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Abstract—The paper introduces a novel confocal ellipse-based
distance (CED), that is based on the properties of the confocal
ellipses. This distance is used to produce a confocal elliptical
field (CEF). The Euclidean Distance Transform (EDT) of a single
point (called seed) generates a distance field of concentric circles.
The sum of two such distance fields of two distinct seed points
produces a distance field of confocal ellipses. This fact enables to
adapt CED and CEF to the discrete case, referred to as CED-
DT and CEF-DT. The properties of the CEF and CEF-DT make
them useful for skeletonization, in particular for efficient removal
of the spurious branches.

I. INTRODUCTION

Distance Transform (DT) [1] is an operator that assigns to
every point its shortest distance to the seed point set in terms of
a particular distance function. In scopes of image processing,
such distances can encode spatial information (e.g. distance to
the boundary of the shape), or characteristic information (e.g.
distance between the features) [2].

In shape analysis, Euclidean DT (EDT) is of special interest,
since it is invariant under rotation, translation, and bending in
2D, but not under scaling. Related methods work with the data
on a grid (pixels in 2D, and voxels in 3D). Given a binary
image, EDT computes for each pixel of a shape its shortest
distance to the background. The algorithm that computes the
exact EDT in linear time was proposed by Maurer et al. [3],
and later improved by Ciesielski et al. [4].

To the best of our knowledge, there exist no algorithm
for producing a distance field of a polygonal shape using
confocal ellipses. Talbot et al. [5] presented an Elliptical
Distance Transform (LDT) for the problem of splitting the
overlapping disk-like shapes. The approach aims at reducing
the dimensionality of the ellipse fitting problem by using the
series of distance transforms, and optimizing the eccentricity
and orientation parameters of the ellipses. In contrast, this
paper is targeting the polygonal shapes. It introduces a distance
function and a distance field that are based on properties of
the confocal ellipses.

The areas of DT application include, but are not limited
to image matching, image segmentation, object recognition,
and shape analysis. In particular, DT provides a basis to
skeletonization approaches, which in turn is a widely exploited
shape descriptor in a vast number of domains [6].

Skeletonization is the process of obtaining a compact one-
pixel wide shape representation, called skeleton. The skeleton
of a shape is primarily associated with the medial axis trans-
form (MAT) introduced by Blum [7]. By definition MAT is
a locus of centers of circles tangent to the boundary in at
least two distinct points. As a shape descriptor, MAT has the
following properties: (1) it is invariant to translation, rotation,
scaling; (2) it preserves symmetry and local thickness of
the shape; (3) it can be computed for any 2D shape; (4)
it incorporates adjacency and neighborhood information; (5)
original shape can be completely reconstructed from MAT.
Existing skeletonization approaches can be generally classified
as digital and continuous [8].

Continuous approaches consider analytical computation of
the skeleton given an approximation of the shape boundary.
A group of methods is derived from the Voronoi diagram [9].
These methods take all the boundary pixels as seeds. They
preserve topological, as well as geometrical information about
the shape. The skeleton is considered to be a subset of the
Voronoi diagram, that excludes the bisectors of the incident
seeds, and the points of the remaining bisectors that do not
belong to the given shape. The size of the seed set has a
crucial influence on computational efficiency of the approach.
Therefore, the methods from this category aim to find a trade-
off between the accuracy of the skeleton and the computational
costs [10]–[12]. Another group of continuous methods is
based on the principle of continuous curve evolution [13]–
[15]. In particular, Kimmel et al. [13] proposed an approach
that decomposes a shape boundary into segments, for which
EDT can be computed in parallel. A skeleton is then obtained
as a set of points, where multiple distance fields share the
same value. In case every point of the boundary represents a
segment, the algorithm produces the Voronoi diagram. These
properties are also valid for the proposed confocal elliptical
field. The difference is, that the produced skeleton in its
general form consists of hyperbolic curves instead of bisectors.
Though, as a special case, it creates the Voronoi diagram.

