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Abstract

The traveling salesman problem (TSP) is difficult to solve for input instances with
large number of cities. Instead of finding the solution for an input with a large
number of cities, the problem is transformed into a simpler form containing smaller
number of cities, which is then solved optimally. Graph pyramid solution strategies,
using Bor̊uvka’s minimum spanning tree step, convert, in a bottom-up processing,
a 2D Euclidean TSP problem with a large number of cities into successively smaller
problems (graphs) with similar layout and solution, until the number of cities is small
enough to seek the optimal solution. Expanding this tour solution in a top-down
manner, to the lower levels of the pyramid, leads to an approximate solution. The
new model has an adaptive spatial structure and it simulates visual acuity and visual
attention. The model solves the TSP problem sequentially, by moving attention from
city to city, and the quality of the solutions is similar to the solutions produced
by humans. The graph pyramid data structures and processing strategies provide
good methods for finding near-optimal solutions for computationally hard problems.
Isolating processing used by humans to solve computationally hard problems is of
general importance to psychology community and might lead to advances in pattern
recognition.
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1 Introduction

Problem solving is one of the most fundamental human cognitive abilities,
which is at least as important as perception, memory, or learning. A problem
has usually three components:

• known facts provided when the problem is presented,
• goal(s), and
• operations to be performed to achieve the goal.

There are several general strategies to solve problems [1]: (1) combining algo-
rithms; (2) hill-climbing (local computations that allow finding extrema of a
given cost function - bottom-up computations); (3) means-ends analysis (global
computations that break the problem into smaller sub-problems and then solve
these sub-problems - top-down computations), (4) working backwards, from
the goal to the start; and (5) using analogies. There has been growing interest
in studying how humans solve combinatorial optimization problems, with a
special emphasis on the Traveling Salesman Problem (TSP) [2–4]. Traveling
salesman problem (TSP) is a combinatorial optimization task of finding the
shortest tour of n cities given the intercity costs. In a more formal way the
goal is to find the least weight Hamiltonian cycle in a complete graph Kn.
When the costs (weights) between cities are Euclidean distances, the problem
is called (symmetric) Euclidean TSP (E-TSP). TSP as well as E-TSP belongs
to the class of difficult optimization problems called NP-hard and NP-complete
if posed as a decision problem [5]. A straightforward approach by using brute
force search would be trying all possible permutations in order to find the
shortest tour. This approach is impractical for large n since the number of
permutations is (n−1)!

2
. Because of the computational intractability of TSP,

researchers concentrated their efforts on finding approximation algorithms or
finding a special class of TSP problems that can be solved by polynomial time
algorithms. Good approximation algorithms can produce solutions that are
only a few percent longer than an optimal solution and the time of solving
the problem is a low-order polynomial function of the number of cities [6–8].
Local heuristic approaches are one of the main tools to produce near optimal
tours for large instances of TSP in a short time [8, Chap.5]. Both discrete
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optimization [7,8] as well as continuous optimization [9–12] methods are used
to solve the Euclidean as well as non Euclidean TSP.

Human subjects do not search the whole problem space when solving com-
binatorial optimization problems. It is by now well established that humans
produce close-to-optimal solutions to TSP problems in time that is (on aver-
age) proportional to the number of cities [3,13,14]. This level of performance
cannot be reproduced by any of the standard approximating algorithms in
computer science or operations research. Some approximating algorithms pro-
duce tours whose lengths are close to that of the shortest tour, but the time
complexity is substantially higher than linear. Other algorithms are relatively
fast but produce tours that are substantially longer than those produced by
human subjects. It has been recently shown that human subjects can also pro-
duce very good solutions to other combinatorial optimization tasks like the
minimum spanning tree (MST) [15], shortest path [16], optimal stopping [17]
or the 15-puzzle problem [18]. Interestingly, optimization tasks are important
not only in the context of human problem solving. Other cognitive functions
can also be modeled as optimization tasks: decision making, motor control and
perception. It follows that using optimization tasks may actually be the best
way to study human cognition in general, and problem solving, in particular.

