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Abstract. The LBP scale space serves as a shape
representation, which thus allows not only for shape
classification but also for an (approximate) recon-
struction of the original shape. In this paper possible
LBP scale space origins within a shape are evalu-
ated. The influence of the LBP scale space center
on the reconstruction quality is studied by comput-
ing the LBP scale space for every position inside a
shape and by comparing the according reconstruc-
tion errors. For shape classification, the LBP scale
space is further evaluated on the MPEG-7 dataset.

1. Introduction

In this paper we present an evaluation of the
locale binary pattern (LBP) scale space shape rep-
resentation and experiments on shape classification.
Biasotti et al. define shape descriptors to be able
to identify a shape as a member of a certain class,
while a shape representation also allows for an
(approximate) reconstruction of the shape [2]. The
discussed LBP scale space (LBPSS) serves as a
shape descriptor. Augmented by polar coordinates
however, the LBP scale space also serves as a shape
representation, since in this case a reconstruction of
the shape can be computed.
First experiments considering the LBP scale space
were conducted by Janusch and Kropatsch in [9],
before it was defined in more theory in [8]. The LBP
scale space is based on LBPs which were originally
proposed for texture analysis [15]. LBP codes how-
ever, capture not only local texture information, but
also local topology. For texture analysis, description
and classifications LBP codes are usually computed
in a close neighbourhood around a pixel (most
commonly pixels along a radius of 1, i.e. immediate
neighbours of the center pixel). In order to use LBPs
for shape description and shape classification, the

local topology of larger neighbourhoods needs to be
taken into consideration. For this purpose, a hierar-
chy of LBP codes - namely the LBP scale space - is
computed over a range of radii and the persistence
of LBP types is used as a shape representation.
Parameters for the LBPSS approach are the origin
of the LBP scale space within a shape and the
sampling of the range of radii. This paper studies
the influence of the choice of the origin on the
representational power of the LBP scale space and
on its classification accuracy.
Yang et al. [20] give an overview of shape feature
extraction techniques and distinguish information-
preserving and non-information-preserving shape
descriptors in this regard. Zhang and Lu [21]
as well as Yang et al. [20] moreover distinguish
contour-based and region-based methods for shape
description and representation, and further subdi-
vide them into structural and global techniques.
Structural techniques employ shape primitives
that represent the shape as segments while global
methods represent the shape as a whole.
The evaluated LBP scale space combines the above
mentioned categories: It examines the shape’s
contours as well as the shape’s region. While it
represents the shape globally, the shape may also
be divided into intervals of topological persistence
based on the LBP scale space, which can be consid-
ered shape segments.
Shape descriptors based on topological persistence
are mostly obtained using a filtration of a space
which gives a nested sequence of subspaces that
begins with the empty and ends with the complete
space [6]. Topological features appear (birth) or
disappear again (death) for certain subspaces of
the filtration. The interval between the birth and
the death of such a feature, its lifetime, is called
its persistence. Other shape descriptors based on



topological persistence are for example size func-
tions as described by Verri et al. [19] or persistence
barcodes as presented by Carlsson et al. [4]. For
shape retrieval Cerri et al. [5] presented a matching
distance to compare shapes based on their persis-
tence diagrams. Topological shape representations
based on filtrations are in general dependent on
the chosen filtration. Especially height functions
(which are often used for filtrations) are not invariant
to rotations of the shape. The LBP scale space in
contrast is a rotational invariant shape representation.

The rest of the paper is structured as follows:
Section 2 gives an introduction to the theory of LBP
scale spaces, the influence of the LBPSS origin
on the representational power is then discussed in
Section 3. Section 4 gives on overview on shape
classification in general and using the LBPSS repre-
sentation. Experiments on shape classification based
on the LBP scale space using the MPEG-7 dataset
are presented in Section 5. Section 6 concludes the
paper and gives an outlook to future work.

