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Abstract. We propose a novel Voronoi Diagram based skeletonization
algorithm that produces non-centered skeletons. The first strategy con-
siders utilizing Elliptical Line Voronoi Diagrams with varied density
based sampling of the polygonal shapes. The second strategy applies a
weighting scheme on Elliptical Line Voronoi Diagrams and Line Voronoi
Diagrams. The proposed skeletonization algorithm uses precomputed dis-
tance fields and basic element-wise operations, thus can be easily adapted
for parallel execution. Non-centered Voronoi Skeletons give a representa-
tion that is more similar to real world skeletons and retain many of the
desirable properties of skeletons.
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1 Introduction

Skeletonization plays an important role in the area of shape representation and
description, since it decreases the dimensionality of the problem. By definition,
a skeleton is a compact one-point wide representation of the shape that is asso-
ciated with a locus of the points that are equidistant to two or more shape
boundary points. This notion was originally introduced by Blum [1] as a medial
axis transform (MAT). Skeletons provide useful properties for computer vision
applications: invariance to translation, rotation and scaling; preservation of the
topology of the shape; it can be computed for any 2D shape; incorporation of
adjacency and neighborhood information; it is possible to completely reconstruct
the original shape [13].

In order to represent the anatomical skeleton of an animal more closely, it is
desirable to have a shape representation where the skeleton does not lie on the
medial axis. In particular, MAT-based representation introduces wrong points
to shape part connections (or joints) and results in deformations of rigid skele-
tal parts during articulated movement. This paper presents two approaches to
obtain a non-centered skeleton. First, based on the properties of the Elliptical
Line Voronoi Diagram we investigate the effect of the varied density based sam-
pling of the polygonal shape approximation. Second, we propose a multiplicative
weighting of shape boundary lines that enables modification of the medial axis
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position. Non-centered Voronoi skeletons fulfill all properties of skeletons except
the reconstruction property. In the proposed algorithm, the shift of the medial
axis towards the desired part of the shape is achieved by using varied density of
the polygonal approximation of the shape and multiplicative weighting of shape
boundary lines.

The remainder of the paper is organized as follows: Sect. 2 provides an
overview of existing Voronoi Diagram types and presents a novel algorithm
for computing a Generalized Voronoi Diagram using the Distance Transform.
Section 3 discusses Voronoi Skeletons with an emphasis on Line Voronoi Skele-
tons, since dealing with polygonal shape approximations. Section 4 introduces
Non-Centered Voronoi skeletons that can be obtained by (1) varied density-based
sampling of the shape boundary and (2) weighting scheme for the distance maps.
Section 5 concludes the paper.

2 Voronoi Diagram

The general idea behind the Voronoi Diagram (VD) is to associate each element
in a set S with the closest element in a target set T (called sites) based on a
distance metric d(s, t), s ∈ S, t ∈ T . In other words, VD is a partition of the
set S with regard to proximity of the elements to the target set. The Voronoi
cell is the subset of S, where each element is closest to a single element in the
target set. Points with identical proximity to two elements in the target set form
Voronoi edges.

2.1 Point Voronoi Diagram

In classical VD, or Point Voronoi Diagram (PVD), a target set contains points
in R

2, whereas S is the 2D plane. When the distance is Euclidean, the Voronoi
edges are bisectors. PVD with 8 sites is illustrated in Fig. 1a.

2.2 Line Voronoi Diagram

In a Line Voronoi Diagram (LVD), sites in the target set T are line segments. In
contrast to the Point Voronoi Diagrams (PVD), the Voronoi edges contain lines
and parabolic arcs [12]. Voronoi cells might not be connected if the corresponding
elements in the target set are crossing each other (see Fig. 1b). In classical LVD,
distance between a point and a line segment is defined with the regard to the
Hausdorff distance dh(l, P ) = inf{δ(P,L)|L ∈ l}.