In this work we adopt an information-processing methodology to study hu-
man problem solving. In particular, we are interested in problems to find (e.g.
solving the TSP), and not problems to prove (e.g. theorem proving) [19]. In
a problem to find, there is the input data, the conditions, and the task is
to solve for the unknown. TSP can be visually presented to the subjects, as
shown in Figure 1a,d, it is easy to define, and it is considered to be natural
and easy to solve by subjects. The cities in this problem can be considered
as being abstract representation of some interests (feature) points that can
be used for example in robot navigation, or object recognition. We describe
in this paper a computational model for solving E-TSP approximately. The
model is based on a multiresolution graph pyramid. Previous multiresolution
models [3,20] are not rotational invariant. Our new model described in this
paper is invariant to both translation and rotation of the input city constel-
lation. The emphasis of our work is on emulating human performance (time
and accuracy), and not in finding an algorithm for solving E-TSP as optimally
as possible. By accuracy we mean the quality of solution, i.e. the tour length
produced by the approximation algorithm compared to the tour length so-
lution by the optimal algorithm. We also expect the time complexity of the
approximation algorithms to be comparable to the time complexity of humans.
We have chosen the length of the tour as well as the time complexity as it is
the goal of the TSP. In fact we use the ratio of these two tours as the error
measure. Other criteria, like the shape could be used to measure the quality
of contours representing TSP solutions [21,22].
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a) two concentric circles b) optimal solution c) human solution

d) random input instance e) optimal solution f) human solution

Fig. 1. 2D E-TSP and solutions given by the optimal solver and human subject.

The paper is structured as follows. The next section presents a survey of the
work related to human problem solving. Section 3 gives a short overview of
the pyramid representations. In Section 4 a pyramid model for solving the
E-TSP is described. The model uses a minimum spanning tree (MST) based
graph pyramid. The bottom-up simplification of the input data is presented
in Section 4.1, and in Section 4.2 the top-down sequence of approximations of
the TSP solution tour is described. Psychophysical experiments on E-TSP are
presented in Section 5.

2 Status of Research

Human problem solving has been studied as an information-processing activity
using different approaches. In this section, several major approaches are briefly
described, with a more detailed overview of the algorithmic methods. Produc-
tion systems is a commonly used formalism to represent and solve problems
in cognitive psychology and artificial intelligence (see [23] for an overview).
These systems require rational (’good’) representations of the problem in the
database, the production rules and control mechanisms. When production sys-
tems are used, one has to analyze the problem first, and then build a complete
representation of the problem. Production systems have been successfully ap-
plied in mathematics (SHUNYATA [24]), physics (FERMI [25]), chemistry
(MECHEM [26]), and medicine (MYCIN [27]). Most of the existing studies
and methods that use productions systems focus on a particular context of
application and their results cannot be easily extended to other applications.
Moreover, it is not clear how the particular cognitive mechanisms are involved
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and how ’good’ the created representations actually are and how ’well’ are
they organized in the memory. Problems that are well-defined can be solved
by formulating and executing an algorithm, which performs a finite number
of steps. Unfortunately, for some problems this is not possible. In such cases
one can formulate ’rules of thumb’ and build a so-called heuristic algorithm,
which may or may not lead to the solution [28]. A nice overview of an al-
gorithmic approach to problem solving in artificial intelligence was presented
by [29] and in pattern recognition by [30,31]. Despite the attractiveness of
the approach based on heuristic algorithms, this approach has its difficulties:
problems are usually not solved optimally (if at all) and it is not clear how to
define ’the rules of thumb’ for each particular problem, as well as transporting
these algorithmic solutions to other problems.

Consider human and animal visual perception. Humans and animals are able
to delineate, detect and recognize objects in complex scenes ’at a blink of an
eye’. Authors in [32,33] performed complexity analysis and showed that hierar-
chical representation of visual information and hierarchical processing of this
information is one of the best, if not, the best way to solve visual problems.
They presented a list of critical properties of visual processing in biological
systems and most of them are related to the use of a hierarchical (pyramid)
architecture: (i) parallel processing, (ii) hierarchical organization through ab-
straction of prototypical visual knowledge (this leads to short search times that
are proportional to the logarithm of the image size, rather than to the image
size, itself) (iii) spatially local receptive fields (the physical world is spatio-
temporally localized and events, objects, and their physical characteristics are
not arbitrarily spread over time and space), (iv) hierarchical abstraction of
semantic context from the input data, (v) direct access to higher level maps 1

based on some abstract properties of the input, (vi) prediction about which
parts of the hierarchical representation should be used to analyze a given set of
visual data, (vii) a bottom-up ’pre-attentive’ processing of input information,
and (viii) a top-down control mechanism, that allow restricting search space.

It is now commonly accepted that the human visual system has a hierarchical
architecture and that the visual mechanisms can be adequately modeled by
hierarchical (pyramid) algorithms. Specifically, neurophysiological and neu-
roanatomical data indicate that the visual systems of cats, monkeys and hu-
mans are hierarchical, with neurons on lower layers having smaller receptive
fields and neurons on higher layers having larger receptive fields [34]. Pyramid
algorithms are adequate models of the Gestalt rules of perceptual organiza-
tion such as proximity and good continuation [35,36]. They also provide an
adequate model of Weber’s law, speed-accuracy trade-off in size perception, as
well as mental size transformation [37]. In these models, visual processing in-
volves both bottom-up (fine to coarse) and top-down (coarse to fine) analysis.

