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Abstract. The paper introduces an Elliptical Line Voronoi diagram. In
contrast to the classical approaches, it represents the line segment by
its end points, and computes the distance from point to line segment
using the Confocal Ellipse-based Distance. The proposed representation
offers specific mathematical properties, prioritizes the sites of the greater
length and corners with the obtuse angles without using an additional
weighting scheme. The above characteristics are suitable for the practical
applications such as skeletonization and shape smoothing.
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1 Introduction

Various branches of computer science - for example, pattern recognition, com-
puter graphics, computer-aided design - deal with the problems that are inher-
ently geometrical. In particular, Voronoi diagram is a fundamental geometrical
construct that is successfully used in a wide range of computer vision appli-
cations (e.g. motion planning, skeletonization, clustering, and object recogni-
tion) [1]. It reflects the proximity of the points in space to the given site set.

On one side, proximity depends on a selected distance function. Existing
approaches in R

2 explore the properties and application areas of particular met-
rics: L1 [2], L2 [3,4], Lp [5]. Chew et al. [6] present the Voronoi diagrams for the
convex distance functions. Klein et al. [7] introduced a concept of defining the
properties of the Voronoi diagram for the classes of metrics, rather than ana-
lyzing each metric separately. A group of approaches proposes the site-specific
weights, e.g. skew distance [8], power distance [9], crystal growth [10], and convex
polygon-offset distance function [11]. This paper presents a new type of a Line
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Voronoi diagram that uses Confocal Ellipse-based Distance (CED) [12] as a met-
ric of proximity. In contrast to Hausdorff Distance (HD), CED (1) defines the line
segment by its two end points, (2) represents the propagation of the distance val-
ues from the line segment to the points in R

2 as confocal ellipses. The proposed
geometrical construct reconsiders the classical Euclidean distance-based space
tessellation, and introduces hyperbolic and elliptical cells, that have surprising
mathematical properties. Structure is added to a set of points by putting the
subsets of points in relation. The simplest relation that every structure should
have is a binary relation relating two points. That is why a new metric relating
points with pairs of points is extremely relevant for the community.

On the other side, proximity depends on the type of objects in the site set.
Polygonal approximations of objects are commonly agreed to be used in a major-
ity of geometric scenarios [13]. Therefore, in this paper the site set contains points
and/or line segments.

The remainder of the paper is organized as follows. Section 2 presents the
Elliptical Line Voronoi diagram (ELVD), provides an analysis of the proximity
as defined by CED and HD, and introduces the Hausdorff ellipses. Section 3
shows the properties of ELVD with regard to the type of objects in the site set.
Section 4 discusses the advantages of applying the ELVD to skeletonization and
contour smoothing. Finally, the paper is concluded in Sect. 5.

2 Elliptical Line Voronoi Diagram (ELVD)

A Voronoi diagram partitions the Euclidean plane into Voronoi cells that are
connected regions, where each point of the plane is closer to one of the given
sites inside the cell. In the classical case the sites are a finite set of points and
the metric used is the Euclidean distance.

In our contribution we extend the original definition by (1) considering a site
to be a straight line segment, (2) measuring the proximity of a point to the site
using the parameters of a unique ellipse that passes through this point and takes
the two end points of the line segment as its focal points. We call the resultant
geometrical construct Elliptical Line Voronoi diagram, or in short ELVD.

As opposed to Euclidean distance in Voronoi diagram, proximity in the ELVD
is defined with respect to the Confocal Ellipse-based Distance. Similarly to the
Blum’s medial axis [14], ELVD can be extracted from the Confocal Elliptical
Field (CEF) [12] as a set of points which have identical distance value for at
least two sites.

2.1 Confocal Ellipse-Based Distance (CED)

Let δ(M,N) =
√

(M − N)2,M,N ∈ �2, be the Euclidean distance between the
points M and N .
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Definition 1. The ellipse, E(F1, F2; a)1 is the locus of points on a plane, for
which the sum of the distances to two given points F1 and F2 (called focal points)
is constant:

δ(M,F1) + δ(M,F2) = 2a, (1)

where parameter a is the length of the semi-major axis of the ellipse.
Ellipses that have the same focal points F1 and F2 are called confocal ellipses.

