emin ∪ Emin(u)
6: for all e = (uk,i, uk,j) ∈ Emin do
7: if PI(Ck

i , Ck
j )−E(Ck

i , Ck
j ) is a strikt local maximum in the edge graph then

8: include edge e in contraction edges Nk,k+1

9: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 ← C[Gk, Nk,k+1].
/* MIS, MIES or D3P used as decimation methods */

10: for all ek+1 ∈ Gk+1 do
11: set edge attributes ae(ek+1)← min{ae(ek) | ek+1 = C[ek, Nk,k+1]}
12: k ← k + 1
13: until Gk = Gk−1

Output : a region adjacency graph (RAG) at each level of the pyramid.

the internal contrast. Note that B(·, ·) is a boolean comparison function and the
resulted segmentation is a so called crisp segmentation. Using the comparison
function B(·, ·) defined previously one can define the algorithm to build the
hierarchy of partitions (Alg. 2). Step 10 of this algorithm is the same as steps
2− 4 of Alg. 1. For more details on steps of this algorithm see [12]. A threshold
function τ(C) is used since for small components C, I(C) is not a good estimate
of the local characteristics of the data, in extreme case when |C| = 1, I(C) = 0.
Any non-negative function of a single component C can be used for τ(C) [3].
We define τ to be a function of the size of C: τ(C) = α/|C|, where |C| denotes
the size of the component C and α is a constant. A large constant α sets the
preference for larger components. The size of |C| gets larger as the algorithms
proceeds hence τ → 0, i.e. the influence of the parameter decreases.

4 Segmentation Results

We start with the trivial partition, where each pixel (vertex) is a homogeneous
region. The attributes of edges can be defined as the difference between end
point features of end vertices, ae(ui, uj) = |F (ui) − F (uj)|, where F is some
feature. F could be defined as F (ui) = I(ui), for gray value intensity images,
or F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images in HSV color
distance [4]. However the choice of the definition of the weights and the features
to be used is in general a hard problem, since the grouping cues could conflict
each other. In order to evaluate the methods in our experiments we choose simple
gray intensity difference, i.e. ae(ui, uj) = |I(ui)− I(uj)|. Note that the methods
are applicable to any color space as well. The segmentation results of NCutSeg2,
on gray value images are shown in Fig. 2 rows 4-5 of Bor̊uSeg (MIS) in rows
2 See [4] for NCutSeg default parameters, and for all Bor̊uSeg α is set to 500.
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6-7; of Bor̊uSeg (MIES) in rows 8-9 and Bor̊uSeg (D3P) in rows 10-11. These
methods use only local contrast based on pixel intensity values. As expected,
and shown in Fig. 2, segmentation methods, which are based only on low-level
local cues, can not create segmentation results as good as humans. Even thought
it looks like, the NCutSeg method produces more regions, actually the overall
number of regions in row 4, 6, 8, 10 and 5, 7, 9, 11 are almost the same, but
Bor̊uSeg produces more small regions. Anyway all the methods were capable of
segmenting the face of a man satisfactory (image #35). Bor̊uSeg did not merge
the statue on the top of the mountain with the sky (image #17). Humans do
segment this statue as a single region (see Fig. 2). All methods have problems
segmenting the see creatures (image #12). Note that the segmentation done by
humans on the image of rocks (image #18), contains the symmetry axis, even
thought there is no ’big’ change in the local contrast, therefore the NCutSeg
and Bor̊uSeg methods fail in this respect. None of the methods is ’looking’ for
this axis of symmetry.

5 Evaluation of Segmentations

For the evaluation, real world images should be used, since it is difficult to extrap-
olate conclusions based on synthetic images to real images [17], and the human
should be the the final evaluator. We use the empirical method for the evalua-
tion, which studies properties of the segmentations by measuring how ‘good’ a
segmentation is close to an ‘ideal’ one, by measuring this ‘goodness’ with some
function of parameters [18]. The difference between the segmented image and the
reference (ideal) one is used to asses the performance of the algorithm [18], and
measured by a discrepancy method. The reference image could be a synthetic
image or manually segmented by humans. Higher value of the discrepancy means
bigger error, signaling poor performance of the segmentation method. In [18],
it is concluded that evaluation methods based on “mis-segmented pixels should
be more powerful than other methods using other measures”. In [9] the error
measures used for segmentation evaluation ‘count’ the mis-segmented pixels.

