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Abstract. A digital image can be perceived as a 2.5D surface consisting
of pixel coordinates and the intensity of pixel as height of the point in the
surface. Such surfaces can be efficiently represented by the pair of dual
plane graphs: neighborhood (primal) graph and its dual. By defining ori-
entation of edges in the primal graph and use of Local Binary Patters
(LBPs), we can categorize the vertices corresponding to the pixel into
critical (maximum, minimum, saddle) or slope points. Basic operation of
contraction and removal of edges in primal graph result in configuration
of graphs with different combinations of critical and non-critical points.
The faces of graph resemble a slope region after restoration of the contin-
uous surface by successive monotone cubic interpolation. In this paper,
we define orientation of edges in the dual graph such that it remains
consistent with the primal graph. Further we deliver the necessary and
sufficient conditions for merging of two adjacent slope regions.

1 Introduction

Configuration of such critical points and slope lines of a surface in term’s of
earth topography were discussed in [2,11]. Nackmann Lee in [10] investigated
the configurations of critical points of a Morse function of two variables with
it’s graphical representation. Moving a century ahead, in [3], authors used the
neighborhood graph and explained the use of Local Binary Patterns (LBPs) in
predicting the critical (maxima, minima and saddle) points and the slope points
in digital images. By performing contraction and removal operations on edges,
they formed a stack of graphs called graph pyramid. Cerman et al [4] provide a
practical application of multi-resolution image segmentation using graph pyra-
mids. Similar approaches are used by Wei in [12] where a hierarchical structure
similar to graph pyramid were constructed by using superpixels. The literature
except [3] does not consider the topological aspect of the surfaces which are
covered by the papers mentioned in the following paragraph.

In [6,7] Edelsbrunner et al. propose an algorithm of constructing a hierarchy
of increasingly coarse Morse-Smale complexes to decompose a piecewise linear
2D-manifold with all its critical points being distinct. In our previous research
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work [8,9], we further generalize this concept beyond Morse-Smale complex and
present a new hierarchy of increasingly coarse complexes decomposing 2D con-
tinuous surfaces denoted as slope complexes.

We also discussed properties of monotonic paths and provided a formula to
count the number of slope regions at the top level of the pyramid with all its
critical points being distinct. Our main aim was to preserve the critical points
of the surface at the top level of the pyramid and to connect them with the
minimum number of slope regions calculated using Euler’s formula [5, Theorem
4.2.7].

In the past, the graph pyramids [3] are build on the top of the pair of dual
graphs. The contraction of edges generates self-loops and multiple edges. The
empty self-loops and multiple edges can be removed and simplified. This simpli-
fications are controlled by the dual graphs. These dual graphs were not oriented
and also were not used to capture the non topological properties of the graph.
The main contribution of this paper is to provide orientation to the dual graph.
A first step in this direction was done in [9] but here we provide it’s interpre-
tation in the image context and give properties of the oriented dual graphs to
provide a reduction technique to meet our aims.

The paper is organized as follows: We start with the basic definitions in
the field of images from the topological point of view. In section 3, we define a
concept to orient the dual graphs and the consistency of LBP categories. We also
introduce a technique to orient the monotonic paths which contains level curves
in the primal graphs. Section 4 provides necessary and sufficient conditions for
both primal and dual graph to merge two slope regions. In section 5, we show
some experimental results for multi-resolution image segmentation. We end the
paper with a note of what is attained from the paper and the possible extensions.

2 Orienting the Primal Graph

This section provides necessary definitions that form the basis of the further
document. A discrete 2D image P where the intensity of a pixel p denoted by
g(p), can be represented as a neighborhood graph G = (V,E) also referred to
as primal graph. Every pixel p in the image P corresponds to a vertex v ∈ V
with gray value (g-value) g(v) := g(p). Vertex v is connected to it’s four adjacent
vertices by edges e ∈ E.

