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Abstract. During spawning, the marine worms Platynereis dumerilii
exhibit certain swimming behaviors, which are described as nuptial
dance. To address the hypothesis that characteristic male and female
spawning behaviors are required for successful spawning and fertilization,
we propose a 2D tracking approach enabling the extraction of spatio-
temporal data to quantify gender-specific behaviors. One of the main
issues is the complex interaction between the worms leading to colli-
sions, occlusions, and interruptions of their continuous trajectories. To
maintain the individual identities under these challenging interactions a
combined tracking and re-identification approach is proposed. The re-
identification is based on a set of features, which take into account posi-
tion, shape and appearance of the worms. These features include the
normalized shape of a worm, which is computed using a novel approach
based on its distance transform and skeleton.

Keywords: Object tracking · Appearance models · Shape normaliza-
tion · Shape analysis

1 Introduction

Platynereis dumerilii [19] are marine worms, who reproduce through external fer-
tilization when sexually mature. During spawning they exhibit particular swim-
ming behaviors, which differ based on their gender and spawning phase [6]. The
aim of the biologists is to verify that characteristic male and female spawning
behaviors are required for successful spawning and fertilization. Therefore, they
want to analyze the spawning behaviors in a quantitative manner and character-
ize and compare male- and female-specific behaviors. To achieve this, the aim is
to develop methods that enable the 2D tracking of spawning worms and extract
features describing their appearance (skeleton, curvature, normalized shape, etc.)
and motion (trajectories of head and tail). These features are described and dis-
cussed in more detail in [13].
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For the proposed spatio-temporal analysis, the nuptial dance [3] of the worms
is recorded with the help of a special setup. In nature, spawning happens in the
sea at night around new moon. Therefore, it is necessary to record the videos
inside a light-tight box with an infrared camera. During the recordings, the
worms are placed into a shallow, cylindrical bowl filled with sea water referred
to as arena. On the water surface, the arena has a diameter of 7 cm. The average
length of a worm is between 1 and 2 cm.

When the worms are not close to each other, analysis and tracking is straight-
forward. As the camera is fixed, the worms can be reliably segmented by sub-
tracting a background image (showing the empty arena) and removing noise
(morphological filters). The resulting binary regions of both worms are repre-
sented by their center line (extracted based on skeleton) limited by head and
tail position. Tracking of the worms is done by employing a Kalman filter, which
finds the correspondences of head and tail for both worms in each frame.

Fig. 1. Flow chart of the proposed method
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The contribution and focus of this paper lies in the active phase of the spawn-
ing process, where the worms interact. During this active phase the worms collide
and occlude each other in the 2D image, thus leading to ambiguities in seg-
mentation and tracking. As the worms frequently change their appearance and
motion, it is a challenging task to correctly identify them throughout the whole
video sequence. The main aim of this paper is to re-identify the worms after
their frequent interactions. This ensures that the collected spatio-temporal data
is associated with the correct label (male or female) and is a reliable source of
information for the following analysis of the biologists. Figure 1 gives an overview
of the overall tracking pipeline.

The remaining part of this paper is organized as follows: Section 2 discusses
existing tracking methods, Sect. 3 explains shape normalization in detail, Sect. 4
presents the tracking and re-identification method. Experimental results are
shown in Sect. 5 and Sect. 6 concludes the paper.

2 State of the Art

There is a vast amount of research in tracking people [11] and vehicles [5], but
only modest attention has been devoted to tracking worms. Traditional tracking
methods cannot be directly used to track swimming worms as the worms change
their direction and speed of motion in a fast and unpredictable way. Furthermore,
the appearance of the worms changes rapidly, thus the history of the moving
objects cannot be used for increasing the reliability of the tracking, as in [11].

