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I. Introduction

The golden-collared manakin (Manacus vitellinus) is
a small tropical bird, which lives in the Panama forest.
The males perform elaborate, acrobatic displays to
court mates [1]. During its courtship dance the male
demonstrates its physical strength by jumping between
saplings, producing loud wing snaps mid-flight. Mating
success seems to be related to superior motor skills [2],
which allow the male to execute its dance faster and
more precisely. However, it is not fully clear yet how
exactly the courtship dance has to be performed to
impress a female. To gain more knowledge about their
dance, biologists recorded the birds in the wild with
high-speed cameras at 60 fps. One of the videos can be
found at 1. Manually annotating the male bird in every
frame of the videos to enable analyzing their behavior
is a tedious process. We propose a novel approach for
automatic visual tracking of the male golden-collared
manakin, combining a convolutional neural network,
background subtraction and a Kalman filter.

The following properties of the videos make tracking
the birds challenging:
Speed: While jumping, the bird moves very quickly
(avg. 28 px per frame; avg. bounding box size: 113x95
px; frame size: 1928x1208 px).
Motion blur: Strong motion blur can make the bird
hard to recognize as it loses most of its local features.
Size and shape change: The bird’s bounding box
changes in size and shape, e.g. when the bird opens its
wings, turns, or moves away from the camera.
Occlusion: The bird can be partly or fully occluded
by saplings and leaves.
Out of frame: The bird frequently leaves the camera’s
field of view (18 times in 78 videos).
Trajectory: The bird starts and stops abruptly and
typically changes direction when starting a new jump.
On average, the bird makes 3.7 (max. 10) jumps per
video.
Background color: The forest is colored mostly
green, yellow and brown – similar to the male bird,
which has a green body, black head and a yellow neck.
Background motion: Leaves and branches move in
the background. Saplings often move when the bird
lands on them.

1https://github.com/anna-gostler/ManakinTracker

Tracking is made easier, however, by the static
camera setup, i.e. absence of camera motion.

Figure 1: Close-ups of male (top row) and female
(bottom row) golden-collared manakins

II. Related work
Most computer vision methods to analyze the be-

havior of birds worked on videos that were recorded
inside custom-built arenas [3]–[7] or on videos of birds
flying against the sky or distant landscapes [8], [9].
Therefore, background segmentation and tracking was
not a particular concern for these studies. A method to
get more precise information about the bird’s position
is to equip them with body markers [6]. This could
potentially modify the bird’s behavior during courtship,
which the biologists wanted to avoid with the manakins.

In 2017, Oliva et al. [10] developed a visual tracker
for golden-collared manakin males for videos that were
recorded in 2016 by the same team of biologists with
a different setup than the videos in this paper. Oliva’s
tracker detects foreground blobs using Mixture of Gaus-
sians (MOG) [11] and finds the male manakins among
these blobs based on the yellow color and saturation
of their neck or, if it cannot find the bird this way,



predicts its location with a linear Kalman filter. This
method relies on a distinct color difference between the
background and the bird, which is not present in most
of the current videos.
As we aim to track birds that strongly and abruptly

change their appearance in videos recorded against a
highly cluttered background, we have evaluated the
top performing trackers of the VOT2016 challenge [12],
which deal with visual tracking under similarly challeng-
ing conditions: TCNN [13] and C-COT [14].
Nam et al. [13] developed TCNN, a tracker that uses

Convolutional Neural Networks (CNNs) arranged in a
tree structure, where a CNN in a child node is a fine-
tuned version of the CNN in its parent node. By keeping
multiple models of the target object the tracker can
handle appearance changes. The CNNs are based on
a CNN pre-trained on ImageNet, but are adapted to
output only two scores: a target and a background score.
Danelljan et al.’s tracker C-COT [14] is also based

on a CNN pre-trained on ImageNet. C-COT extracts
feature maps, which consist of the input image patch
and convolutional layers, from the CNN and learns
continuous convolution filters. The feature maps are
convolved with the filters to obtain a continuous con-
fidence score for every location in an area centered on
the previous location of the target. This approach uses
the CNN as a feature extractor. However, there are
not many consistent local features (such as points and
edges) in our target, mainly due to motion blur.
Both TCNN and C-COT do not model target move-

ment, but instead search the target around its previous
location, so they might not be able to follow a fast
moving target such as the manakin.

III. ManakinTracker
In this paper, we propose the ManakinTracker, which
• detects moving objects with a Mixture Of Gaus-

sians model (MOG) [11],
• decides if a candidate location visually resembles

the male bird with a fine-tuned CNN,
• and estimates the location of the target using a

Kalman filter [15] for frames without reliable visual
cues (see Fig. 2).

A. Blob Detection
As the videos were recorded with stationary cameras,

we can use a method based on background subtraction
to segment the foreground. We chose Mixture Of Gaus-
sians (MOG) because it can handle small movements
in the background. For every frame, MOG generates a
foreground mask from which we extract a set of moving
objects, called blobs (Fig. 3). Out of these candidate
blobs, we aim to select the ones that contain the target.

B. CNN architecture
To decide which candidate blobs contain the target,

we use a CNN, as CNNs have shown top performance in
object classification in images. Our CNN is based on the
CNN AlexNet [16], which is pre-trained on ImageNet.

We transfer the pre-trained layers of AlexNet to our
CNN, except for the last 3 layers, which we replace
with a new fully connected layer, a new softmax-layer
and a new output layer to match our two classes: target
(i.e. male golden-collared manakin) and background (i.e.
Panama forest). The output of our CNN is a background
score and a target score in [0, 1]. We fine-tune this
new CNN with image patches of male golden-collared
manakins and of background cropped from a set of
videos in our dataset.

