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Abstract. Slope regions are a useful tool in pattern
recognition. We review theory about slope regions
and prove a theorem linking monotonic paths and the
connectedness of levelsets. Unexpected behavior of
slope regions in higher dimensions is illustrated by
two examples. We introduce the border propagation
(BP) algorithm, which decomposes a d-dimensional
array (d ∈ N) of scalar values into slope regions. It
is novel as it allows more than 2-dimensional data.

Figure 1. gray-scale to height-map conversion

1. Introduction

In this section we develop an intuitive understand-
ing of the term slope region [3] and its generalization
to higher dimensions. The concise definition of the
terms already employed here is reserved for the next
section.

Consider an image, either gray-scale or in color.
If it is a color image, it can be decomposed into its
color channels (red-green-blue), which can individu-
ally be read as gray-scale images. We consider pixel
intensity of one such gray-scale image as the height
of a landscape, yielding a 2D surface in 3D space.
The surface will have peaks in areas where the image
is bright, and will have dales in dark areas.

Now our aim is to partition the surface into regions

(i.e. subsets) in a particular way: We require each
region to consist only of a single slope, by which
we mean that we can ascend (or descend) from any
given point of the region, to any other given point of
the region, along a path that runs entirely within the
region. Such a decomposition is not unique, but we
can at least try to get a partition as coarse as possible,
meaning that we merge slope regions if the resulting
subset is still a slope region, and we iterate this un-
til no further change occurs. There might be many
different coarsest slope decompositions.

The criterion we used to describe slopes, any two
points being connected by either an ascending or a
descending path, can easily be used in higher dimen-
sions. Think of a computed tomography scan, which
will yield gray-scale data, but not just on a 2D im-
age, but rather on a 3D volume. We want to partition
the 3D volume, such that any two points in a region
can be connected via an either ascending or descend-
ing path within the region. Recall that ascending and
descending refers to the intensity value of the tomog-
raphy scan as we move in the volume. For piecewise
linear functions on a volume, decompositions were
introduced in [1].

By abstracting from image and tomography to a
real function f : Ω → R defined on some subset of
Rn (think of it as the pixel intensity function), and by
rigorously defining a coarsest slope decomposition,
we can lift the concept to arbitrary dimensions in a
mathematically concise fashion.

2. Defining Slope Regions

In this and the following chapters we will con-
sider a topological space (Ω, T ) with a continuous
function f : Ω → R. In practice or for ease of
imagination, (Ω, T ) will typically be a rectangle or
cuboid subset of R2 or R3 equipped with the eu-
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clidean topology and f will describe a continuous
image or 3D-scan.

Definition 2.1. A path is a continuous function from
the real interval [a, b] (with a < b) into a topological
space Ω.

Definition 2.2. Two points x 6= y in a topological
space Ω are called path-connected if and only if there
exists a path γ : [a, b] → Ω with γ(a) = x and
γ(b) = y.

Definition 2.3. The set of all points which are path-
connected to a point x ∈ Ω is the connected compo-
nent of x:

[x] := {y ∈ Ω|x is path-connected to y}

Any subset of Ω which can be written in above way
(for a suitable choice of x) is called a connected com-
ponent.

Definition 2.4. A path γ : [a, b]→ Ω is called mono-
tonic if and only if the whole path is ascending or the
whole path is descending, meaning the first or second
formula below has to hold, respectively:

∀s, t ∈ [a, b] : s < t⇒ f(γ(s)) ≤ f(γ(t))

∀s, t ∈ [a, b] : s < t⇒ f(γ(s)) ≥ f(γ(t))

Definition 2.5. Let R ⊂ Ω. R is called slope re-
gion or monotonically connected if and only if for all
x, y ∈ R there exists a monotonic path γ : [a, b] →
R with γ(a) = x and γ(b) = y.

Definition 2.6. A family of sets {Ai ⊂ Ω | i ∈ I} is
called a slope region decomposition if and only if:

• Ai is a slope region for all i ∈ I

• ∀i, j ∈ I : i 6= j ⇒ Ai ∩Aj = ∅.

• ⋃i∈I Ai = Ω

Definition 2.7. Consider two slope region de-
compositions A = {Ai ⊂ Ω | i ∈ I} and B =
{Bj ⊂ Ω | j ∈ J}. We call A coarser than B, al-
ternatively B finer than A, in Symbols A � B if and
only if

∀j ∈ J ∃ i ∈ I : Bj ⊂ Ai.

Theorem 2.8. � is a partial order, i.e. fulfills reflex-
ivity, antisymmetry and transitivity.

Proof: Straight forward. Antisymmetry follows
from the decomposition property. �

Definition 2.9. A slope region decomposition A is
called maximally coarse or simply coarse if and only
if there is no other coarser slope region decomposi-
tion.

We can apply Zorn’s lemma [6] to the partial or-
der �, which yields the existence of maximal ele-
ments. For this we need to show that chains have
upper bounds.

Theorem 2.10. For any ascending chain of slope re-
gion decompositions (Ai)i∈I , that is t ≥ s ⇒ At �
As, there is a slope region decomposition A∞ satis-
fying ∀i ∈ I : A∞ � Ai.