2.3 Elliptical Line Voronoi Diagram

Gabdulkhakova and Kropatsch [3] proposed a different metric - Confocal Ellipse-
based Distance (CED), de(P, l) - that defines a distance from the point P to
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Fig. 1. Examples of the (a) Point Voronoi Diagram and (b) Line Voronoi Diagram

the line segment l. As opposed to the Hausdorff distance, CED uses only the
endpoints F1, F2 of a line segment [4]:

de(P, l) = δ(P, F1) + δ(P, F2) − δ(F1, F2), (1)

where δ denotes a Euclidean distance between two points.
CED is highly dependent on the length of the line segment. This enables

longer line segments to have a greater influence on the Voronoi boundary and
push the boundary away from them. This property is discussed in Sect. 4.1.
Using the CED Gabdulkhakova et al. [4] introduced the Elliptical Line Voronoi
Diagram (ELVD). This variation of the VD enables spatial control over the
Voronoi edges without introducing weights.

Figure 2 shows this property. ELVD (black) has smaller regions associated
with shorter line segments than the LVD (gray) using the Hausdorff distance.

(a) Separate line segments (b) Crossing line segments

Fig. 2. ELVD (black) and LVD (gray). Note the loop (green) generated by intersecting
line-sites with ELVD in (b). (Color figure online)
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(a) dm1 = DM (b) dm2 (c)DM−dm2 =
dm1 − dm2

(d) New DM =
min(DM, dm2)

(e) IDM

Fig. 3. Single iteration of proposed algorithm with point sites and Chebyshev distance.
Cyan area in (d) belongs to first site, magenta to second, dark cells are included in
Voronoi edges. (Color figure online)

2.4 Generalized Voronoi Diagrams from Distance Transform

Computational complexity of Generalized Voronoi Diagrams increases with the
size of the target set. Especially explicit computations are difficult, since they
rely on computing complex higher-order algebraic curves (see the green curve
in Fig. 2b). In many cases an explicit computation [5,7,12,14] of Voronoi edges
is not necessary and algorithms [2,6,16,17] have been proposed to implicitly
calculate the boundaries based on grids.

Strzodka and Telea [15] introduced an approach to calculate Distance Trans-
forms (DT) and Voronoi Skeletons on graphics hardware using different point
distance functions. They propose a technique called Distance Splatting, where
they go through every boundary point and then every image point and compare
its distance to the minimum distance of the previous boundary points, itera-
tively building up the DT. They also store the closest site in a separate map by
propagating it from a initialization on the boundary points. Additionally they
provide implementation details on a GPU with a fixed graphics pipeline.

Since ELVD requires distances to a line segment, we propose an approach
similar to the one from Strzodka and Telea [15], that uses arbitrary sites instead
of boundary pixels and uses precomputed DT of these primitive sites. This allows
for arbitrary distance measures and weighting schemes. Additionally, it is com-
putationally efficient for point sites and line sites using CED.

The algorithm takes a list of distance maps LD = {dmt ∈ R
N×M |t ∈ 0..T}

of T sites as input and an image resolution of N by M . Here, dmt is the t-th
distance map defining for each pixel the distance to the t-th site. It then loops
through all sites building up a combined distance map DM and an ID-map IDM
iteratively. Every pixel where DM − dmt > 0 the IDM is assigned t. Figure 3
shows the first iteration of this loop. In the end, the ID-map is used to create
the Voronoi edges by comparing neighboring pixels. The algorithm can be found
in Algorithm 1.

Distance Map Creation. For PVD and LVD the speed of distance map cre-
ation can be significantly increased. The distance maps are sampled from a bigger
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Algorithm 1. Generalized Voronoi Diagram from Distance Transform
Data: Target set T , map size (N,M)
Result: Map IDM containing indices of the nearest elements in T ; Distance

Map DM
for t = 1 to size of(T ) do

dmt ←− compute distance field(t,N,M);

IDM ←− ∅; DM ←− dm1;
for t = 2 to size of(T ) do

for p ∈ Grid(N,M) do
if DM [p] − dmt[p] > 0 then

IDM [p] ←− t;
DM [p] ←− min(DM [p], dmt[p]) ;

point distance map of size 2N × 2M . Each pixel value represents the Euclidean
distance to the center pixel. Therefore, it needs only one distance map creation,
that can also be stored on the disk rather than being re-computed.