Given two focal points F1 and F2, a family of confocal ellipses covers the whole
plane. Each ellipse in this family is defined as E(a) = {P ∈ �2| δ(P, F1) +
δ(P, F2) = 2a}, a ≥ f . Here f = δ(F1,F2)

2 denotes half the distance between the
two focal points F1 and F2.

Definition 2. Let us consider two confocal ellipses E(a1) and E(a2) generated
by focal points F1, F2 ∈ �2, where a1, a2 ≥ f . The Confocal Ellipse-based Dis-
tance (CED) between E(a1) and E(a2), e : �2 × �2 → �, is determined as the
absolute difference between the lengths of their major axes:

e(E(a1), E(a2)) = 2|a1 − a2| (2)

CED is a metric and E(a1) ⊂ E(a2), if a1 < a2.

2.2 Confocal Elliptical Field (CEF)

Consider a set of sites that contains the pairs of points: S = {(F1, F2),
(F3, F4), ..., (FN−1, FN )}. A site s = (Fi, Fi+1), i ∈ [1, ..., N − 1] generates a
family of confocal ellipses with Fi and Fi+1 taken as the focal points. The dis-
tance from the point P ∈�2 to the site s, is defined with respect to CED as:

d(P, s) = e(E(aP ), E(a0)) (3)

where E(aP ) corresponds to the unique ellipse with focal points Fi and Fi+1

that contains P ; E(a0) corresponds to the ellipse with the same foci Fi and
Fi+1, whose eccentricity equals 1. In other words, this distance is defined as:
d(P, s) = δ(P, Fi) + δ(P, Fi+1) − δ(Fi, Fi+1) = 2(a − f).

Definition 3. Confocal Elliptical Field (CEF) is an operator that assigns to
each point P ∈ �2 its distance to the closest site from S:

CEF = d(P, S) = inf{d(P, s) | s ∈ S} (4)

Definition 4. Separating curve is a set of points in CEF that have an identical
value as generated from multiple (more than one) distinct sites.

For the given set of sites that contain points and line segments, separating
curves define the ELVD.

1 If for several ellipses the focal points are the same, we denote it as E(a).
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2.3 Relation Between CED and Hausdorff Distance

As opposed to CEF, in classical Line Voronoi diagram, the line segment is a set
of all points that form it. Therefore, for each point in space the proximity to the
line segment can be defined with respect to the Hausdorff Distance.

Definition 5. The Hausdorff Distance (HD) between a point P and a set of
points T is defined as the minimum distance of P to any point in T . Usually the
distance is considered to be Euclidean:

HD = dH(P, T ) = inf{δ(P, t) | t ∈ T} (5)

By introducing a scaling factor of 1
2 for the CED we obtain the same distance

field for HD and CED, in case the two focal points coincide. Another property
is that the λ-isoline of the CED {P |d(P, s) = λ} encloses the r-isoline of HD
{P |dH(P, T ) = r}, with s being a site containing the two foci F1 and F2, T is a
set of points that form the line segment F1F2. Figure 1a shows multiple isolines
for HD and CED that have the same λ and r. Note that both, HD and CED,
have zero distance values along the line segment F1F2.

We can derive a value λ for any given r so that the CED λ-isoline is enclosed
by the HD r-isoline (see Fig. 1b). To find λ we are looking for the value where
the minor ellipse radius b equals r. In an ellipse b2 = a2 − f2, that in this case
can be reformulated to r2 = a2 − f2, solving for a:

λ = 2a − f = 2
√

r2 + f2 − f. (6)

By similar reasoning we can also derive r for a given λ that will ensure the
r-isoline of the HD is enclosed by the CED λ-isoline:

r =
√

2fλ + λ2. (7)

We can construct ellipses around a line segment by starting with a distance
λ0 = 1 and increasing according to the sequence:

λn+1 =
√

2fλn + λ2
n (8)

We name these isolines Hausdorff Ellipses of a line segment.

(a) λ = r (b) λ = 2
√

r2 + f2 − f

Fig. 1. Comparison of HD (dashed) and CED (solid) isolines
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3 Properties of ELVD

The proximity depends not only on the type of metric used, but also on the
type of object in the site set. In this paper site is considered to be a point or a
line segment. According to the Definition 3 of CEF, the distance field of a point
contains concentric circles, and of a line segment - confocal ellipses. Thus, the
separating curve varies according to the different combinations of the site types.