1 Called layers in the image pyramid framework.
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The top-down processing seems also critical in solving the image segmentation
problem, which is a difficult inverse problem [38]. This problem has received
a lot of attention in the psychological literature, and is known as the figure-
ground organization phenomenon [39]. The human visual system is able to
distinguish between highly relevant and less relevant regions in the field of
view. Authors in [40,41] and [42], describe two processes: bottom-up processes
retrieve features directly from the input image, whereas top-down processes
are driven by available knowledge about the world.

Pyramid algorithms have been used extensively in both computer and human
vision literature (e.g. [43]), but not in problem solving. The work of [3,44] is
the first attempt to use pyramid algorithms to solve the visual version of the
E-TSP. One of the most attractive aspects of pyramid algorithms, that makes
them suitable for problems such as early vision or E-TSP, is that they allow
solving (approximately) global optimization tasks without performing a global
search.

The TSP tours produced by the subjects are, on average, only a few percent
longer than the shortest tours (in Figure 1c,f). The solution time is a linear
function of the number of cities [3,13]. In [3], authors formulated a pyramid
algorithm for E-TSP motivated by the failure to identify an existing algorithm
that could provide a good fit to the subjects’ data. More recently, hierarchical
(pyramid) algorithms have been used to model mental mechanisms involved
in other types of visual problems [14,45] (e.g. 15 puzzle problem, MST etc.).
The main aspects of the models in [3,14] are

• (multiresolution) pyramid architecture, and
• a coarse to fine process of successive tour approximations.

A foveating algorithm for TSP [20] emulates the visual attentional mechanisms
of humans. This algorithm was motivated by the properties of the human vi-
sual system. Specifically, the human retina provides high resolution represen-
tation only in the center of the visual field. The computational complexity of
these models was very low and similar to that characterizing mental processes
(i.e. linear). At the same time, the solutions produced by these models were
characterized by similar errors as those produced by the subjects.

Hierarchical partitioning is one of the best known methods of clustering in
a top-down direction [30,46], while agglomerative clustering works in the
bottom-up direction. The minimum spanning tree (MST) can be used to per-
form the latter [30]. In [47] it was shown that the MST approaches the per-
formance of the Bayes classifier as the number of data points goes to infinity.

Greedy algorithms and the nearest neighbor algorithm, based on computa-
tional experiments, are good choices for tour construction heuristics, and pro-
duce acceptable results for the Euclidean TSP, but are very poor for the general
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symmetric and asymmetric TSP [48]. In spite of this limitation, and since we
are studying E-TSP we have used a greedy method (MST). On the other side,
Pizlo et. al. [44] showed that the nearest neighboring algorithm is not best
suited to model human subject.

3 Irregular Graph Pyramid

Considering the fact that the problem spaces are extremely large (the number
of tours in a 17-city TSP is larger than the number of neurons in the human
brain), the problem solver must be able to:

• efficiently represent the problem and organize information about it,
• avoid brute force, global search of the problem space, and
• use top-down approach in which global, abstract knowledge can guide con-

struction of the solution.

The graph pyramid framework fulfills these conditions. In our framework, the
TSP input is represented by graphs where cities are represented by vertices,
and the intercity neighborhoods by edges. Note that based on the definition
of the intercity neighborhoods one creates dense (e.g. complete 2 ) or sparse
graphs. Each vertex of the constructed input graph must have at least two
edges for the TSP tour to exist. A level (k) of the graph pyramid consists
of a graph Gk. Moreover the graph is attributed, G = (V, E, wv, we), where
we : E → R+ is a weighted function defined on edges E. The weights we are
Euclidean distances in the E-TSP and wv : V → R+ is a weighted function
defined on cities V . I.e. each vertex (city) has as a weight its position in the
Cartesian coordinate system Finally, the sequence Gk, 0 ≤ k ≤ h is called an
irregular graph pyramid.