An important drawback of digital and continuous ap-
proaches is its sensitivity to noise: small perturbations along
the border of the shape cause spurious branches in the re-
sulting skeleton. To solve this problem, several solutions were
proposed, including boundary smoothing, polygonal approxi-
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mation of the shape, hierarchy of skeletons, weighting of the
seed points [16].

This paper introduces an approach, that takes the pairs
of successive points of the shape border as focal points of
the ellipse, and generates a new type of the distance field -
confocal elliptical field (CEF). The CEF provides the basis for
a continuous skeletonization approach, where the separating
curves are represented by branches of hyperbolas. In a specific
case, when the distances between the focal points of all ellipses
are the same, the hyperbolas degenerate into bisectors. In
particular, when every point of the shape border represents
an ellipse degenerated into a circle, the method produces
a Voronoi diagram. Thus, the proposed approach can be
considered as a generalization of the Voronoi diagram. The
methodology presented in this paper opens new possibilities
for shape analysis.

The contributions are as follows:
• a confocal ellipse-based distance is introduced, and

formally defined for continuous (CED) and discrete
cases (CED-DT);

• a confocal elliptical field is introduced and formally
defined for continuous (CEF) and discrete case (CEF-
DT);

• discussion of the properties of CEF and CEF-DT that are
useful for the problem of skeletonization.

The remaining of the paper is organized as follows. Sec-
tion 2 and Section 3 introduce confocal ellipse-based dis-
tance (CED) and confocal elliptical field (CEF) respectively.
The methods for computing CED and CEF on a digital
grid, CED-DT and CEF-DT correspondingly, are discussed in
Section 4. The properties of CEF and CEF-DT that are useful
for skeletonization are given in Section 5. Finally, Section 6
concludes the paper.

II. CONFOCAL ELLIPSE-BASED DISTANCE (CED)

Let d(M,N) =
√
(xM − xN )2 + (yM − yN )2, M,N ∈

<2, be the Euclidean distance between the points M and N .

Definition 1. The ellipse E(F1, F2; a) is the locus of points
P ∈ <2 on a plane, for which the sum of the distances to two
given points F1 and F2 (called focal points) is constant:

E(F1, F2; a) = { P ∈ <2 | d(P, F1) + d(P, F2) = 2a} (1)

Here a ≥ f = 1
2d(F1, F2) is the length of the semi-major

axis of the ellipse, and f is half the distance between the
focal points. In case a = f , the ellipse degenerates into a line
segment.

Definition 2. Ellipses that have the same focal points F1 and
F2 are called confocal ellipses.

For confocal ellipses we use the simplified notation that
depends only on a parameter a, i.e. E(a) = E(F1, F2; a). A
family of confocal ellipses covers the whole plane:

∞⋃
a=f

E(a) = <2 (2)

It means that for any point P ∈ <2 on a plane, there is a
unique ellipse E(F1, F2; a) that passes through it [17]. This
property enables to consider the value of a as the distance
from P to the line segment F1F2.

Definition 3. Let E(a1) and E(a2) be confocal ellipses. The
confocal ellipse-based distance (CED), e : <2 × <2 → <, is
the absolute difference between the lengths of the semi-major
axes a1 and a2 of these ellipses:

e(E(a1), E(a2)) = |a1 − a2| (3)

CED is a metric, and E(a1) ⊃ E(a2), if a1 > a2.

III. CONFOCAL ELLIPTICAL FIELD (CEF)

Consider a line segment F1F2 between the points F1 and
F2. In analogy to the EDT which generates distances from
points, we now use the line segment as seed s = (F1, F2)
and generate the distance aP of a point P ∈ <2 such that
P ∈ E(F1, F2; aP ) according to Equation (1). The distance
c(P, s) from the point P to the line-seed s is defined by CED
as:

c(P, s) = e(E(aP ), E(a0)), (4)

where E(aP ) corresponds to the unique ellipse with focal
points F1 and F2 that contains P ; E(a0) corresponds to the
ellipse with the same foci F1 and F2, that degenerated into
a line segment. In other words, this distance is equal to:
c(P, s) = d(P, F1) + d(P, F2)− d(F1, F2) = 2(aP − f).