3.1 Point and Point

In terms of CED, the site that represents a point contains identical foci. The
resultant distance field of each site is formed by concentric circles. The separating
curves are the perpendicular bisectors, and the ELVD is identical to the Voronoi
diagram with Euclidean distance (Fig. 2a).

(a) Point-Point (b) Point-Line (c) Line-Line

Fig. 2. Comparison of ELVD (solid red) and Voronoi diagram (dashed green). (Color
figure online)

3.2 Point and Line

Consider the site set that contains point P and line segment (A,B). The receptive
field of the point P depends on the position of the line segment, and ELVD is
represented by a higher-order curve (Fig. 2b).

3.3 Line and Line

For the site set that contains two line segments (A,B) and (C,D), the ELVD
is represented by a high-order curve of a different nature than for the Point-
Line case (see Fig. 2c). The steepness and the shape of the curve depends on the
length of the line segments, and their mutual arrangement (parallel, intersecting,
non-intersecting). The mutual arrangement does not consider (A,B) and (C,D)
to be connected as a polygon, i.e. B �= C. This case is covered in Sect. 3.5.



Line Voronoi Diagrams Using Elliptical Distances 263

3.4 Triangle

The simplest closed polygonal shape - a triangle - can be represented by:

– three points corresponding to its vertices
In the classical Voronoi diagram on the point set, the separation curves of
the (Delaunay-) triangle are the perpendicular bisectors of its edges, they
intersect at the center of the circumscribed circle.

– by a set of N points, that form the contour of the triangle
In the extension of the classical Line Voronoi diagram on the line set using
the Euclidean distance, the separating curves of the triangle are its angular
bisectors which intersect at the center of the incircle.

– by three line segments corresponding to the edges of the triangle
For the ELVD the separating curve between the two line segments that share
one endpoint is a hyperbolic branch [12]. Therefore, the separation curves in
the triangle are three hyperbolic branches, each passing through one vertex
of the triangle, i.e. A, B or C, and intersecting the sides at the points K, L,
M respectively (Fig. 3a).

(a) Hyperbolic branches of the ELVD in-
tersect at the Equal Detour Point (EDP )
and Isoperimetric Point (IP ).

(b) The tangents on the hyperbola in the
intersection points A, B, C and K, L, M
intersect at the incircle center (I).

Fig. 3. Properties of the Equal Detour Point, Isoperimetric Point and incenter.

The separating curves of the triangle as obtained from ELVD have the fol-
lowing geometric properties:

1. The separating curves intersect at a common point, known in the literature
as the Equal Detour Point (EDP) [15] (see Fig. 3a).

2. The complementary branches of the hyperbolas intersect at a common point,
known as the Isoperimetric Point (IP) [15] (Fig. 3a).

3. The six tangents of the hyperbolas at the six points A, B, C, and K, L, M
intersect all at the center of the incircle I (Fig. 3b).
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4. The intersection EDP of the three hyperbolas is located inside the triangle
formed by the shortest side of the triangle and I (Fig. 3b).

5. The tangents at the triangle’s corners A, B, C are the angular bisectors of
the two adjacent sides respectively (Fig. 3b).

6. The three tangents at K, L, M form a right angle while intersecting the edges
of the triangle (Fig. 3b).

7. The hyperbola chords AK, BL and IM intersect at the Gergonne point
(G) [15] (Fig. 4).

8. The EDP distance value of the CEF equals the radius of the inner Soddy
circle.
Let P ∈ R

2 be an EDP , and K,L,M - be the points of intersection between
separating curves and the edges of the triangle �ABC. Consider the following
distances: (1) rP = CEF (P ) - distance value at P in the confocal elliptical
field; (2) rA = δ(A,M) = δ(A,L); (3) rB = δ(B,M) = δ(B,K); (4) rC =
δ(C,L) = δ(C,K). The circle with the center at P and radius rP is an inner
Soddy circle [16], thus, it is tangent to the circles with the centers at A,B,C
and radii rA, rB , rC correspondingly. This property is valid not only for the
EDP , but for all points of the separation hyperbola branches that lie on the
curves PM , PK, and PL. In addition, according to the Soddy theorem, the
following equation holds true:

(
1
rA

+
1
rB

+
1
rC

+
1
rP

)2

= 2
(

1
r2A

+
1
r2B

+
1
r2C

+
1
r2P

)
(9)

In case of a regular triangle, radii rA, rB , rC are identical. Otherwise, their
values vary depending on the angle at the corresponding vertex, and length of
the edges that contain this vertex. The ELVD implicitly encodes the weighting
factors, as compared to the classical Voronoi diagram.