For ELVD the distance maps of the endpoints are summed up, then the
distance between the two endpoints is subtracted. The above algorithm has to
process a distance map dmi only once, it can be generated on-the-fly by the
single bigger point distance map.

Complexity and Error Estimation. Considering N ×M is the grid size and
T is the number of sites (samples/line segments), sequential time complexity lies
in O(T · N · M), leading to parallel complexity of O(T ) on graphics hardware.
For point sites and lines using CED the distance transform can be loaded from
disc (or generated once), leading to linear time, otherwise, the time complexity
of the distance transform times the number of sites must be taken into account.
Memory complexity is O(N · M), consisting of the N · M maps DM , IDM and
either another for on-the-fly generated distance maps, or one 2N × 2M map.

Since the algorithm considers only values on a grid, there is an accuracy
error e. It is composed of the error of the distance transform ed and the error
of the boundary extraction eb. The distance transform error for the point dis-
tance described above is ed =

√
2
2 based on half the maximum distance between

two pixel centers. The boundary extraction error is eb =
√

2, resulting from a
maximum of one wrong pixel distance diagonally. This gives a combined error
of e = 3

2

√
2. Additionally, the true Voronoi boundary after accounting for the

distance transform error lies in the two pixel wide boundary found by the algo-
rithm.

3 Voronoi Skeleton

A skeleton is a compact shape representation, which elements are equidistant
from at least two points of the shape boundary. VD-based skeletonization is a
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continuous approach that preserves both geometrical and topological information
of the shape. According to the definition, the boundaries of the Voronoi cells are
equidistant to two or more elements in a target set. Ogniewicz and Ilg [10] use this
property to obtain a Voronoi Skeleton (VS) of a shape by including all boundary
pixels into the target set T . The resultant ridges are part of the skeleton that
go through the edges connecting pixels along the boundary, but not through the
pixels. Furthermore, they assign a residual value to each boundary between the
two Voronoi cells that indicates its importance for the whole skeleton.

As can be seen throughout this paper, VD-based approaches construct the
skeleton of the object (Endoskeleton), as well as the skeleton of the background
(Exoskeleton) simultaneously.

3.1 Line Voronoi Skeletons

As VS edges by Ogniewicz and Ilg [10] lie between pixels their algorithm is
extended to LVD with Voronoi edges passing through polygon points. The VD
is computed on a polygonal shape using the DT approach described above.

After construction of the VD, each Voronoi edge between two cells must be
evaluated for being a part of the skeleton. Lee [8] shows that all Voronoi edges
that are not going through concave points are part of the skeleton. To avoid
spurious branches (i.e. skeleton branches generated by noise) pruning is applied.
In particular, densely sampled shapes have many spurious branches. Ogniewicz
and Ilg propose four different residual values for each ridge that are based on the
difference of the distance of the two adjacent points on the boundary and the
distance through the shape. Ogniewicz [11] proves that their residual functions
are monotonic and, thus, do not break topology. By using the midpoints of lines
in the Line Voronoi Skeleton as adjacent points the same residual functions
can be used. Mayya and Rajan [9] propose a similar procedure, but take only
the number of intermediate object boundary segments into account. They show
that topology is preserved by deleting only Voronoi ridges with no intermediate
boundary segments in their adjacent sites.

(a) Line Voronoi Diagram (b) Line Voronoi Skeleton

Fig. 4. Line Voronoi Diagram and skeleton with circular (purple), bicircular (green)
and chord (blue) residual. (Color figure online)
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Figure 4 shows the VD for a simplified horse shape and the Line Voronoi
Skeleton. All three residuals are depicted with circular being purple, bicircular
being green and chord being blue. The residuals follow the relation: circular ⊆
bicircular ⊆ chord.

4 Non-centered Skeletons

Using Euclidean distance as a distance measure has two advantages from the
point of skeletonization: invariance to affine transformations and bending. The
resultant skeleton is visually in the middle of the shape. For most cases the
medial axis does not correspond to the physical skeleton of objects (e.g. animals,
clothed objects). We introduce skeletons based on the medial axis using different
distance measures to obtain a non-centered skeleton.