Consider now a finite set of line-seeds defined by the
pairs of end points: S = {(F1, F2), (F2, F3), .., (FN , FN+1)}.
Every seed si = (Fi, Fi+1) , i ∈ [1, .., N ] generates a family
of confocal ellipses. Any point P ∈ <2 has a distance d(P, si)
to every seed si of which the closest determines the distance
to the complete set of seeds:

Definition 4. The confocal elliptical field (CEF) assigns to
each point P ∈ <2 its distance to the closest seed from S:

CEF = c(P, S) = inf{c(P, si) | si ∈ S, i ∈ [1, .., N ]} (5)

A CEF combines the distances of the different line-seeds
and partitions <2 into cells that contain the shortest distance
to a single see (similar to Voronoi cells).

Definition 5. A separating curve separates the receptive fields
of two different line-seeds.

Let us consider a few special cases of two pairs of line-
seeds. In this case, the separating curve is either a bisector, or
a branch of a hyperbola. Let P ∈ <2 be a point on a separation
curve.

1) Two degenerated seeds S = {(F1, F1), (F2, F2)}:
2d(P, F1)− d(F1, F1) = 2d(P, F2)− d(F2, F2)
In this case the separating curve is a bisector of F1F2:
d(P, F1) = d(P, F2) (see Fig. 2b).

2) Two consecutive line-seeds S = {(F1, F2), (F2, F3)}
with equal length, i.e. d(F1, F2) = d(F2, F3):
d(P, F1) + d(P, F2)− d(F1, F2) =

d(P, F2) + d(P, F3)− d(F2, F3)
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As in the previous case, the separation curve is a
bisector: d(P, F1) = d(P, F3) (Fig. 4a).

3) Two consecutive line-seeds S = {(F1, F2), (F2, F3)},
with d(F1, F2) 6= d(F2, F3). Re-arranging the terms we
get d(P, F1) − d(P, F3) = d(F1, F2) − d(F2, F3). The
resulting equation defines a branch of the hyperbola with
the focal points F1 and F3, which passes through the
point F2 (Fig. 4b).

The tangent to the hyperbola at any point F2 ∈ <2,
F2 6∈ F1F3, bisects the angle F̂1F2F3. In this manner, when
d(F1, F2) = d(F2, F3), the hyperbola degenerates into a
bisector (see Fig. 4a).

IV. CED AND CEF IN TERMS OF DISTANCE TRANSFORM

Since in image processing the algorithms are working on a
digital grid, let us in this section adapt the proposed continuous
methods for the discrete case using the DT.

Definition 6. Given a set of point-seeds S ∈ B = [0, n] ×
[0,m] ⊂ Z2, the distance transform (DT) obtains a gray-scale
distance field D : B 7→ <. The intensity value of each pixel
D(p) = min{d(p, s)|s ∈ S} equals the distance to the nearest
seed in accordance to the selected metric.

The DT can be computed using various metrics, e.g.
Euclidean, Chessboard, or City-Block [18]. The Euclidean
distance is invariant under rotation, translation, and bending
in 2D, but not under scaling. These properties make it useful
for the shape description and representation. In this paper the
distance field D is considered to be the result of DT with
Euclidean metric.

Let DP be the distance field that is generated for the seed
set with a single pixel P ∈ B. The contour lines of this field
are concentric circles (Fig. 1a). Let DP (M) be the distance
value at pixel M ∈ B. Then, DP (M) = d(M,P ) ≥ 0.
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Fig. 1: Distance fields represented by isolines

Let us refine the Definition 2 (confocal ellipses), Defini-
tion 3 (CED), and Definition 4 (CEF) for the discrete case
using the DT.