In a regular pyramid, the number of vertices at any level k is λ times higher
than the number of pixels at the next (reduced) level k + 1. The so called
reduction factor λ is greater than one and it is the same for all levels k.
The number of levels on the top of G is equal to logλ(|G|) (Figure 2). This
implies that a pyramid is build in O[log(diameter(G))] parallel steps [43].
Reduction windows relate one cell at the reduced level with a set of cells
in the level directly below. Thus local independent (and parallel) processes
propagate information up and down and laterally in the pyramid. The contents
of a lower resolution cell is computed by means of a reduction function the
input of which are the descriptions of the cells in the reduction window. Two
successive levels of a pyramid are related by the reduction window and the
reduction factor. Higher level description should be related to the original

2 In our implementation in this paper, we use fully connected graphs.
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Fig. 2. Multiresolution pyramid.

input data in the base of the pyramid. This is done by the receptive field (RF)
of a given pyramidal cell ci. The RF (ci) aggregates all cells (pixels) in the
base level, of which ci is the ancestor. Regular image pyramids are confined to
globally defined sampling grids and lack shift invariance [49]. In [50,51] it is
shown how these drawbacks can be avoided by adaptive irregular pyramids.

In Graham’s model [3], clusters were not explicitly represented. Instead, the
centers of the clusters were used in the E-TSP solution process. The centers
were modes (peaks) of the intensity distribution produced by blurring the im-
age. To make clusters explicit, Pizlo et. al [20] used an adaptive model in which
adaptive top-down partitioning of the plane along the axis of the Cartesian
system was used. The hierarchy is represented by a binary tree. Although this
algorithm is invariant to translations, it was not invariant to rotations. Our
new model described in this paper uses graphs as representation, which are
invariant to both translation and rotation of the input city constellation. Our
clustering, however, is performed in a bottom-up direction.

4 Solving E-TSP by a Graph Pyramid

Let G0 = (V, E, wv, we) be the input graph, with weights on edges given as
distances in L2 space. The goal of the E-TSP is to find an nonempty ordered
sequence of vertices and edges (v0, e1, v1, ..., vk−1, ek, vk, ..., v0) over all vertices
of G0 such that all the edges and vertices are distinct, except the start and the
end vertex v0 and the sum of edge weights in this tour is minimal, i.e. the tour
length is minimized. This tour is called the optimal tour τopt, and its length is

l(τopt) =
∑
e∈τ

we → min,

where we is the weight of edge e.

We use local to global and global to local processes in the graph pyramid to
find a good solution τ ∗, approximating the optimal tour of the E-TSP. The
main idea is to use:
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• bottom-up processes to reduce the size of the input, and
• top-down refinement to find an (approximate) solution.

The size of the input (number of vertices in the graph) is reduced so that
an optimal (trivial) solution can be found by the combinatorial search. For
example, for a 3 city instance (not all cities are collinear) there is only one
tour, and this tour is obviously optimal. It follows that no search is needed.
For a 4 city input (no three of which are collinear) there are three solutions,
from which two non-optimal can be easily rejected since they contain self-
intersection. A pyramid is used to reduce the size of the input in the bottom-
up process. The (trivial) solution is then found at the top of the pyramid and
refined in a process emulating the movements of the human fovea using lower
levels of this pyramid. The solution tour, in general non-optimal, is found
when all the cities at the base level of the pyramid are in the tour. The steps
needed to find the E-TSP solution are shown in Algorithm 1. Creating graphs,
i.e. the input space was presented in Section 3. Sections 4.1 and 4.2 discuss
steps 2 and 4 of Algorithm 1 in more detail.

Algorithm 1 – Approximating E-TSP Solution by an MST Graph Pyramid
Input : Graph G0 = (V,E, wv, we), and parameters r and s

1: partition the input space by preserving approximate location:
create graph G0

2: reduce number of cities bottom-up until the graph contains s vertices:
build graph pyramid Gk,∀k = 0, ..., h, where s = |Gh|

3: find the optimal tour τa for the graph Gh

4: refine solution top-down until all vertices at the base level are processed:
refine τa until level 0 of the pyramid(G0) is reached

Output : Approximate TSP solution τ∗.

4.1 Bottom-up Simplification using an MST Pyramid

In bottom-up clustering, cities that are close neighbors are put into the same
cluster, using a greedy approach. These clustered cities are considered as a
single city at the reduced resolution. By doing this recursively one produces a
pyramid representation of the problem. It is well known that the human visual
system represent images on multiple levels of scale and resolution [52,37].

We are driven to use this closeness concept since it seems that humans use this
cue when they solve the E-TSP. Since the whole input instance is not in the
visual field of view in the same resolution (in general) and the time needed for
the problem to be solved by humans is (near) linear, it seems that there might
be some organization of the input data during the E-TSP solving process.