C. Kalman Filter
We use a linear Kalman Filter to predict the location

of the bird if we could not obtain a reliable estimation
of the location from III-A and III-B. In addition, the
Kalman Filter’s location estimation is used if we find
more than one blob. In such cases, we select the blob
that is closest to the Kalman Filter’s location estima-
tion.

D. Bird Tracking
The male golden-collared manakin’s location is ini-

tialized in the first frame with the ground truth bound-
ing box. For each following frame, moving foreground
blobs are detected in the scene. To find the blobs that
contain the male bird, the blobs are classified with the
fine-tuned CNN. We keep the blobs that receive a high
target score, and discard the others. If there is only one
such blob, its position is selected as the current target
location.

In case there is more than one blob, the one that is
closest to the location predicted by the Kalman filter is
selected as the main blob. Since the bird can be partly
occluded (e.g. by the sapling it sits on) it can consist
of more than one blob. Thus, we add blobs to the main
blob that received a high target score by our CNN and
that are close to the main blob. If we find a blob or
combination of blobs, that fit these criteria, it becomes
the current target location (Fig. 4).

If we find no blobs in a frame or none that fulfill
the conditions described above we search the bird in
the region around its previous location. This usually
happens when the bird is sitting and thus not recognized
as a foreground blob. We shift the bounding box from
the previous position to its left, right, top, bottom and
diagonal neighborhood, crop image patches at these
candidate locations and classify them with the CNN.
All candidate locations that receive a high target score
are averaged, and selected as the current target location
(Fig. 5).

In frames where the bird is not recognized by the
CNN the Kalman filter is used if the bird is predicted to
be flying. Otherwise, we use the bird’s previous location
as the current target location.

If the bird leaves the scene, candidate locations are
placed along the edges of the frame to detect the bird
when it re-enters the scene. To avoid false positive
detections while the bird is outside the frame, only blobs
are considered for detecting re-entering birds.
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Figure 2: Flowchart of ManakinTracker.

Figure 3: Foreground mask (right) generated by MOG
model of frame (left). Blue box: extracted blob.

The ManakinTracker uses a Kalman Filter and MOG,
and thus does not rely only on the visual information
in a single frame but detects motion based on multiple
frames.
It uses a CNN, that is fine-tuned specifically to rec-

ognize male golden-collared manakins (including highly
blurry and partly occluded) with high accuracy.
In most cases (particularly during jumps) blobs lead

to very accurate bounding boxes and no further cor-
rection of the bounding boxes’ dimensions is necessary.
We can track the bird efficiently in most frames by
classifying only a limited number of image patches
extracted from blobs (usually 1-4 per frame).
In some cases the tracker recognizes the female bird

as the target, even though the CNN was only trained on

male birds. This suggests that the CNN does not rely
only on the male bird’s yellow neck for classification.
The downside of this is, that if the male and female
bird are both present in a frame the two have to be
distinguished by the tracker. One solution would be to
train a CNN on images of female birds also, which would
require ground truth bounding boxes for the female
birds. Currently, we handle this issue by choosing the
blob that is closest to the location predicted by the
Kalman filter if there are multiple blobs that get a high
target score.

IV. Evaluation
To evaluate the performance of the ManakinTracker,

we compared it to two of the trackers presented in
Section II: TCNN and C-COT. A fair comparison with
Oliva’s tracker was not possible, because this tracker can
neither be initialized nor re-started with a ground truth
bounding box. Additionally, this tracker relies strongly
on thresholds that were determined based on the dataset
it was trained on, and outputs only bounding boxes for
the male bird’s neck, which keeps accuracy low even in
case of successful tracking.

We assess the trackers’ performance based on accu-
racy and number of re-starts. Accuracy is measured with
the Jaccard index. A tracker is re-started at the next
frame that has a ground truth annotation if the pre-



Figure 4: Two small blobs (small blue bounding boxes)
are combined into a bigger blob (big blue bounding
box). The white text indicates the blobs’ target scores.

Figure 5: Bird is sitting and no blob was found (candi-
date locations with high target score (red boxes), final
bounding box (white box))

dicted bounding box has zero overlap with the ground
truth bounding box.
Our test dataset consists of 78 video sequences that

show male golden-collared manakins performing their
courtship dance. All videos were recorded with station-
ary high-speed cameras at 60 fps in the Panama forest.
Every frame has a ground truth annotation (bounding
box enclosing the male bird) provided by biologists. For
testing, we split the dataset in half and train the CNN
on one halve and run the tracker on the other halve.

Tracker Avg. accuracy Avg. # re-starts
ManakinTracker 58.3093% 1.2051
C-COT 49.0720% 4.6795
TCNN 53.3405% 7.1154

Table I: Trackers’ performance on test dataset.

V. Results
Table I shows that the ManakinTracker performed the

best out of the three trackers, both in terms of accuracy
(58.31% average overlap) and robustness (1.21 re-starts
per sequence on average). TCNN achieves higher accu-
racy (53.34%) than C-COT (49.07%), but needs about
1.5 times more re-starts on average.
TCNN and C-COT both use CNNs pre-trained on

ImageNet. The performance of networks trained on
the ImageNet dataset, which consists of still images,
decreases strongly if images are blurry [17]. In contrast,
the ManakinTracker’s CNN was trained also on blurry
images, extracted from videos similar to the ones it was
tested on. For a more detailed evaluation see [18].

VI. Conclusion
The ManakinTracker achieved better accuracy and

needed less re-starts than two state-of-the-art trackers.
Keeping the number of re-starts low was our main goal
as we aim to minimize user input during tracking. Using
a CNN trained on similar videos as the test set led to a
high accuracy in detecting and tracking the male golden-
collared manakin.
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