Definition 7. Consider the line-seed S = {(F1, F2)} of two
pixels. Confocal ellipses can be obtained as a sum of distance
fields generated from F1 and F2:

CF1F2 = DF1 +DF2 (6)

The pixel-wise sums are independent on the order of execu-
tion and can be computed in a single parallel step. According
to Definition 7, the intensity value of pixel P ∈ CF1F2

equals
the length of the semi-major axis a of the unique ellipse with
foci F1 and F2 that contains P (see Fig. 1b). This fact was
also mentioned by Strand [19]. In contrast, CED that is used in
CEF defines the absolute difference between a and d(F1, F2)
(see Definition 3). With this regard, let us provide a definition
that is compliant to CED.

Definition 8. Consider the seed set S = {F1, F2} that has
two pixels, and the corresponding distance field of confocal
ellipses CF1F2

. The distance field CF1F2
, where the intensity

value of each pixel P denotes its CED with respect to focal
points F1 and F2 is computed as:

CF1F2
(P ) = CF1F2

(P )− CF1F2
(F1) =

= CF1F2
(P )− CF1F2

(F2) =

= DF1
(P ) +DF2

(P )−DF1
(F2) =

= DF1
(P ) +DF2

(P )−DF2
(F1)

(7)

The distance field CF1F2 also contains confocal ellipses.
In contrast to CF1F2

, the intensity values of its pixels are
independent from the distance between the focal points F1

and F2. This fact enables to combine multiple distance fields
of such type, and find, for example, the minimum CED value
for each pixel. In general, the distance field CF1F2 has the
following related properties:

1) The distance value at the seed pixel of D is zero:
DF1

(F1) = DF2
(F2) = 0

2) Given two distance fields DF1
and DF2

with seeds F1 6=
F2 correspondingly, the distance of the opposite seeds
is the same: DF1(F2) = DF2(F1) = d(F1, F2)

3) In distance field CF1F2 , generated by a line-seed
of pixels F1 and F2, the distance values along
the discrete line segment F1F2 are close to zero:
CF1F2

((1− λ)F1 + λF2) < ε <
√
2/2, ∀λ ∈ [0, 1].

Definition 9. Let S = {(F1, F2), (F2, F3), .., (FN , FN+1)} be
a set of line-seeds, and C = {CF1F2

, CF2F3
, .., CFNFN+1

} be
the corresponding CED distance fields. The confocal elliptical
field in terms of DT (CEF-DT) is computed by pixel-wise
minimum operation applied to the distance fields of C:

CEFDT (P ) = min{CFi,Fi+1
(P ) | i = 1, . . . , N} (8)

Notice that also this operation can be executed in parallel
for all seeds. In this paper the target shape is polygonal. Let
us now consider several specific cases of CEF-DT.

A. Two point-seeds, i.e. S = {(F1, F1), (F2, F2)}.
The CEF-DT is equal to CEFDT = min(CF1F1 , CF2F2),

for all pixels of the image. As follows from the discussion in
Section III, CF1,F1

and CF2,F2
are separated by a bisector (see

Fig. 2a). Indeed, with relation to Definition 5:

CF1,F1
= CF2,F2

⇔ 2DF1
= 2DF2

⇔
⇔ d(P, F1) = d(P, F2), ∀P ∈ separating curve

(9)
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(b) seven point-seeds

Fig. 2: CEF-DT for point-seeds

In general, for N > 1 consecutive seeds, the resulting field
contains N fields separated by bisectors. In this case, the final
representation is a Voronoi diagram (see Fig. 2b).

B. Two successive line-seeds S = {(F1, F2), (F2, F3)}.
The CEF-DT equals CEFDT (P ) = min{CF1F2

, CF2F3
}.