The dual of primal graph G is denoted by G = ( V , E), where V being the
vertex set of G which is associated with the faces of G, while E is the edge
set of G which corresponds to the borders separating the faces of G. In other
words, there is an edge e in the dual graph G for every edge e in primal graph
G as mentioned in [5, Section 4.6]. There is a one-to-one correspondence between
the edges of G and G so as the faces of G and vertices of G. By performing
the contraction and removal operations successively on the graph G, we obtain a
stack (pyramid) of successively reduced plane3 graphs (Gk, Gk), k ∈ [1, 2, . . . , n].

3 There is a topological and a combinatorial isomorphism between G and G and it is
a unique pair of graphs embedded in a surface [5, p. 70-80]
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The base level of this pyramid is denoted as G = G0. A Contraction operation
in Gk, 0 ≤ k ≤ n− 1 corresponds to removal in Gk and a removal operation in
Gk (merging of two faces) corresponds to contraction of two vertices in Gk.

Definition 1. The orientation of an edge (v, w) ∈ E in the primal graph
G = (V,E) is directed from vertex v ∈ V to vertex w ∈ V iff g(v) > g(w), all
the other edges are not oriented.

Orientation of edges can now be used to categorize the vertex v ∈ V into
critical (maximum, minimum, saddle) or slope point.

Definition 2. A vertex v ∈ V is a local local maximum ⊕ if all the edges
incident to v are oriented outwards.

Definition 3. A vertex v ∈ V is a local minimum 	 if all the edges incident
to v are oriented inwards.

Definition 4. A vertex v ∈ V is a saddle point ⊗ if there are more than
two changes in the orientation of edges when traversed circularly (clockwise or
counter-clockwise direction).

Definition 5. A vertex v ∈ V is a slope point if there are exactly two changes
in the orientation of edges when traversed circularly (clockwise or counter-clockwise
direction).

Categorizing a vertex using orientation of edges incident to it is equivalent
to that of LBP code. The LBP value of an outward oriented edges are encoded
as 1 and inward orientated edges are encoded as 0. The LBP code of a vertex
is formed by concatenating LBP values of the incident edges in clockwise or
counter-clock wise direction. The LBP code of a maximum will consist of 1 only
while the LBP code of a minimum will consist of 0 only. The LBP code of slope
points will have exactly 2 bit switches and saddles will have more than 2 bit
switches. By use of orientated edges, we avoid the calculation of derivatives and
eigen-values of the Hessian matrix to categorize a vertex.

Definition 6. A path π(v1, vr) = (Vπ, Eπ) is a non empty sub-graph of G =
(V,E), where Vπ = {v1, . . . , vr} ⊂ V and Eπ = {(v1, v2), . . . , (vr−1, vr)} ⊂ E.

A path π(v1, vr) is a monotonic path if all the oriented edges (vi, vi+1), i ∈
[1, r − 1] have a same orientation.

Remark 1. All the oriented edges on a monotonic path have the same orienta-
tion consequently defining the orientation of a monotonic path. Observe that if
g(vi) = g(vi+1),∀i ∈ [1, r − 1] is called a level curve and it is a special case of
monotonic paths.

A monotonic path π(v1, vr) can be further extended by adding an edge ori-
ented in the same direction as the direction of monotonic path π(v1, vr). A
monotonic path which cannot be further extended is called a maximal mono-
tonic path. The end points of a maximal monotonic path will always be a local
maximum and a local minimum.
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2.1 Contracting plateaus

A connected sub-graph having the same g-value for all the vertices is referred
to as a plateau region where every pair of vertices v, w ∈ V of the sub-graph
satisfies g(v) = g(w). The LBP encoding (see next subsection) is performed after
contraction of all the edges in the plateau regions where each plateau region
collapses either to a single vertex in the best case or a set of self-loops attached
to a vertex, surrounding every hole in the plateau region [8].

Nevertheless, the vertices on the boundary of the image need to be treated
differently. First, the case where the plateau region is connected to the boundary
as shown by the shaded region in the left images of Fig. 1(a),(b), needs to be
treated specially. To preserve the topology, we first perform contraction on the
vertices corresponding to the pixel on the boundary of the image.