There are many different algorithms for hierarchical clustering of points, i.e.
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cities [30]. Our model uses the minimum spanning tree, specifically Bor̊uvka’s
algorithm [53]. The time complexity of Bor̊uvka’s algorithm is O(|E| log |V |).
MST can be used as the natural lower bound for TSP solutions. In the case of
the TSP with the triangle inequality, which is the case for the E-TSP, MST can
be used to prove the upper bound as well [54]. The first step in Christofides’
heuristic [6] is finding an MST as an approximation for TSP. Then, one can
produce a tour, whose length is never greater than 3

2
times of the length of

the shortest tour.

For a given graph G0 = (V, E, wv, we) the vertices are hierarchically grouped
into trees as given in Algorithm 2. The idea of a Bor̊uvka step is to perform
greedy operations like in Prim’s algorithm [56], in parallel, over the entire
graph. The trees (clusters) are not allowed to contain more than r ∈ N+

cities. Each tree must contain at least 2 cities, in order to ensure that the
pyramid has a logarithmic height [57]. It follows that the reduction factor λ is
2 ≤ λ ≤ r. It seems that this parameter is related to the number of ’concepts’
that humans can hold in their ’short-term memory’ (Millers number seven,
plus or minus two [58]).

The number s ∈ N+ of vertices in the top level of the pyramid is chosen so
that an optimal tour can be found easily (s = 3, or s = 4). Note that larger
s means a shallow pyramid and larger graph at the top, which also means
higher time complexity to find the optimal tour at the top level. Thus r and
s are used to control the trade off between speed and quality of the solution.

An example of how Algorithm 2 builds the graph pyramid (only the last two
levels) is shown in Figure 3. Each vertex (black in Gh−1) finds the edge with
the minimal weight (solid lines in Gh−1). These edges create trees of no more
than r (= 4) cities. Since we employ Bor̊uvka step at this stage, it might
happen that the trees will contain more than allowed r cities. In these cases
the algorithm will break the trees into smaller trees (Figure 4). We employ a

Algorithm 2 – Reduction of the E-TSP Input by an MST Graph Pyramid
Input : Graph G0 = (V,E, wv, we), and parameters r and s

1: k ← 0
2: repeat
3: ∀vk ∈ Gk find the edge e′ ∈ Gk with minimum we incident into this vertex
4: using e′ create trees T with no more than r vertices
5: if the size |T | > r then
6: break trees into sizes ≤ r /* for e.g. using [55] */
7: contract trees T into parent vertices vk+1

8: create graph Gk+1 with vertices vk+1 and edges ek ∈ Gk \ T
9: attribute vertices in Gk+1

10: k ← k + 1
11: until there are s vertices in the graph Gk+1.

Output : Graph pyramid – Gk, 0 ≤ k ≤ h.
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simple breaking strategy by simply removing the vertex (or vertices) from the
tree that correspond to the edge(s) with the heaviest weight(s). This vertex is
then merged to the nearest cluster having less than r cities. Note that, in case
there is no cluster in the ’immediate’ neighborhood to merge this ’broken’
vertex, one allows that this vertex be merged with a cluster that is ’far’,
thus allowing for crossing in the resulted tour. A better strategy of breaking
this trees is to break them in the ’middle’ of the tree by first computing the
diameter of the tree [55]. After the process of creating the trees is finished,
these trees are then contracted to the parent vertices (enclosed black vertices
in Gh−1 are contracted into white vertices in Gh). The parent vertices together
with edges not touched by the contraction are used to create the graph of the
next level (parallel edges and self loops can be removed, since they are not
needed for the clustering of vertices). The dotted lines between vertices in
different levels represent the parent-child relations. The new parent vertex
attribute can be the center of gravity of its child vertices, or the position of
the vertex near the center of gravity. The algorithm iterates until there are s
vertices at the top of the pyramid, and since s is small a full search can be
employed to find the optimal tour τa at the top quickly.

Gh−1

Gh

⇑

τa
Gh

a) bottom-up reduction of resolution b) initial tour τa

Fig. 3. Building the graph pyramid and finding the first TSP tour approximation.

In our current software implementation we use the fully connected graph to
represent the input instance. It follows that the bottom-up simplification al-
gorithm has at least O(|V |2) time complexity [59], which dominates over other
terms: breaking of trees, creating the new level of the pyramid etc. This time
complexity can be reduced easily to O(|E| log |V |) if instead of the fully con-

|Vt| = 4

a) breaking the vertex in white b) connecting the white vertex to another tree

Fig. 4. Breaking the trees and creating trees with sizes r = |Vt| ≤ 3.
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nected graph one uses a planar graph e.g. by Delaunay triangulation. In our
experimental setup we have not encountered problems with the simple tree
breaking strategy, but in general it can cause that some tours will have self
intersection. We position the parent vertices in the center of gravity of its
children ’mass’.