2. LBP Scale Space

LBPs were originally introduced for texture de-
scription and classification [15]. The LBP of one
pixel is determined by comparing this pixel to a sub-
sampled circular neighbourhood around it. For every
such comparison the according position in a bit pat-
tern is set to 1 if the grayvalue at the sampling point
g(xi) is larger than or equal to the grayvalue of the
center pixel g(p) and to 0 otherwise (Fig. 1a and 1b):

s(xi) =

{
1 if |g(p)− g(xi)| ≥ 0

0, otherwise
(1)

Most LBP implementations and applications only
consider the eight (see Fig. 1a) or four (above,
below, left and right) direct neighbours to a center
pixel. For the LBP computation two parameters may
however be adjusted (see Figure 1c): P the number
of sampling points the center pixel is compared with
and R the radius of the circle around the center pixel
along which the LBP is computed [16].
The bit pattern obtained as LBP not only captures
texture but also encodes local topology: the neigh-
bourhood around the center pixel may describe a
(local) minimum or (local) maximum, a plateau,
a slope or a saddle [7, 8]. These topological con-
figurations of manifolds can be best illustrated on
the example of topography: When considering the

gray values in a grayscale image as elevations, a
grayscale image forms a terrain model. In this case
the topological configuration of minima is found
at the bottom of valleys, maxima are located at
mountain peaks - plateaus, saddles and slopes are in
the same way intuitively defined. In an LBP these
configurations of local topology can be distinguished
by the number of bit changes in the LBP, this means
by the number of transitions from 0 to 1 and vice
versa in the bit pattern (e.g. a saddle is observed for
LBPs with 4 or more such changes in the bit pattern)
[8].
By varying the LBP radius and studying the evolu-
tion of the above defined topological classes over
a range of such radii, the LBP scale space was
introduced by Janusch and Kropatsch [9, 8]. The
LBP scale space is defined in a continuous as well
as in a discrete space. In the discrete case, the LBP
scale space is obtained as follows: For a predefined
center pixel (LBPSS origin) within a shape we
compute the LBP for a range of radii. To fully
cover a discrete shape a radius of 1 may be chosen
as starting LBP radius and it may be increased by
1 until the shape is fully inscribed in this circle.
The sequence of local topology configurations
captured by the LBPs for each of the increasing radii
gives a shape description. Figure 2a shows a small
example shape and an according discrete LBP scale
space. By augmenting the LBP scale space by polar
coordinates, a shape representation is defined and an
(approximate) reconstruction of the shape is enabled.

The continous LBP scale space with center p is
defined as:

LBPSS(r, φ) =

{
1 if |g(p)− g(r, φ)| ≥ 0

0, otherwise
(2)

LBPSS : [0,∞)× [0, 2π)→ {0, 1}

In the continuous case we observe osculation points
along the shape’s boundary for which the LBP
circle’s and the boundary’s tangent in that point
coincide. These osculation points are critical points
since they describe a birth or death of a component,
thus a change in topology. The interval of radii
spanned in between two such consecutive critical
points describes the lifetime (persistence) of a
component. LBP circles of radii in such an interval
all show the same topological class, since changes in
topology only occur at critical points and topology



(a) comparison with
neighbours

(b) bit pattern (c) (P,r) = (8,1); (P,r) = (16,2); (P,r) = (8,2) - according to [16].

Figure 1: (a) and (b) LBP computation for center pixel p and (c) variations of the parameters P (sampling
points) and r (radius).

persists in between two consecutive critical points.
Fig. 2b shows an example for an example shape and
an according continuous LBP scale space.

When implementing a discrete LBP scale space, it
may start with a radius for which the circle is fully
inscribed inside the shape. Therefore, the radius
of this circle is at maximum the distance to the
closest boundary, measured from the LBP origin.
The LBP scale space is fully obtained once a radius
is reached (according to the predefined sampling
scheme) for which the shape is fully inscribed in the
circle (i.e. at least half of the Euclidean diameter
of the shape). For binary images (with a white
foreground), the LBP scale space therefore always
starts with a topological configuration of the type
plateau - the circle is fully inscribed inside the shape
and all pixels of the shape have the same colour. The
LBP scale space terminates for those binary shapes
with an LBP of type maximum since the origin of
the LBP computation is white (foreground) and the
circle is large enough to inscribe the whole shape,
it is therefore located in the black background. In
between these start and end states, the observed
types of local topology may be of type plateau, slope
or saddle.
The LBP scale space captures topological configu-
rations which are given as transitions from 0 to 1 or
vice versa in the LBP bit pattern. The topological
configuration depends on the number of transitions
only, the position of these transitions in the bit
pattern is irrelevant. The LBP scale space thus is a
rotation invariant shape representation. It is however
not scale invariant, since for a predefined sampling
scheme similarly formed but differently scaled
shapes produced a different number of levels in the
LBP scale space. Considering the LBP scale space
as feature vector describing a shape, the feature

vectors of these two similar but differently scaled
shapes would be of different length. A normalization
step applied to either the shapes or the sampling
scheme is therefore needed as a preprocessing step
in order to compare shapes of different scales.