As a result we get the vertices through which the border is connected to the
plateau region, and then collapse the remaining part of the plateau region into
a level curve as shown in the right images of Fig. 1(a),(b). Simultaneously, it
also explains the reason to perform the operations on border independently and
prior to the edges encapsulated by the border.
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Fig. 1. Plateau regions connected to the boundary.

3 Orientation of dual graphs

In this section, we introduce a method to orient the edges of the dual graph cor-
responding to the oriented edges of the primal graph and explore it’s properties
to help merging of faces in the primal graph. Maintaining generality, e in Gh
is normal to the tangent at any point on the edge e in Gh.

Definition 7 (Orientation of edges in dual graph). The orientation of
an edge e in G is from vr to vl, where vr and vl are the vertices in G
corresponding to the faces on the right and the left side of the respective edge e
in G while walking in the direction of orientation of e.

Remark 2. The condition where the LBP code of v in G consists of only 0*
or only 1* can never exist as it corresponds to a cyclic sub-graph in Gk and
it contradicts the orientation of edges initially defined for the primal graph.
Nevertheless, directed cycles in the dual graph can appear and they surround
extrema in the primal.

Presence of level curves in Gk may complicate the orientation of the corre-
sponding edge in Gk which we address later in this document.



Congratulations! Dual Graphs are Now Orientated! 5

f
f

f
f f
f f f

f
f? ? ?

-

Slope Saddle

--

�

- --
6

6

6

?

(a) (b)

6
�

Fig. 2. Orientated dual graph for slope and saddle regions in primal graph.

Definition 8 (Slope region). A face in Gk is a slope region iff the correspond-
ing vertex v in Gk is a slope point.

Imagine the primal graph G0 as a terrain with height corresponding to the
g-value of the vertex, then a face in G0 will be a slope region or a saddle region 4

in the terrain. Def. 7 remains consistent to this concept and gives a matching
LBP category of a vertex in dual as shown in Fig. 2.

Lemma 1 ([9]). The boundary of a slope region S in the primal graph G is
either composed of exactly two monotonic paths connecting two extrema or it is
a level curve.

Lemma 2. [1, Lemma 1]After contracting plateaus and adding dummy saddle
points inside non-well composed configurations, all the vertices in the dual graph
are slope points.

4 Merging of two slope regions

This section starts with basic requirements for merging of two slope regions.
Then we provide the prototype of two adjacent slope regions sharing a common
boundary. Finally we enumerate all the possible configurations of two slope re-
gions deduced from the prototype and provide the constructive statements which
are the necessary conditions for merging of two slope regions.

Two slope regions sharing a common boundary can be merged together by
removal of the common boundary which results to form a merged slope re-
gion. We do not constrain the number of vertices and edges on the boundary of
the slope regions. Hence the boundaries of the slope regions are referred as paths
which may contain more than one vertices and edges. From Lemma 1 and prop-
erties of monotonic paths, the boundary of a slope region consist of exactly one
level curve or two monotonic paths connecting one maximum and one minimum
‘with respect to the slope region’. Note that by the usage of term ‘with respect
to the slope region’, we constrain the connections of the vertex with the interior
and the boundary of the slope region. We do not consider the connections of
the vertex with the remaining graph where it can be categorized into a different
LBP category.

4 Region with a non well-composed configuration which requires insertion of a saddle
point [3].
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Merging of two slope regions may not necessarily result in a slope region.
The merging of two slope regions can be done by checking whether the resulting
merged region is a slope region or not.

Remark 3. Two adjacent slope regions in the primal graph can be merged iff the
dual vertex corresponding to the merged slope region would be a slope point.

According to Lemma 1, the boundary of a slope region should be composed
of two separate monotonic paths connecting the maximum and minimum of the
slope region. The vertices at the end point of the common boundary between
the two slope regions are already part of two monotonic paths, one from each
slope region. To be a part of a monotonic path, these two vertices should either
be an extremum or a slope point with respect to the monotonic path. If this
condition is violated, it will contradict to the orientation of the monotonic path
on the boundary of the resulting slope region. Now the proof of this boils down to
demonstrate that the dual vertex corresponding to a face (in the primal graph)
surrounded by exactly two monotonic paths is a slope point. Considering the
circular permutation of the LBP codes of above mentioned dual vertex, we will
have exactly two switches which as per Def. 5 is a slope point.