Segmentations made by humans are used as a reference for benchmarking
segmentations produced by different methods. The idea behind this is the ob-
servation that, even though different people produce different segmentations for
the same image, the obtained segmentations differ, mostly, only in the local
refinement of certain regions. This concept has been studied on the human seg-
mentation database (Fig. 2 row 2− 3) in [9] and used as a basis for defining two
error measures, which do not penalize a segmentation if it is coarser or more
refined than another. They define two error measures based on the pixel er-
ror measures (local refinement error), that counts miss-classified pixels between
two regions of two segmentations: the global consistency error (GCE), which
forces all local refinements to be in the same direction; and local consistency
error (LCE), which allows refinement in different directions in different parts of
the image. GCE is a tougher measure than LCE, because GCE tolerates only
simple refinements, while LCE tolerates mutual refinement as well. We use the
GCE and LCE measures to evaluate the Bor̊uSeg method using the human seg-
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Method vs. Humans
Humans NCutSeg

Method �μLCE �μGCE

Humans 0.059 0.083

NCutSeg 0.204 0.248

MIES 0.203 0.278
Bor̊uSeg MIS 0.200 0.273

D3P 0.215 0.303
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Fig. 3. Histograms of GCE and summary of LCE and GCE discrepancy errors

mented images from the Berkley image database [9]. The results of the NCutSeg
method vs Humans and Humans vs Humans are confirmed [9]. A segmentation
consisting of a single region and a segmentation where each pixel is a region,
is the coarsest and finest possible of any segmentation. In this sense, the LCE
and GCE measures should not be used when the number of regions in the two
segmentation differs a lot [9]. We take for each image as a region count reference
number, the average number of regions from the human segmentations available
for that image. We instructed the NCutSeg to produce the same number of re-
gions and for the Bor̊uSeg we have taken the level of the pyramid that has the
number of regions closest to the same region count reference number. For the
experiments, we use 100 gray level images from the Berkley Image Database3.
We used the original normalized cuts implementation [4]4, and for the Bor̊uSeg
we have our own implementation. For each of the images in the test, we have
calculated the GCE and LCE using the results produced by the methods and all
the human segmentations available for that image. Fig. 3 shows the histograms
of the GCE5 values obtained ([0 . . . 1], where zero means no error) for Human vs
Human, NCutSeg vs Human, and Bor̊uSeg (MIES, MIS D3P) vs Human. In
these images μ̂ measures the mean the error. Notice that humans are consistent
in segmenting the images and the Human vs Human histogram shows a peak
very close to 0 (i.e. a small μ̂GCE = 0.0832). For NCutSeg and Bor̊uSeg there
is no significant difference between the values of LCE and GCE (see μ̂ of the
respective histograms). One concludes that the quality of segmentation of these

3 http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
4 http://www.cis.upenn.edu/∼jshi/software/
5 Histograms of LCE are similar and are not shown in this presentation.
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methods seen over the whole database is not different. The table in Fig. 3 sum-
marizes the histogram mean values of discrepancy errors. Different decimation
strategies have similar error, indicating that the segmentation results do not
depend on the chosen decimation strategy.

To test how region sizes vary we calculated the standard deviation (σs) of
the normalized region sizes for each segmentation (normalization is relative to
the image size). For humans, the mean of the calculated σs for the same image
is taken. Fig. 4a) shows the resulting σs for 70 images (a majority for which
the σS order Humans>Bor̊uSeg(MIES)>NCutSeg existed). Results are shown
sorted by the sum of the 3 σs for each image. The average region size variation
for the whole dataset is: Humans 0.1537 , Bor̊uSeg(MIES) 0.0872 and NCutSeg
0.0392. Note, that the size variation is smallest and almost content independent
for the NCutSeg and largest for Humans. This shows that, the NCutSeg method
is biased toward large regions, since it is defined to avoid the bias of small
components of cut criterion in [4]. For the other two decimation strategies, the
average region size variation for the whole data set is 0.0893 for Bor̊uSeg (MIS)
and 0.1037 for Bor̊uSeg (D3P). One could produce three plots, one for each
decimation strategy MIS, MIES, and D3P. In order not to overload the figure
with too many plots, we show in Fig. 4b) a solid line representing the mean (μds)
region size variation of the Bor̊uSeg with three decimation methods MIES, MIS,
and D3P; and the doted line the standard deviation (σds).

6 Conclusion

In this paper different methods to build an irregular graph hierarchy of im-
age partitions by using different decimation strategies are shown. Although the
algorithm makes simple greedy decisions locally, it produces perceptually im-
portant partitions in a bottom-up way based only on local differences. We also
evaluated segmentation results of three graph-based methods; the well known
method based on the normalized cuts (NCutSeg) and the method based on
the minimal spanning tree principle (Bor̊uSeg). The NCutSeg method and the
Bor̊uSeg are compared with human segmentations. The evaluation is done by
using discrepancy measures, that do not penalize segmentations that are coarser
or more refined in certain regions. We used gray value images to evaluate the
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quality of results. For the NCutSeg and Bor̊uSeg segmentation methods, the
error measure results are concentrated in the lower half of the output domain
and that the mean of the GCE and LCE measure is for both around the value of
0.2. Moreover different decimation strategies (MIS, MIES, D3P) used in Bor̊uSeg
have shown similar error results. One can say that for image segmentation choos-
ing any of the decimation strategies will produce satisfiable results. In the ex-
periment with region sizes we show that humans have the biggest variation of
the produced region sizes, followed by Bor̊uSeg, and NCutSeg.
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