Definition 1. A non-centered skeleton of a 2D shape S is the medial axis of S
given a different distance measure than a p-Norm. The medial axis using this
distance must have the same topology as S.

4.1 Varied Density Based Sampling for Elliptic Voronoi Skeletons

It can be observed that the position of the VS produced by ELVD can be influ-
enced by the length of the lines in the polygonal approximation of the shape. In
our experiments we discovered that the influence gained solely by varied density
based sampling of the shape is minor. Figure 6 gives three different approxima-
tions of the horse shape and the resulting skeletons.

In the following we study a special case, where the influence of varied density
based sampling can be quantified. Let l = (F1, F2) be the long line segment with
length 2f and (P, P ) be the shortest possible line segment coinciding with the
single point P ∈ R

2 (Fig. 5).

P

M

F1 F2

h

a a

f f

b

d

Fig. 5. Midpoint between line segment and point

Let a, b, f be the parameters of the confocal ellipses that have foci at the end
points of the line segment l with a2 = b2 + f2. Then, we know that the CED
from the midpoint M to l is de(M, (F1, F2)) = 2(a − f). The distance between
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P and M is 2h and the normal distance of the point P from the line segment is
d = h + b. Given the requirement that de(M, (P, P )) = de(M, (F1, F2)) we get
h = a − f .

Lemma 1. The ratio between the distance h = δ(P,M) and the normal distance
d of P to l ranges between 0.5 (the symmetric case f = 0) to smaller values with
increasing length of l = 2f with ratio

h

d
=

1
2(1 + f/d)

. (2)

(a) Even sampled ELVD (b) 4 times more samples than (a)

(c) 40 times more samples than (a) (d) Resulting Skeletons from (a-c)

Fig. 6. ELVDs of different samples on the back of the horse. (d) skeletons (green: evenly
sampled, cyan: 4 times more samples, magenta: 40 times more samples). (Color figure
online)

Proof. The symmetric case would require b = h = d/2 and b = a − f . From the
eccentricity formula a2 = b2 + f2 with f being the linear eccentricity (or focal
length) we derive 2bf = 0 which implies either

– that b = 0, M ∈ l, a = f , and h = 0 : P = M ∈ l or
– that f = 0, F1 = F2, a = b = h: M is the midpoint between P and F1.
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For all other cases f > 0, b > 0 we assume that the values for f and d are
known. From the equations given above it follows that a = d+f −b =

√
b2 + f2.

We solve for b, b = d
2

(
1 + f

d+f

)
and, finally, with b = d − h get the ratio h

d . ��

Strength of influence is not only determined by the length of the line segment,
but also by the distance to the opposite point (line). In order to off-center the
medial axis, it is unpractical to rely on varied density-based sampling alone -
the difference in density has to be great to handle it in a reasonable image size.

4.2 Weighted Line Voronois

In order to have a greater shift of the non-centered skeleton from the medial
axis, it is proposed to weight the distance maps. We use an adaptation of multi-
plicative weighting of lines [12] to move the medial axis closer to higher weighted
lines by multiplying the weight instead of the reciprocal of the weight with the
distance map. Figure 7 shows the horse shape with higher weights on its back
for the ELVD- and LVD-based skeleton. It can be observed that the weighting
on LVD has more influence than on ELVD. Figure 8 illustrates the difference
between LVD and ELVD weighting.

For LVD the skeleton will move in one direction according to the weight, i.e.
the Euclidean distance from line l1 to a point s on the skeleton ridge will be
indirect proportional to the Euclidean distance from line l2 to S: dh(l1,s)

dh(l2,s) = w2
w1

,
with w1, w2 ∈ R being the weights of l1 and l2 respectively and dh(l, p) being
the Hausdorff distance between a line segment and a point.

For ELVD the task of estimating the skeleton position is harder. The distance
is dependent on the focal length f and weighting is effecting the distance, as well
as the elliptical parameter a.