As follows from the discussion in Section III, CF1F2 and
CF2F3 are separated by a branch of a hyperbola (see Fig. 3a).
Indeed, DF1

−DF3
= DF2

(F1) −DF2
(F3)is a constant and

equals the difference between d(F1, F2) and d(F2, F3). The
difference DF1

− DF3
defines a branch of a hyperbola with

focal points F1 and F3 that passes through the common pixel
F2 (see Fig. 3b).
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Fig. 3: (a) CEF-DT for S = {(F1, F2), (F2, F3)} (b) confocal
hyperbolas with focal points at F1 and F3
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Fig. 4: Change of the hyperbola curvature due to the position
of the common point F2 in two given line segments

In the continuous case, the focal points F1 and F3 can be
used to generate a set of hyperbolas that covers the given
plane [17]. As well as for confocal ellipses, each point P ∈ <2

is contained only in one hyperbola from the set. Therefore,
given a pair of line segments (F1, F2) and (F2, F3), the
separating curve between them is a unique branch of the
hyperbola, generated by focal points F1 and F3, that passes
through the point F2. The position of F2 defines the curvature
of the hyperbola (see Fig. 4).

C. Closed polygon S = {(F1, F2), (F2, F3), .., (FN , F1)}.
The CEF-DT is computed as CEFDT (P ) =

min(CF1,F2 , CF2,F3 , .., CFN−1,FN
, CFN ,F1). With the

reference to Equation (5), the CEF-DT contains N fields,
with N separating hyperbolas that pass through the vertices of
the polygon. The other separating curves may have inflection
points and are only defined implicitly in this paper. All
hyperbolas do not necessarily intersect at the same point,
though taking the minimum at each point P , creates the
separation curve in the zones of similar influence of more
than one CED-based distance fields (see the example in
Fig. 5).
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Fig. 5: CEF-DT of the closed polygon defined by four pairs
of pixels S = {(F1, F2), (F2, F3), (F3, F4), (F4, F1)}

V. PROPERTIES OF THE CEF AND CEF-DT

A. Receptive field of a line-seed

Consider a set of seeds S = {s1, s2, .., sN}. Let the
receptive field (or alternatively the Voronoi-cell) Ri ⊂ <2 of
the seed si ∈ S, i ∈ [1, . . . , N ] denote a set of points in CEF
for which the CED to si is smaller than to any other seed
sj ∈ S, j ∈ [1, . . . , N ], j 6= i. In the continuous case, with the
reference to Equation (4) and Equation (5) the receptive field
Ri can be computed as:

Ri = {CEF (P )− d(P, si) = 0 | P ∈ <2, i ∈ [1, . . . , N ]}

Correspondingly, in the discrete case, with the seed si =
(Fp, Fq), p, q ∈ [1, ..,M ] with the reference to Equation (7)
and Equation (8):

Ri = {CEFDT − CFpFq
≤ ε | i ∈ [1, . . . , N ]}

Here ε is a value that is close to zero and aims at handling
the discretization errors.

B. Seeds that belong to the same line

Theorem 1. Let F1, F2, F3, F4 be consecutive points that
belong to the same line.If the seed set contains the pairs of
points S = {(F1, F4), (F2, F3)}, the resulting CEF contains
only the CED values generated by the line-seed (F1, F4).
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Proof. Let P ∈ <2 be an arbitrary point in a plane. Let us
prove that:

d(P, F1) + d(P, F4)− d(F1, F4) ≤
≤ d(P, F2) + d(P, F3)− d(F2, F3)

(10)

Since F2 and F3 are between F1 and F4 on the same line,
then: d(F1, F4) = d(F1, F2) + d(F2, F3) + d(F3, F4). Substi-
tuting d(F1, F4) in Equation (10) and re-arranging:

d(P, F1) + d(P, F4)− d(F1, F2)− d(F3, F4) ≤
d(P, F2) + d(P, F3)

d(P, F1) + d(P, F4)− d(P, F2)− d(P, F3) ≤
d(F1, F2) + d(F3, F4)

(d(P, F1)− d(P, F2)) + (d(P, F4)− d(P, F3)) ≤
d(F1, F2) + d(F3, F4)

With regard to the triangle inequality,

d(F1, F2) ≥ |d(P, F1)− d(P, F2)|

d(F3, F4) ≥ |d(P, F3)− d(P, F4)|

Therefore, Equation (10) is true.
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(a) S = {(F1, F2), (F3, F3), (F4, F5), (F6, F6)}
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(b) S = {(F1, F2), (F3, F3), (F4, F5), (F6, F6), (F1, F6)}

Fig. 6: CEF-DT for the seed pixels that lie on the same line.