As summarized in [9], a number of worm trackers focus on the tracking and
feature extraction of one worm [2,15,17,18] or a group of worms [14,16]. The
proposed methodologies use background subtraction and track the centroids of
all foreground regions. When two or more blobs occlude each other, the infor-
mation about these blobs is lost since the focus of these algorithms is on the
behavior of the worm groups and not on the exact trajectory of a single worm.

Huang [8] describes an approach, where it is possible to keep track of the
worms while they occlude each other. In contrast to Huang’s approach, this
paper does not try to segment the worms during occlusion, but aims at re-
identifying them afterwards. They also propose a method to define the head and
the tail points of each worm based on the fact that the C. elegans worms have
an accumulation of fat in the head making the head area usually brighter than
the tail area, which does not hold for Platynereis dumerilii worms. In the work
of Hoshi and Shingai [7] another method to detect the worm’s head and tail is
proposed. This method cannot be applied to our problem because it is based on
the assumption that the head swings more than the tail.

3 Shape Normalization

As the worms are highly deformable, it is necessary to come up with a description
of their shape, which is independent of deformations. For this, we follow a recent
strategy, which is known as co-registration, where shapes are first straightened or
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Fig. 2. (a) Four circles (red) representing the shape at four selected positions in the
skeleton (red points). Yellow pixels represent the skeleton. Gray values visualize the
distance to the boundary. (b) Normalized shape representation of a male worm. (Color
figure online)

flattened to then register different views/deformations of the same normalized
shape [1]. The shape normalization is based on the distance transform of the
binary region and the skeleton of the shape. The skeleton is restricted to a
line delimited by two end-points without any branches. For every point of the
skeleton, the corresponding value of the distance transform holds the Euclidean
distance to the nearest boundary pixel of the binary region. These distances hold
information on the thickness of the shape and also serve as radii of circles used
to draw the normalized shape representation. Figure 2a shows the circles of four
points on the skeleton of a worm.

For every pixel of the skeleton a corresponding circle can be drawn. The union
of these circles covers the original worm shape. By arranging the skeleton points
in a straight line, the representation becomes independent of the deformations of
the worm and gives the normalized shape (See Fig. 2b). To maintain the corre-
spondence between deformed and normalized shape, the geodesic distance along
the deformed skeleton is mapped to the Euclidean distance in the normalized
shape. This one-to-one mapping also allows to return to the image space. In this
paper, the normalized shape is used to compare worm shapes before and after
an occlusion occurs.

4 Worm Tracking

4.1 Representation of Worms

Let ω(τ, z, id) be a function that defines the position of a point along the worm’s
skeleton, where τ ∈ [0, 1] is the percentage of the worm length that defines the
normalized distance along the skeleton between the head point ω(1, z, id) and
the tail point ω(0, z, id). z represents the frame number of the video and id is the
worm’s identifier. In case of two worms id ∈ [male, female]. For a fixed frame ẑ

of the video and for a fixed worm îd, the position of the tail point is ω(0, ẑ, îd)
and the position of the head point is ω(1, ẑ, îd).
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However, since the trajectory of the head and the tail of a worm is not
smooth but jittery due to flicking and bending motions, it is not possible to
correctly predict the position of these points using the Kalman filter [10]. Thus,
the skeleton is partitioned into three parts, namely tail points τ ∈ [0, 1

3 ], body
points τ ∈ [ 13 , 2

3 ], and head points τ ∈ [ 23 , 1], and the following two points having
a smoother trajectory are introduced: ω(13 , z, id) and ω(23 , z, id).

4.2 Tracking Based on Kalman Filter

During a preliminary detection step based on a traditional background subtrac-
tion algorithm, the connected regions associated to the worms are detected and
their skeletons are extracted [13]. Each skeleton is then represented by the two
points p1 and p2, having a geodesic distance of 1

3 and 2
3 from one of ending

points of the skeleton, respectively. At the generic frame ẑ+1, the positions of
the worms w(13 , ẑ,male), w(23 , ẑ,male), w(13 , ẑ, female) and w(23 , ẑ, female) are
known from the previous frame ẑ. In the first frame of a video, the positions are
defined manually. The tracking algorithms has to find the correct association
among the above positions identified at the frame ẑ (the output of the tracking
at the previous frame) and the points p1 and p2 defined in frame ẑ+1 (the output
of the detection).