Let us consider sub-graphs of two slope regions S1 and S2 with their extrema
⊕1, 	1, ⊕2 and 	2 respectively. While formulating rules for merging two slope
regions, the position of an extrema on the boundaries and it’s connection with
the common boundary are the main features to be considered. Besides extrema,
the boundaries are composed of slope points with respect to the slope region. In
this way we provide conditions which are independent of the number of edges
and vertices on the boundary of the slope regions S1 and S2.
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Fig. 3. Prototype for merging of two slope regions.

Fig. 3a shows the prototype of two slope regions with a common boundary
π(c1, c2) between them. The paths connecting the vertices in the prototype may
consist of any number of vertices and edges completing the respective connec-
tion. The orientation of paths π(a1, a2), π(b1, b2) and π(c1, c2) is predefined by
assuming that ⊕1 ∈ {a1, c1}, ⊕2 ∈ {b1, c1}, 	1 ∈ {a2, c2} and 	2 ∈ {b2, c2}
positions. The theory remains the same if the positions of ⊕1 and ⊕2 are inter-
changed with 	1 and 	2 thereby reversing the orientation (flipping) of respective
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edges 5. Moreover, all the combinations where the orientation of path π(a1, a2)
and π(b1, b2) are opposite, for example ⊕1 at a1 and ⊕2 at b2 will not be valid
because it contradicts the orientation of path π(c1, c2) unless it is a level curve
(which is taken into account in Case 5). By putting restrictions on positions, we
reduce the number of possible combinations to 24 = 16 configurations, which
can be further reduced (by interchanging S1 and S2) for investigative purpose
and still keeping the rules general.

The removal of a path π(c1, c2) with n edges consists of following two steps:

1. Contract (n − 1) edges as a result of which the path will be composed of
only 1 edge connecting the end points.

2. Perform the removal operation on the remaining edge.

Following are enumerations in which the two slope regions S1 and S2 can be
merged such that the resulting slope region will still obey Def. 8 and precondi-
tions of Lemma 1. Preserving the condition, the number of different configura-
tions which can be generated by interchanging labels S1 and S2 are mentioned
in the brackets after each condition.
Case 1: We start with the most simple case of Fig. 4a, where S1 and S2 share
the same extrema on the common boundary, i.e. ⊕1 = ⊕2 at c1 and 	1 = 	2 at
c2. In this case, remaining paths are directed from c1 to c2, one through a1 and
a2, and the other through b1 and b2 [2 combinations].
Case 2: If the common boundary is composed of one extremum from S1 and one
extremum from S2 as shown in Fig. 4b. [2 combinations.]
Case 3: If both of the end points of the common boundary contains extrema from
a single slope region irrespective of the position of extrema from other slope
region as shown in Fig. 5a. For example: ⊕1 at a1 and 	1 at a2 respectively
while ⊕2 and 	2 contribute to the end points of the common boundary. [6
combinations.]
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Fig. 4. Slope regions contributing at-least one extremum to the common boundary.

Case 4: None of the extrema contribute to the common boundary, but both
extrema of one slope region are connected to the common boundary through a
level curve as shown in Fig. 5b. The blue vectors besides the graph shows the
orientation of the monotonic path which consist of level curves.[1 combination.]
Case 5: If one extremum of a slope region contributes to the end point of the
common boundary and the other is connected to the common boundary through

5 This configuration can be achieved by switching positions of ⊕i and 	i in the pre-
viously mentioned configuration.
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a level curve irrespective of the position of extrema of the other slope region. For
example refer to Fig. 5c,d. The dashed line in the figure refers to the level curve
and the blue vectors besides the graphs shows the orientation of the monotonic
path. [6 combinations.]
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Fig. 5. At-least one extremum of a slope region is connected to the common boundary
through a level curve.