3. Experiments: LBP Scale Space Origin

In previous experiments [8] the location of the
maximum of the distance transformation of a shape
and the location of the minimum of the eccentricity
transformation of a shape were used as origins for
the computation of the LBP scale space. In this ex-
periment we evaluated whether these positions are
suitable locations for LBP scale space origins and
whether other positions within a shape should be
considered as LBP scale space origins as well.
We used the Kimia 99 dataset [17] and computed the
distance transformation (using the quasi-Euclidean
metric) and the eccentricity transformation for all
99 shapes of this dataset for this experiment. Addi-
tionally, we computed all possible LBP scale spaces
for every shape: every location within the shape
served as origin, thus one LBP scale space was com-
puted for every pixel of the shape. Every shape was
then multpile times reconstructed - once for every
LBPSS computed for this shape in the previous step.
All reconstructions were compared to the original
shape. For every pixel of the shape we stored the
achieved reconstruction accuracy when reconstruct-
ing the shape based on the LBPSS with origin at this
pixel.
Reconstruction errors arise in the discrete space
whenever the inscribed LBP circle touches the shape
boundary in a flat angle. In this case several os-
culation points (locate next to each other along the
shape boundary) occur between the LBP circle and
the shape boundary (respectively between their tan-



(a) discrete LBPSS (b) continuous LBPSS

Figure 2: LBP scale space in the (a) discrete case for a regular sampling scheme. Blue (circle 1) = plateau,
red (circle 2, 3) = degenerate saddle, green (circle 4-7) = non-degenerate saddle, orange (circle 8, 9) = slope,
yellow (circle 10) = maximu. And the (b) continous case - the osculation points marked in orange along the red
LBP circles are critical points at which the topology changes.

gents).
A low reconstruction error indicates a high quality
shape representation, thus points within a shape for
which the shape can be reconstructed well are suit-
able LBP scale space origins. By considering the re-
construction accuracy for all points within a shape,
we obtain a map for each shape, that associates repre-
sentational quality with each point of the shape. Fig-
ures 3i - 3l show such maps for four example shapes.
We compared these maps and the obtained optimal
origins of all shapes in order to obtain common rules
for suitable LBP scale space origins. These optimal
origins can so far only be determined through testing
all possible locations within a shape, which is not a
suitable way to determine LBP scale space origins
for an actual shape representation. By comparing
the reconstruction qualities of all possible origins of
all shapes, we observed the following properties for
suitable LBP scale space origins - they are located:

• inside the shape at some distance to the bound-
ary but not at the boundary (cp. locations of
maximum distance transformation)

• at central points of shapes, not in thin struc-
tures or convexities such as extremities for a hu-
manoid shape (cp. locations of minimum eccen-
tricity)

These observations agree with previous experiments
in which various points inside a shape were tested as
LBP origins and the location of maximum distance
transform and minimum eccentricity transform
provided the best reconstruction accuracy.

For applications in shape classification or matching,
the LBP scale space origin should not be located at
arbitrary positions for the individual shapes. To en-
sure good discrimination among the shapes, it should
be determined according to defined rules since the
LBP scale space representation also depends on the
chosen origin.
Based on our above described observations the
locations of maximum distance transformation,
respectively minimum eccentricity transformation
may serve as suitable origins. Figure 3 shows a
comparison of distance transformation, eccentricity
transformation and reconstruction accuracy using
an LBP scale space for four example shapes. Out
of these two transformations, the distance transfor-
mation however has a much lower computational
complexity: The eccentricity transformation induces
a constrained distance transformation for every pixel
of the shape, i.e. for the eccentricity transformation
the distance transformation is computed n times for
a shape with an n pixel area. Thus, the complexity
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Figure 3: Comparison of distance transform (using the quasi-Euclidean metric) (a) - (d), eccentricity transform
(e) - (h) and reconstruction error based on the LBP scale space (i) - (l). Blue indicates low, red high values.

may be up to O(n3) [10].
We therefore evaluated the location of maximum
distance transformation for the shapes in the test
dataset to see if this is a suitable location for an
LBP scale space origin. The reconstruction error
for an LBP scale space with origin at the location
of maximum distance transform of each shape is
at least 0.027% for the shapes in the Kimia 99
dataset. More than half of these shapes (54 out of
99) have less than 3% reconstruction error when
reconstructed using an LBP scale space with origin
at this location, 93% (92 out of 99) of these shapes
have less than 10% reconstruction error. This shows
that the location of maximum distance transform is
indeed a suitable and easily obtainable origin for
LBP scale space computations.