The Kalman filter provides predictions for the positions of the points of frame
ẑ based on the trajectory of these points [10]. These predictions are compared
with the points that describe the worms in frame ẑ+1. In the case of two worms,
there are just eight possible associations. For every prediction, the corresponding
error is calculated as the Euclidean distance between the position of the predic-
tion and the position of the predicted point in frame ẑ +1. For every hypothesis
four errors are taken in account: the errors of the head and tail predictions of
the male worm and the errors of the head and tail predictions of the female
worm. The hypothesis with the lowest root mean square error is chosen because
the prediction errors follow a norm distribution [4]. Furthermore the evaluation
showed that using the root mean square error brings better results.

4.3 Handling Occlusions by Re-Identification

An occlusion is defined as a set of frames in which the worms overlap each other
and appear as a single connected region in the binary image. In the frames before
an occlusion, a set of features is extracted to describe each worm, while during
an occlusion it is not possible to reliably extract and associate these features.
After an occlusion, there are again two connected regions: region1 and region2,
each describing a worm, but their identities (male or female) are unknown. Fur-
thermore, it is unknown which of the two end-points of each skeleton is the head
and which is the tail. When the worms occlude each other, they often change
the direction of their movement in an unpredictable way. Information about the
movement before the occlusion can’t be robustly used to predict the position of
the worms after the occlusion.
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As motion (speed and direction) is not a reliable indicator for the identity of
the worms, this paper proposes an approach based on comparing the appearance
immediately before and after the occlusion. For this comparison, the following
features are taken into account:

– Normalized Shape, fs ∈ RN

– Area in pixels, fa ∈ N
– Mean gray-scale value of skeleton, fm ∈ [0 , 255 ]
– Length of skeleton in pixels, f l ∈ R

A sliding window is used to analyze the worms over several frames to increase
the reliability in the classification process. The features collected before the
occlusion are used to build two models: model1 for the male worm and model2
for the female worm. To compare the worm models with the features extracted
from the unidentified regions after the occlusion, a measure of similarity (see
Eq. 1) and a method of comparison are necessary.

After the occlusion, a majority voting approach is used to combine the deci-
sions taken in every frame of the temporal window to find the identity of the
worms (male or female). The identity that receives the most votes is the final
identity of each worm.

The size of the sliding window has to be chosen according to the rate in which
the chosen features change over time. For Platynereis dumerilii worms, some of
the features depend on how and where the worms are moving. When they swim
in a straight line, the body area is bigger than when they are moving in circles.
The luminosity also changes depending on where they swim. It is higher in the
middle of the arena than at the border. Therefore a temporal window of five
frames was chosen empirically in the current tracking setup.

To build the male and female model, the average value of the features in
the last five frames before an occlusion is calculated. The models define how
the worms should appear after the occlusion. For each of the five frames after
the occlusion, the features of the two unidentified regions are compared with the
male and female models. For the comparison, the following measures of similarity
are computed: ssij (normalized shape), saij (area), smij (mean gray scale value) and
slij (length), where i ∈ [1, 2] is an index referring to the two unidentified regions
and j ∈ [1, 2] is an index referring to the models. All these measures of similarity
are normalized to one and combined according to Eq. 1.

sij =
√

(ssij)2 + (saij)2 + (smij )2 + (slij)2 (1)

Let x ∈ {a, m, l} be a variable that represents the value of one of the following
features: area, mean gray scale value and length. dxij is the difference between
the value of the feature x of region i and the value of the same feature in model j
(see Eq. 2). sxij is computed according to Eq. 3 where the features are normalized
with the maximum feature value dxmax which is defined empirically.