The same holds true in the discrete case. The resulting CEF-
DT will be equal to CF1,F4 . An example is shown in Fig. 6.
The receptive fields of the seeds that correspond to the line
segment (see Fig. 6a) are fully absorbed by the receptive field
of its end points F1 and F6 (see Fig. 6b).

C. Skeletonization

In this paper the target shape is polygonal. Approximations
of objects by polygons are commonly agreed to be used in
a majority of geometric scenarios [20]. The proposed CEF
and CEF-DT can be applied for skeletonization. The skeletal
points are the ones, where at least two distinct receptive fields
have the same value [13]. In continuous case subtracting one
receptive field from another will result in zero values for the
skeletal points (see Table I, last row). The resulting skeleton
preserves topological and geometrical information.

According to the Definition 5, and as observed in Sec-
tion IV-C, the separating curves pass through the vertices of the
polygon. This fact enables to efficiently remove some of the

spurious branches by excluding the separating curves between
the neighboring line-seeds (see Figure 7).

Fig. 7: CEF-based skeleton (red) of the horse that is approx-
imated by 100 vertices (cyan) after removing the separating
curves of the consecutive line-seeds.

In general, the produced skeleton is not MAT, i.e. its points
are not equidistant from the borders of the shape. In contrast,
the CEF-based skeleton is shifted towards the smaller edges.
Thanks to the eccentricity, the seeds with comparably greater
distance between its pixels have a greater receptive field in the
resulting CEF-DT as compared to classical EDT (see Table I,
columns 2-5).

The distance value at each skeletal point of MAT can be
associated with the local thickness of the shape in terms of
the maximal ball that is fit inside the shape boundary (see
Fig. 8b). In contrast, the values of the CEF-based skeleton
reflect the elongation of the shape. This can be shown on an
example of the shape that is combined by the rectangles of
the different length (see Fig. 8a).

The MAT can be obtained using the CEF in two cases: (1)
seeds contain identical pixels (see Fig. 2), (2) line-seeds have
the same length (see Table I, column 1).

(a) CEF-DT (b) EDT

Fig. 8: Comparison of the distance fields produced by CEF-DT
and EDT. The input polygonal shape is shown in cyan.
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TABLE I: Comparison of the distance fields produced by traditional EDT and the proposed CEF-DT (first and second rows),
and obtained skeleton (third row). The input polygonal shape is highlighted with cyan.

1 2 3 4 5

EDT

CEF-DT

Skeleton
from

CEF-DT

D. Parallel computing
The proposed algorithm for computing CEF-DT, as well as

the skeletonization based on CEF-DT yield to parallelization.
Indeed, for each element in seed set the distance field of CED
values can be computed independently, whereas CEF-DT is a
pixel-wise operation by definition. In case of skeletonization,
distinct pairs of receptive fields can be processed in parallel.

VI. CONCLUSION

This paper presents a distance (CED) that is based on the
properties of the confocal ellipses. This metric is then used
to produce a new type of distance field - confocal elliptical
field (CEF). For the discrete case, the proposed CED and
CEF are redefined with relation to DT, and make it possible
to efficiently compute a skeleton in a parallel way, that is
consistent with the continuous case. As a special case, the
proposed approach also enables to obtain the classical MAT.

The properties of the CEF enable to efficiently remove the
spurious branches by grouping the seeds belonging to the
same line, or by excluding the separating curves between the
consecutive line-seeds.

CED computes the distance between a point and a line
segment and extends the classical point to point measurements.
Point and line segment are simplices of dimensions 0 and
1 respectively. There are ideas to go further and compute
distances between simplices of higher order and simplicial
complexes such as triangular meshes.
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