4.2 Top-down Approximation of the Solution

The tour τa found at the level h of the graph pyramid is used as the first
approximation of the TSP tour τ ∗. This tour is then refined using the pyra-
mid structure already built. Similar to Pizlo et. al. [20] we use the simplest
refinement, the one-path refinement. The one-path refinement process starts
by choosing (randomly) a vertex v in the tour τa. Using the parent-child re-
lation, this vertex is expanded into the subgraph G′

h−1 ⊂ Gh−1 from which
it was created i.e. its receptive field in the next lower level. In this subgraph
a path between vertices (children) is found that makes the overall path τ ′a
the shortest one (see Figure 5a). Since the number of vertices (children) in
G′

h cannot be larger than r, a complete search is a reasonable approach to
find the path with the smallest contribution in the overall length of the tour
τ ′a. Note that the edges in τ ′a are not necessarily the contracted edges during
bottom-up construction.

τ ′a

Gh−2

Gh−1

⇓

τ ′′a

τa Gh

G′
h−1

G′
h−2

v

v′

e

b
c

e

b
RF (c) G0

G1

a) top-down refinement τ∗a b) the flow of processing

Fig. 5. Refining the E-TSP tour by a graph pyramid.

The refinement process then chooses (randomly) one of the already expanded
vertices in G′

h−1, say v′ and expands it into its children at the next lower level
G′

h−2, and the tour τ ′′a is computed. The process of tour refinement proceeds
recursively until there are no more parent-children relation (graph G0, Fig-
ure 5b vertices of the reduction window of c, RF (c)), i.e. vertices at the base
of the pyramid are reached. E.g. in Figure 5b, the tour is refined by choos-
ing the shortest path between the start vertex b and end vertex e and going
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through all the vertices (children of c) of the RF (c). After arriving at the
finest resolution, the process of refinement continues by taking a vertex in the
next upper level in the same cluster (Figure 5 vertex b or e), and expanding
it to its children. Note that the process of vertex expansion toward the base
level emulates the movement of fovea (attention) in the process of solving the
problem by a human observer. The tour is refined to the finest resolution in
one part whereas other parts are left in their coarse resolution representation,
until the ’attention’ is moved to them. The process converges when all vertices
in the pyramid have been ’visited’. More formally the steps are depicted in
Algorithm 3, and Function 1 and 2.

The complexity of the top-down process depends on the choice of the parame-
ter r. The number of levels of the pyramid depends on r and is h = logr(|V |),
thus the overall number of vertices in the pyramid is (1+ 1

r
+ 1

r2 + ·+ 1
rh )|V | ≤

2|V |, since r > 1. In our current implementation the search time within each
cluster is done in constant time. Finding the best path within r cities in an
exhaustive search is r!. Thus the overall time complexity of the top-down pro-
cess is O(c|V |), where c is a constant. The parameter r has to be chosen as
a compromise between the quality of the tour produced and the amount of
search performed. In our experiments r ≤ 10 led to results similar to those
produced by human subjects.

Other refinement approaches can be chosen as well. For example, one can use
many vertices and expand them in parallel (multi-path refinement), or use
the one-path refinement until a particular level of the pyramid is reached and
continue with the multi-path refinement afterward. In these cases Function 1
would change. Note that any of the vertices can be chosen as the starting point
for the solution process. Different starting points are likely to lead to different
tours. The choice of the starting point may account, at least in part, for indi-
vidual differences in human solutions. During the psychophysical experiments,
subject had no clear criteria from where to start the solution. It seems to be
a random choice. We have used this random criteria in our algorithm as well.

A full example showing the steps of Algorithm 1 (on a problem from Section 5)
is given in Figure 6. First step is creating a fully connected graph, where
each city is connected to each city (not shown in the figure for clarity). On
this graph the Bor̊uvka step (and the breaking of trees to the given size of
r, if necessary) is performed (shown in figure under b). Thus after the first
running of the Bor̊uvka step one gets the trees shown in b1). Each of the trees
is then merged to the parent vertices. The parent vertex is positioned on the
gravity center of his children. These new vertices are then fully conected to
each other, thus creating a new graph on the second level of the pyramid.
The process is repeated iteratively until a level of the pyramid is reached
(top of the pyramid shown under b3), where the number of vertices is small
(|V2| = s = 4 in this example), and the process of building the pyramid
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Algorithm 3 – E-TSP Solution by a MST Graph Pyramid
Input : Graph pyramid Gk, 0 ≤ k ≤ h and the tour τa

1: τ∗ ← τa

2: v ← random vertex of τ∗

3: repeat
4: refine(τ∗, v) /* refine the path using the children of v. See Function 1 */
5: mark v as visited
6: v ← nextVertex(Gk, v, τ∗) /* get next vertex to process. See Function 2 */
7: until v = ∅

Output : Approximation E-TSP tour τ∗.