dxij = fx
i − fx

j (2)
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sxij = 1 − |dx
ij |

dxmax

(3)

The normalized shape similarity ssij is computed according to the Pearson
correlation [12] (see Eq. 4), where N is an integer value computed as the min-
imum value between the geodesic length of the skeleton from regioni and the
geodesic length of the skeleton of wormj . ri(n) and rj(n) are two functions that
define the radius of the normalized shape for the regioni and for the wormj of a
fixed point n on the skeleton. Comparing normalized shapes 3D movements are
managed.

ssij =
N · ∑N

n=1 ri(n) · rj(n) − ∑N
n=1 ri(n) · ∑N

n=1 rj(n)√
N · ∑N

n=1 r2i (n) − (∑N
n=1 ri(n)

)2 ·
√

N · ∑N
n=1 r2j (n) − ( ∑N

n=1 rj(n)
)2
(4)

There are two possible associations: region1 is the male worm and region2

is the female worm (hypothesis Hp1) or vice versa (hypothesis Hp2). A measure
of confidence is assigned to both hypotheses: s11 + s22 to Hp1 and s12 + s21 to
Hp2. The association with the greater confidence value is chosen as result of the
re-identification process.

From Eq. 1 it can be observed that all the features bring an equal contribution
to the final decision. From the evaluation it has been observed that there is no
need to weight the features.

4.4 Trajectory Analysis for Head and Tail Definition

After the re-identification, the regions are labeled as male and female, but the
head and tail of each worm is not identified yet. To solve this open issue, a
trajectory analysis is done. The basic idea is to analyze the direction of the
motion of the worms, as they in general swim in a forward manner (tail point
on skeleton is pulled from head point).

A new predefined temporal window after the occlusion is considered for the
trajectory analysis. In each frame, the two end-points of the skeletons of both
worms are tracked as shown in Fig. 3. In the synthetic example in Fig. 3, the
Euclidean distance between the point w(13 , ẑ + 1, îd) and the point w(12 , ẑ, îd) is
smaller than the Euclidean distance between the point w(23 , ẑ + 1, îd) and the
point w(12 , ẑ, îd). Therefore, the point w(0, ẑ + 1, îd) votes for tail in this frame
pair. This voting is repeated for every consecutive frame pair in the temporal
window. Finally, the majority of votes decides on head and tail of each worm.

For the trajectory analysis it is assumed that the worms do not move back-
wards for more than half of the frames in the temporal window. The tempo-
ral window for the trajectory analysis has to be chosen considering the trade
off between the probability of making the correct decision and the elaboration
time. Therefore, a window of 30 frames was chosen empirically related to speed
and longest backward movement of Platynereis dumerilii worms in the current
tracking setup. Figure 4 shows an example of occlusion management.
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Fig. 3. Information taken in account to identify the head and the tail points in a frame
pair (left and right).

a) Frame ẑ b) Frame ẑ + 5 c) Frame ẑ + 9

Fig. 4. Three frames taken out of a sequence of ten frames. (a) Male (blue) and female
(pink) worm before occlusion. Small crosses identify the points w(0, ẑ, id), w( 1

3
, ẑ, id)

and w( 2
3
, ẑ, id). Circles identify the predictions of the points w( 1

3
, ẑ, id) and w( 2

3
, ẑ, id).

The big cross on both worms identifies the head point w(1, ẑ, id). (b) interactions during
occlusion. (c) Re-identification after occlusion. (Color figure online)

5 Evaluation

5.1 Normalized Shape

The normalized shape representation has been evaluated in [13] on a dataset
containing 100 images selected from 7 different video sequences. This section
gives an overview of the results. For the evaluation, the original binary worm
region is compared with its normalized shape, which is projected into the image
space to match the original worm region. Errors occur when pixels are missed
from the original shape. Non-original pixels are not added when projecting the
normalized shape, since the circles are always inside the original shape. Compar-
ing the projected normalized shape to the original worm region, the minimum
error is 1.02 %, the maximum error is 8.89 % and the mean-error for all images
is 3.2 %.