4. LBP Scale Space for Shape Classification

For 2D shape classification Hidden Markov Mod-
els (HMM) have for example been employed by
Bicego et al. [3]. The authors use HMMs to com-
pute similarities between an input shape and all other
shapes in their dataset (so called representatives set).
The actual classification task is then done in this ob-
tained similarity space. Ling and Jacobs define the
Inner Distance Shape Context (IDSC) as a shape de-
scriptor that is robust to articulation [12]. The IDSC
between to points on the boundary of the shape is de-
fined as the shortest path inside the shape connecting
the two points (cp. geodesic distance). Temlyakov
et al. [18] propose two strategies to determine the
similarity between two shapes: their first strategy
focuses on shapes that can be decomposed into a
compact base structure and strand structures (elon-
gated shape parts attached to the base structure). The
similarities are then determined individually for base



and strand structures. Their second strategy focuses
on symmetrical shapes. The authors integrate both
strategies into predefined shape classification meth-
ods, e.g. IDSC, to improve their performance.
The in this paper evaluated LBP scale space serves
as a shape descriptor and a shape representation and
can therefore be applied to shape matching and shape
classification. Since LBP scale space representations
for different shapes may vary in length depending on
the shape itself, the scale of the shape and the origin
of the LBP computation, the LBP scale space does
not directly provide feature vectors that can be clas-
sified using approaches that assume a fixed number
of features such as k-Nearest-Neighbours (kNN).
The string edit distance (Levenshtein distance) [11]
proved to be a suitable metric for the comparison of
LBP scale spaces. The Levenshtein distance mea-
sures the similarity of two strings as the minimum
number of operations needed to transform one string
into another one. These operations are insertion,
deletion and substitution of a character. Within this
paper the Levenshtein distance is used in its origi-
nal definition - all operations are equally weighted
and add a unit cost of 1 to the Levenshtein distance
between two strings every time they are employed
within a transformation of one string into another
one.
By determining the Levenshtein distance between
shapes based on their LBP scale spaces, a classifica-
tion using kNN is enabled. Since a distance between
shapes is given then, the k nearest shapes according
to the edit distance can be considered for classifica-
tion. Neuhaus and Bunke [14, 13] also employed the
edit distance for strings as well as for graphs to en-
able classification and matching using kNN and sup-
port vector machines (SVM).

5. Experiments: Shape Classification

For this experiment the LBP scale space is evalu-
ated on the MPEG-7 dataset [1]. This dataset consist
of 1400 images in total which are grouped into 70
classes of shapes with 20 images per class1. For a
classification using the LBP scale space the MPEG-7
dataset had to be slightly adapted since the LBP scale
space is not suitable for a representation of shapes
with holes in the foreground region. For a first ex-
periment (experiment no holes) classes with holes

1An overview of the dataset with an example image for each
class can be found at http://www.dabi.temple.edu/
˜shape/MPEG-7/dataset.html

in the shape were excluded. The classification was
done on 51 instead of 70 classes of MPEG-7 in this
experiment, the following 19 classes were excluded:
bell, bird, butterfly, cattle, chicken, crown, deer, de-
vice6, dog, fly, frog, guitar, hat, horse, horseshoe,
lizard, pocket, ray, turtle. For a second experiment
(experiment filled holes) all 70 classes were included
in the experiment but holes in the foreground regions
of shapes were filled.
The discrete LBP scale space was then obtained at
full pixel resolution, starting from a radius of 1 until
a radius for which the whole shape is inscribed in the
circle and sampling steps of 1 for this range of radii.
The origin of the LBP scale space was located at the
location of maximum distance transformation.
The LBP scale space of every shape was compared
to the LBP scale spaces of all other shapes using the
Levenshtein distance. The confusion matrix show-
ing the distances between the shapes for the whole
dataset (experiment filled holes) is given in Figure 4.
For this matrix the origin is set at the upper left cor-
ner, smaller distance appear mostly for shapes within
the same class, this is visible as dark blue patches
along the diagonal. Each shape was then classified
using leave one out cross validation by comparing to
all other shapes. The class for every shape was de-
termined using a kNN approach with k = 1, 3, 5, 7.
Thus, as the class of the shape with the smallest Lev-
enshtein distance, or respectively as the majority of
classes of the 3, 5 or 7 closest shapes according to
the Levenshtein distance, to the shape to be classi-
fied. The classification accuracy for these 4 options
are given in Table 1.