Function 1: refine(τ∗, v): refine a path τ∗ using the children of v

Input : A pyramid Gk, 0 ≤ k ≤ h, the tour τ∗, and the vertex v.
1: (c1, . . . , cn)← children of v /* vertices that have been contracted to v */
2: if n > 0 /* v is not a vertex from the bottom level */ then
3: vp, vs ← neighbours of v in τ∗ /* predecessor and successor of v */
4: p1, . . . , pn ← argmin{length of path {vp, cp1 , . . . , cpn , vs}} such that p1, . . . , pn

is a permutation of 1, . . . , n /* optimal order of new vertices in the tour */
5: replace path {vp, v, vs} in τ∗ with path {vp, cp1 , . . . , cpn , vs}

Output : refined TSP tour τ∗.

Function 2: nextVertex(Gk, v, τ∗): get next vertex to process
Input : Graph pyramid Gk, 0 ≤ k ≤ h, the vertex v, and the tour τ∗

1: repeat
2: if v has unvisited children then
3: v ← first unvisited child of v in τ∗ /* given an orientation */
4: else if v has unvisited siblings then
5: v ← first unvisited sibling of v in τ∗ /* given an orientation */
6: else if v has a parent i.e. v is not a vertex of the top level then
7: v ← parent of v
8: else
9: v ← ∅

10: until (v not visited)
∨

(v = ∅)
Output : new vertex to process v.

is stopped. Note the size of the vertices in the figure, corresponding to their
bigger and bigger receptive fields going to higher levels of the pyramid. Having
a small number of cities at the top of the pyramid the first approximated tour
is created by a brute force search (as shown in figure under c). A vertex
is chosen randomly (filled vertex shown under c, belonging to level 2) and
refined by expanding it to its children (shown under d1). The shortest path
by using a brute force search is found between v′ and v′′ and the expanded
children (d1). After the approximated tour is found one of the vertices (chosen
randomly) belonging to level 1 (v′ and v′′ are not in level 1, note the size of
these vertices) is refined (shown filled in d1) to its children, and the tour is
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found as previously explained. Note that we have vertices from all levels of the
pyramid, mimicking human visual fovea. The process is iterated until all the
input cities (vertices on level 0) have been added to the tour. The full demo
can be found in http://www.prip.tuwien.ac.at/twist/results.php.

a) Cities b) Bottom-up simplification - creating the pyramid

1) level 0 2) level 1 3) level 2

c) initial tour τa d) expansion of parent to its children

1) refining v1 2) refining v2 3) refining v3

v1

v′

v′′

v2
v3

...

Top-down refinement of tours τ∗ simulating the human fovea.

Fig. 6. Steps of the algorithm.

5 Psychophysical Evaluation of the Model

Performance of this model was compared to that of four human subjects. It
is known that there is a very small individual variability in performance and
that all subjects solve TSP very well [3,60,20]. Therefore, it is sufficient to test
only a few subjects, each subject being tested on large number of problems.
This is actually how research on human visual perception is being done (see
human vision journals such as Vision Research [61], Journal of Vision [62] or
Journal of Problem Solving [63]).
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a) BSL b) OSK

� �

c) ZL d) ZP

e) MST pyramid model

	 �

Random instance with 10 cities.

Fig. 7. E-TSP solutions by humans subjects and the MST pyramid model.

5.1 Subjects

Four subjects were tested (see Pizlo et al. [20], for a full description of the
experiment). Subjects BSL, and OSK were näıve about the purpose of the
experiment. They received only a small amount of practice before being tested.
ZL and ZP, on the other hand, were quite familiar with TSP. Specifically, they
solved hundreds of instances of TSP before being tested.

5.2 Stimuli

A simple way to present E-TSP to a subject is to show n cities as points on
a computer screen and ask the subject to produce as short a tour as possible
by clicking on the points. An example of the stimuli is shown in Figure 1a,d.

5.3 Procedure

Each subject solved the same 100 E-TSP problems in a different order. There
were 4 different problem sizes 6, 10, 20, and 50 cities, with 25 instances
per problem size. The cites in each problem were generated randomly on a
256×256 square grid [14]. Examples of 10 city tours produced by the subjects
and by the model are presented in Figure 7. The crosses depict the starting
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point chosen by the subjects and by the model. BSL, OSK, and ZP chose the
clockwise direction when solving the problem, whereas ZL chose the counter-
clockwise direction. The MST based pyramid model chose randomly both the
starting point and the direction in individual solutions. The algorithm is ap-
plied to each problem with the values of r in the range between 2 and 9. The
tour whose length was closest to the length produced by a given subject was
taken for further analysis.