For LVD and ELVD it is clear to see that no amount of weighting can push
the medial axis outside of the object, because their values along the boundary
lines are zero and can therefore never be closer to a different boundary segment.

(a) ELVD (b) LVD

Fig. 7. Horse weighted on back with higher weights. ELVD and LVD are shown in gray,
whereas skeleton - in black.
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(a) ELVD (b) LVD

Fig. 8. Offset of Voronoi boundary, when using weights 1, 2, 5, 10 and 20.

(a) Skeleton using Varied
Density Based Sampling

(b) Weighted ELVD (c) Weighted LVD

Fig. 9. Possible configurations for Voronoi cells with non-connected parts and resulting
topology changes in the skeleton. (E)LVD in gray, skeletons in black. Gray regions are
non-connected Voronoi cells.

4.3 Topology Preservation

In any of the skeletonization approaches presented above there exists the pos-
sibility of topology breakage, because the underlying VD may have cells that
consist of multiple non-connected parts. This happens to skeletons that consid-
ered varied density based sampling, if line segment length proportions get too
big. Analogically, for weighted skeletons it can happen, if weight proportions get
too big. Figure 9 shows the problem. The gray areas belong to the same Voronoi
cell, but are not connected and, hence, change topology in the medial axis.

Lemma 2. The medial axis obtained by weighted (E)LVD or ELVD with Varied
Density Based Sampling of a convex object preserves connectivity.

Proof. This follows directly from the statement that the medial axis cannot be
pushed outside the object. The influence region of a line can be behind another
line, but since the object is convex, all additional regions are outside the object.

��
Lemma 3. The medial axis of a concave object constructed by weighted LVD
does not break topology under the following constraint: if two lines l1, l2 in a
concavity are weighted with w1, w2 (w1 > w2), points in a distance greater than
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d times the distance from P1 ∈ l1 to P2 ∈ l2 in direction P2 to P1 from l1 must be
closest to another line than l2 for all P1 ∈ l1 and P2 ∈ l2. The distance multiplier
d is given as

d =
1
w1

w1 + w2

w1 − w2
. (3)

Proof. Only considering two points P1 ∈ l1 and P2 ∈ l2, because the Hausdorff
distance can be separated to a point level. Okabe et al. [12] show that mul-
tiplicative weighting results in Apollonius circles with two intersection points
Bi, Ba on the line spanned by P1, P2 (Fig. 10). Bi and Ba lie on the Voronoi
edge of line l1. It follows, δ(P1,Bi)

δ(P2,Bi)
= w2

w1
and δ(P1,Ba)

δ(P2,Bi)
= w2

w1
. The cross-ratio of

the points A = P2, B = P1, C = Bi,D = Ba is 1 as a property of Apollonius
circles. By setting δ(B,C) = 1

w1
, δ(A,C) = 1

w2
, δ(B,D) = d and δ(A,D) =

1
w1

+ 1
w2

+ d the cross-ratio equation ( δ(A,C)δ(B,D)
δ(B,C)δ(A,D) = 1) can be solved for d

resulting in (3). ��

L1

L2

B = p1

A = p2

C

D

w∗
2

w∗
1

d

Fig. 10. Illustration of distance and Apollonois circle (
w∗

1
w∗

2
= w1

w2
).

As with weighting influence, deriving rules for topologically correct skele-
tonization using ELVD is hard and remains an open problem.

5 Conclusion and Future Work

This paper presents a novel algorithm for building the Generalized Voronoi Dia-
gram based on Distance Transform and uses it to create Line Voronoi Skeletons.
It further explores the possibilities to shift the skeleton from the center using
(1) ELVD with varied density based sampling and (2) multiplicative weighting
strategy for Elliptical Line Voronoi Diagrams and Line Voronoi Diagrams.

The experimental results prove the applicability of the proposed approach
for the problem of skeletonization. Non-centered skeleton opens new possibilities
in the area of shape representation and description. Possible directions are thin
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skeleton extraction by boundary following with the help of the combined dis-
tance map and learning weights and samples to obtain the medial axis following
anatomical skeletons of various shapes.
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