In all the above cases, the common boundary path π(c1, c2) has orientation in
a single direction. We also take into consideration the cases where the common
boundary have orientations of edges in different direction like shown in Fig. 3b,
where the vertex m is a slope point with respect to the slope regions. In its
local neighborhood, m can be a slope point or a saddle point. Note: This case
is counted under the condition where both the slope regions share common
extrema and hence the slope regions can be merged. There may be cases where
only one of the two common slope points m is present and the monotonic paths
are directly connected to an extremum. Removal of path π(⊕,	) in Fig. 3b
will result in pending edges connecting m and the extrema in the primal graph.
Corresponding to this pending edge, there will a self-loop surrounding a single
vertex in the dual graph.

Proposition 1. Any two slope regions S1 and S2 sharing a common boundary
can be merged together if they follow one of the following condition:

1. The common boundary is composed of at least one extremum of S2 and an-
other extremum is either on the common boundary or is connected to the
common boundary through a level curve.

2. The common boundary is composed of one extremum from each slope region.

For all the cases in Fig. 4b and Fig. 5, the edges incident to the dual vertex
S1 have the same orientation as the dual vertex S2 when traversed in a circular

(clockwise or counter clockwise) order. Similar observations can be made in the
corresponding primal graphs.
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Fig. 6. Result after con-
traction of edge (S1, S2)
in Fig.5

In other words, both of the vertices in the dual
exhibit the same LBP code after eliminating redun-
dancy of bits when traversed in same direction. The
vertex in Fig. 6 is a slope point formed as a result of
the contraction operation on the dual graph in Fig. 5.
Similarly we get a slope point after contracting the
dual edge connecting the two dual vertices in Fig. 4b.

Few examples can be viewed in Fig. 7 where the
extrema are connected to the common boundary with-
out a level curve or the orientation of the level curve
is reversed. We observe that the vertices in the dual
graph have different LBP codes when traversed in the same direction.
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Fig. 7. Configurations of slope regions that cannot be merged and their oriented dual
graphs.

Proposition 2. The contraction of the dual edge e connecting two slope points
v1 and v2 in dual graph G will result in a single slope point iff the edges

incident on the vertices v1 and v2 exhibit the same orientation ( the same LBP
code) between the bit switches when traversed in same order and direction.

Proposition 2 provides sufficient conditions for contraction of edge e in G
connecting two slope points such that the resulting dual vertex is also a slope
point. This contraction is equivalent to the removal of the corresponding edge e
in G such that the resulting region is a slope region.

4.1 Orientation of level curves shared by multiple monotonic paths

Technically level curves follow the surface along the same height. Hence they are
not oriented. The corresponding (level) paths can be concatenated with adjacent
monotonic paths if all the involved monotonic paths have the same orientation.
They then form a combined monotonic path in which the level paths inherit their
orientation from the orientation of the combined monotonic path. This may lead
to inconsistencies if the same level path or a sub-sequence of it is simultaneously
concatenated with a monotonic path of the opposite orientation. In such cases
preference will be given to the orientation of the level path which is involved
in the merging of slopes. The priority of merging slopes may depend on higher
objectives like making slope regions of the global extrema as large as possible.
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5 Conclusion

In this paper, we represent a surface by a pair of dual plane graphs and provide
a novel solution of collapsing the plateau region which basically is the collection
of degenerated surface points. Then we categorize the vertices into maximum,
minimum, slope or saddle depending on the orientation of the incident edges
and avoiding the calculations of differentiation. We also define the orientation
of the edges in the dual graph and show that the LBP category of the dual
vertex is consistent with the corresponding face in the primal graph. Then we
give the necessary and sufficient conditions for merging of two adjacent faces in
the primal graph of a well composed sampled surface such that the merged face
is a slope region. Finally we offer the sufficient conditions for the resulting dual
vertex to be a slope point produced after contracting the respective dual edge.
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