The tour length is measured by the solution error

ε = (
l(τa)

l(τopt)
− 1) · 100%

5.4 Results and Discussion

Figure 8a–d show average performance of each subject and that of the model.
It can be seen that fits are quite good. The worst fit is for the case of 50-
city problems (especially for OSK). Specifically, the model’s performance is
not as good as that of the subjects. Recall that the pyramid tries only one,
randomly chosen, starting city. If more than one starting city were tried, the fit
would have been better. The subjects’ choice of starting city is not completely
random, but at this point we do not have a model for choosing a good (or
best) starting point. Figure 8e shows the average of the estimated parameter
r, i.e. the number of cities searched by humans during the solutions. The
individual variability in the estimated r is not large, which also confirms the
result from [20]. The subject who produced better solutions (OSK) tended to
have higher values of r.

Some authors suggested that subjects ’select’ their tour from the set of non-
self-intersecting tours [60]. The number of self-intersecting tours depends on
the distribution of cities. For a random distribution of cities, the restriction
that the tour is non-self-intersecting is not very tight: there are still a large
number of non-self-intersecting tours [20]. In our simulation our model never
produced self intersecting tour.

Next, the algorithm was run 15 times on the whole set by choosing random
refinement points during the tour approximation and with different parameters
r (4 ≤ r ≤ 8). In Figure 9a) the average of the subjects taken from Figure 8
and that of the model for parameter r = 7 is shown. The averaged results of
the model for several values of r is depicted in Figure 9b).

For larger instances (> 120 cities) data with human subjects is difficult to
obtain because the experiment becomes too long. Therefore we compared Al-
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Fig. 8. a)-d)Model fitting on human data and e) estimated value of r for individual
subjects.

gorithm 1 with the state-of-the-art Concorde TSP solver 3 , with adaptive pyra-
mid [20] and quad pyramid [14]. We have fixed the values of the parameter
r = 7 and s = 3 for these experiments. The comparison involved average error
and time needed to solve TSP problems with 200, 400, 600, 800, and 1000
cities. The errors are shown in Figure 10a and time in Figure 10b. It can be

3 http://www.tsp.gatech.edu/concorde/index.html
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a) Average performance b) MST Pyramid over r
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Fig. 9. a) Average performance of MST Pyramid vs. average human, and b) average
error of the pyramid model with different parameter r over the test set.

seen in Figure 10a that the MST based model slightly outperforms the other
pyramid models. Note that the Concorde algorithm solves the problems opti-
mally, i.e. the error is always zero. The time plot in Figure 10b was normalized
to the time needed to solve the 200 city instance - this time was set to one
second. It is shown that MST based model is substantionaly faster than the
Concorde algorithm for larger problems.

To summarize, Figures 8 and 9 show that the results of the MST-based model
are comparable to those of humans. The algorithm scales well for large input
instances (Figure 10). The pyramid model provides a plausible explanation of
how human subjects solve computationally hard problems by trading off time
and quality of solution.
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Fig. 10. The solution error and the time performance.
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6 Conclusions

Pyramid strategies convert a 2D Euclidean TSP problem with a large number
of cities into successively smaller problems with similar layout and solution
until the number of cities is small enough to find the optimal solution. Ex-
panding this solution in a top-down manner to the lower levels of the pyramid
approximates the solution. The proposed method uses a version of Bor̊uvka’s
MST construction to reduce the number of cities. A top-down process is then
employed to approximate the E-TSP solution of the same quality and at the
same speed as humans do. The new model has an adaptive spatial structure
and it simulates visual acuity. Specifically, the model solves the E-TSP prob-
lem sequentially, by moving attention from city to city, the same way human
subjects do. We showed that the new model closely fits the human data. The
presented model has a low computational complexity similar to that char-
acterizing mental processes (i.e. near-linear). The solutions produced by the
model is characterized by errors similar to those produced by the subjects.
In many areas of pattern recognition, like object detection, image segmenta-
tion etc. humans are used as the ’gold standard’. Isolating the process behind
the solutions given by the humans is in general of importance to psychology
community and might lead to advance in pattern recognition as well. Pyramid
data structures and processing strategies are a reasonable approach for finding
near-optimal solutions not only for NP-hard problems such as TSP, but also
for pattern recognition problems, such as matching.
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