5.2 Tracking

To evaluate the performance of the proposed approach a MATLAB prototype
has been realized. The prototype has been applied on a dataset of worm videos
from the Max F. Perutz Laboratories in Vienna. All videos in the dataset are in
gray scale with a size of 1280 × 960 pixels and a variable frame rate between 30
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Table 1. Evaluation results on whole dataset.

Re-identifications Head-tail decisions

# of re-identifications 1.308 # of head-tail decisions 2.962

# of false re-identifications 3 # of false head-tail decisions 42

False re-identifications in % 0.229 % False head tail decisions in % 1.418 %

and 60 frames per second (43 frames per second in average). To speed up the
elaboration time the videos have been re-sized to 640 × 480 pixels. The whole
dataset consists of 25 videos that have a total duration of more than 2 h and are
composed of 320.630 frames (elaborated videos can be found on our web site1).

The ground truth of the worm identities has been generated manually by
selecting head and tail position and the worm identifier (male or female) in every
frame. Table 1 shows the result of the evaluation of the tracking on the whole
dataset. The number of re-identifications is equal to the number of occlusions in
which the worms overlap themselves. The number of head-tail decision is bigger
than the number of re-identifications, because it is two times the number of re-
identifications plus the times a single worm occludes itself (e.g. forms a circle).
As can be seen in Table 1, the number of false gender decisions is different in
comparison to the number of false head-tail decisions, because these decisions are
made independent of each other. Furthermore, it is important to note that false
head-tail decisions do not have repercussions on the following head-tail decisions,
but false gender decisions can influence the following decisions on gender.

Regarding the gender association, it can be observed that in twenty-two
videos there are zero association errors and in three videos, starting from a
certain frame to the end of the video, the worms’ genders are confused.

Regarding the head and tail association, it can be observed that the majority
of false decisions are made when the worms lose their vitality and start to stay
quiet or do not move at all. In these situations, the trajectories of the worms are
ambiguous and depend on the movement of the water. Instead, when the worms
swim in a natural way, it is unlikely that false decisions are made.

To illustrate the diversity of the worm features, Table 2 shows the values
before and after the occlusion shown in Fig. 4 occurs. This example was chosen
because the male worm appears bigger than the female worm before the occlu-
sion, which changes after the occlusion. It shows why it is necessary to consider
all features and use a sliding window.

Table 2. Worm features before and after the occlusion shown in Fig. 4 occurs.

Feature Male worm Female worm

Area (pixels) 477/384 441/485

Mean gray scale value 50/49 71 / 66

Geodesic length (pixels) 68,63/66,77 71,04/66,61

1 http://www.prip.tuwien.ac.at/research/worms.php.
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6 Conclusion

In this paper, a novel approach to track Platynereis dumerilii is proposed. It is
able to handle occlusions and maintain the identity of the tracked worms with
the help of a novel feature, the normalized shape. The normalized shape allows
the comparison of the shape of worms independent of their deformation. It is
used in conjunction with other features to correctly re-identify the worms after
occlusions. Experimental evaluations on more than two hours of video material
showed that the proposed approach is able to reliably analyze the nuptial dance
of the worms. In 99.8 % of the cases the gender of the worms was correctly re-
identified after an occlusion. The head and the tail where correctly labeled in
98.6 % of the cases.

The proposed method for the re-identification and the trajectory analysis
to assign head and tail are not limited to the presented application and can be
applied to other tracking problems. Especially the normalized shape is a suitable
representation for all kinds of non-rigid objects having a main axis.

Acknowledgements. The authors thank Stephanie Bannister from the
Max F. Perutz Laboratories GmbH for valuable discussions and providing videos of
the spawning worms.
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