Bicego et al. [3] evaluated their approach on a
sub-set of the MPEG-7 dataset consisting of only
7 classes and 12 images per class. They report
classification accuracies between 80.9% and 98.8%
depending on the classification scheme (maximum-
likelihood respectively kNN (k = 1, 3) based on
HMMs were used). For the same subset of MPEG-7
the LBP scale space reaches a classification accuracy
of 89% for both k = 1 and k = 3.
Ling and Jacobs [12] and Temlyakov et al. [18] eval-
uated their shape descriptors using bullseye testing
which evaluates the application of shape descriptors
to shape retrieval. Shape retrieval aims at selecting
from a dataset all shapes, that are similar (to a cer-
tain degree) to an input shape. Bullseye testing is
also taken as a measure for shape classification since
a majority vote over the retrieved shapes may be used

http://www.dabi.temple.edu/~shape/MPEG-7/dataset.html
http://www.dabi.temple.edu/~shape/MPEG-7/dataset.html


Table 1: Classification accuracy for the two experiments on the MPEG-7 dataset, using kNN with k = 1, 3, 5, 7.

k=1 k=3 k=5 k=7
experiment no holes 82% 79% 75% 72%
experiment filled holes 79% 72% 68% 67%

Figure 4: Confusion matrix showing the Levenshtein distances between the 1400 shapes of the MPEG-7 dataset
(experiment filled holes). Blue indicates low distances, red high distances - the origin is located in the upper
left corner.

to classify an input shape. For bullseye testing using
the MPEG-7 dataset the following procedure is used:

• For every shape similarities/distances to all
1400 shapes are computed.

• The 40 closest (most similar) shapes are se-
lected for each shape.

• Out of this 40 shapes the shapes that are in the
same shape class as the input shape are counted.

• This count is summed for all shapes.

• The accumulated count over all shapes is set
into relation to the maximum count (the max-
imum count per shape is 20, since there are 20
shapes in each class - thus 20×1400 in total). A
maximum ratio of 100% may be reached.

Ling and Jacobs [12] and Temlyakov et al. [18] re-
port high performances on the bullseye testing: with
up 96% respectively 85% retrieval / classification
rate.
Bullseye testing for the presented LBP scale space
approach obtained lower retrieval / classification



rates: for the MPEG-7 subset of shapes without holes
in the foreground region (experiment no holes) 56%
were reach, for all shapes with filled holes (exper-
iment filled holes) 46%. Due to the to some ex-
tent high intra-class variability all 20 shapes of one
class could only be obtained for 125 input shapes
(experiment filled holes). The LBP scale space per-
forms well for classifications applications for which
a class is determined based on one or more most sim-
ilar shapes. In this case even high variability within
a class is handled well (see Table 1) since a small
number of similar shapes can be detected reliably.
For retrieval applications however this high variabil-
ity in the dataset inhibits the retrieval of a large num-
ber of similar shapes. Planned extensions and im-
provements to the LBP scale space aim at solving
this problem.

6. Conclusion and Future Work

The presented evaluation of the LBP scale space
as a shape representation showed that the location of
maximum distance transformation which can be eas-
ily computed for a binary shapes serves as a suitable
origin for LBP scale space computations. Moreover,
evaluations on the MPEG-7 dataset showed that the
LBP scale space in combination with the Levenshtein
distance can be used as shape descriptor for shape
classification. For the application of shape retrieval
improvements need to be made for the LBP scale
space. The drawbacks that the LBP scale space cur-
rently entails for this application will be addressed in
future work:
We plan to soften the parameters of the scale space by
using closed concentric curves (that are able to adapt
to the boundary of a shape) instead of the fixed con-
centric circles of the LBP computation. This more
flexible shape representation is intended to be invari-
ant to deformations (for example due to articulated
movement) of a shape. It thus also allows for the
retrieval of similar shapes showing higher deforma-
tions. Moreover, this representation allows to obtain
a shape property - a polygon hull of a shape similar
to a convex or concave hull of a shape.
Other future tests may include a fixed size LBP scale
space. This means a fixed number of sampled radii
within the interval of minimum and maximum LBP
radius that are determined by the shape itself. Us-
ing such a fixed size LBP scale space creates a scale
invariant shape descriptor based on the LBP scale
space. However, a reconstruction of the input shape

is only possible as approximation of this shape but
converges to the input shape the smaller the sampling
intervals are chosen (i.e. the larger the size of the
LBP scale space is). The fixed size LBP scale space
also allows to treat the LBP scale space as a feature
vector of fixed dimensions and thus to classify with-
out computing the Levenshtein distance but based on
the LBP scale space directly using well known meth-
ods such as kNN or SVMs.
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