Fig. 4. The incenter (I), Gergonne point (G), Isoperimetric Point (IP ) and Equal
Detour Point (EDP ) are collinear.
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3.5 Polygon

Consider a site set that defines an open polygon S = {(F1, F2), . . . , (FN−1, FN )},
N ∈ R. For any si = (Fi, Fi+1), Fi �= Fi+1, si ∈ S, i ∈ [1, N − 1].

If the sites are consecutive, i.e. have a common point Fi, the separating curve
is a branch of a hyperbola that passes through Fi, i ∈ [1, N ] [12]. If the sites
are non-consecutive, but their receptive fields overlap (e.g. the sites cross each
other), then the separating curve is defined as in Line and Line case.

Let P be the point of intersection of two separating curves HFi
and HFi+1 ,

that pass through Fi and Fi+1 correspondingly. For the triangle �FiPFi+1 the
separation hyperbola branch that passes through P and intersects (Fi, Fi+1) at
the point M defines the following distances: rFi

= δ(Fi,M), rFi+1 = δ(Fi+1,M).
The circle with the center at P and radius rP is tangent to the circles with
centers at Fi, Fi+1 and radii rFi

, rFi+1 respectively. This property holds true for
all points on the separating curve between P and M .

4 Applications

In this section we discuss the properties of ELVD that are valuable for the
practical problems on an example of contour smoothing and skeletonization.

4.1 Contour Smoothing

By considering three successive points Pi−1, Pi and Pi+1 on a contour as a tri-
angle Δi we can smooth the contour by replacing the middle point Pi with the
EDP of the triangle Δi. Conventional average smoothing is related to the cen-
troid of the triangle Δi. This smoothing procedure can be iteratively repeated.
Figure 5 shows a comparison between EDP -based smoothing and Mean-based
smoothing, i.e. averaging over three successive contour points. Note that EDP -
based smoothing does not affect low frequencies as much as high frequencies.

Let us denote the angles in the triangle Δi as α, β, γ. The angles formed
by the vertices of the triangle and the incenter are π+α

2 , π+β
2 , π+γ

2 . This means

(a) EDP -based smoothing (b) Mean-based smoothing (c) Preserved sharp corners

Fig. 5. Contour smoothing achieved by five iterations.
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that the sharp angle (<π
2 ) will be replaced by the obtuse angle after smoothing.

The shortest side has the smallest opposite angle and an angle of more than π
2

is always the largest in a triangle. Hence: (1) the shortest side before smooth-
ing becomes the longest, (2) the smoothing slows down with more iterations.
According to the ELVD Properties 4 and 8, in case of a triangle, the same holds
true for the EDP . The difference is that the incenter is equidistant from the
corner sides, whereas EDP is closer to the shorter edge and obtuser angle than
the incenter. This property is important in case of the outliers - the contour is
smoothed with the less number of iterations.

Additionally we can preserve selected sharp corners by including the same
point twice in the contour. Figure 5c gives an example of preserved sharp corners
in the hooves of the horse.

4.2 Skeletonization

The ELVD can be successfully applied to create a skeleton of the shape [12],
where the weighting is implicitly encoded in the length of the site (see Fig. 6).
As compared to the classical Voronoi diagram-based skeletonization, the sites
contain pairs of vertices. The skeletal points are not equidistant from the opposite
sides of the shape - they are shifted towards the sites that represent the shorter
edges. As a result, the longer edges have a greater receptive field.

Fig. 6. Examples of the ELVD-based skeletons (red). The polygonal approximation of
the shape (cyan) contains 90 vertices in each case. (Color figure online)

5 Conclusion and Outlook

This paper presents a novel approach to the line Voronoi diagram by considering
the distance from the point to the line segment by CED. The discussion of the
ELVD proximity (from the point of metric and types of objects in the site set)
shows that the classical Voronoi diagram is a special case of ELVD. The proposed
approach has also the practical value: (1) skeletonization algorithm enables pri-
oritization of the longer edges without extra weighting schema, (2) smoothing
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of the shape enables a closer approximation of the contour and preservation
of the sharp corners. The ongoing research considers ELVD properties regard-
ing the weighting factors and the semantic interpretation of the corresponding
geometrical construct.
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