Proof: We consider the equivalence relation ”con-
nected in Ai” for two points x, y ∈ Ω:

x ∼i y :⇔ ∃A ∈ Ai : x ∈ A ∧ y ∈ A

The equivalence relation is a subset of Ω2, and At �
As implies ∼t⊃∼s. This suggests the use of ∼∞:=⋃

i∈I ∼i to get an upper bound. Indeed the equiv-
alence classes of ∼∞ yield a partition A∞ of Ω,
which is coarser than any Ai. But do they form a
slope region decomposition? Yes: For any two fixed
points x, y to be ∼∞-connected, they need to be ∼i-
connected for some i ∈ I . So there is a mono-
tonic path linking x and y in A = [x]∼i ⊂ [x]∼∞ ,
by which they are monotonically connected in A∞.
Therefor A∞ is a slope region decomposition. �

Hence every set Ω has a coarse decomposition.

Theorem 2.11. Let A ⊂ Ω be a path-connected set.
A is a slope region if and only if all levelsets of f in
A are path-connected, i.e.

∀c ∈ R : f−1({c}) ∩A is path-connected.

Proof: ”⇒” via contraposition:
Suppose there exists a c ∈ R withL := f−1(c)∩A

not path-connected. We decompose L in its compo-
nents and pick x and y from different components.
Since f(x) = f(y) = c a monotonic path between
x and y would have to lie completely in L. However,
since x and y are from different components, they
cannot be connected by a path inL and therefore can-
not be connected with a monotonic path. Therefore,
A is not a slope region.

”⇐” via ironing out an arbitrary path:
Given x, y ∈ A we have to find a monotonic path

γ. Without loss of generality suppose f(x) ≥ f(y).
Since A is path-connected, there exists an (not nec-
essarily monotonic) path γ0 : [a, b] → A from x to
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Figure 2. applying the Rising Sun lemma

y. Using the Rising Sun lemma [5] on the continuous
function f ◦ γ0 we get the shadow S =

⋃
i∈I(ai, bi)

consisting of at most countably many intervals.
S consists of the points which contradict the

monotonicity of f ◦γ0, thus we want to iron out these
points.

Let cn := f(an) = f(bn). Since the levelset of cn
is path-connected, we can connect γ0(an) and γ0(bn)
with a level path γ∗n : [an, bn]→ A.

Finally, we define:

γ(σ) :=

{
γ∗n(σ) σ ∈ [an, bn]

γ0(σ) elsewhere

γ is a monotonic path from x to y, thusA is a slope
region. �

3. Results In The Plane And Counterexam-
ples In Higher Dimensions

There are two theorems ([3] Lemma 1 and [3]
Lemma 2) that are useful, but only hold if Ω ⊂ R2,
not in general if Ω ⊂ Rd for d > 2. But first, we
prove a lemma.

Theorem 3.1. Let A be a slope region. Then the
closure Ā is also a slope region.

Proof: Follows from continuity of f . �
The following theorem is only formulated for

closed slope regions, but because of the above the-
orem this is not a big restriction.

Theorem 3.2. Let d = 2 and A ⊂ Rd be a closed
and bounded slope region. Let (∂Ai)i∈I be an enu-
meration of the connected components of the bound-

Figure 3. a sketch of the situation in Theorem 3.2

ary ∂A. For i ∈ I , if ∂Ai is homeomorphic to a cir-
cle, then f |∂Ai

has at most one local minimum and
one local maximum (but the extrema might be spread
out in a connected plateau).

Proof: Assume there are two local minima
a1, a2 ∈ ∂Ai with f(a1) ≤ f(a2). Since ∂Ai

is homeomorphic to a circle, there have to be lo-
cal maxima b1 and b2 ∈ ∂Ai between them with
f(a2) < f(b1) ≤ f(b2), one on each arc.

Since A is a slope region, a1 and a2, as well as b1
and b2 have to be connected by a monotonic path.
Because of the Jordan Curve Theorem [2, p.169],
these paths have to cross in a point c ∈ A. But this
yields a contradiction: f(c) ≤ f(a2) < f(b1) ≤
f(c). Thus the assumption of the existence of two
local minima has to be false. �

Note: The circle assumption is actually unnecce-
sary and the proof without it remains the same in
spirit, but becomes inhibitivly technical, which is
why we omit it here.

Example 3.3. Let Ω = R3 and A = B1(0, 0, 0) be
the closed unit ball. Let f be the distance to the x-
Axis.

f : R3 → R : (x, y, z) 7→
√
y2 + z2

The levelsets of f in A are either the x-Axis for f ≡
0 or the sides of cylinders for f > 0. In any case,
they are connected. Thus, by Theorem 2.11, A is
a slope region. ∂A has one connected component,
which is the unit sphere. f |∂A has two local minima,
which are the intersections with the x-Axis, (1, 0, 0)
and (−1, 0, 0).

Thus, the previous theorem does not hold in R3.
In fact, it does not hold in any Rd for d > 2. There
is also no limit on the number of local minima on the
surface of a slope region.

Theorem 3.4. Let d = 2 and A ⊂ Rd be a slope
region. Let s ∈ A be a saddle point. Then, s ∈ ∂A.
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Proof: Assume s is an interior point of A, which
means there is a open set U with s ∈ U ⊂ A. s
being a saddle point means there is a neighborhood
V ⊂ U so that V− := V ∩ [f < f(s)] as well as
V+ := V ∩ [f > f(s)] decompose into two or more
connected components.

Pick a1, a2 from different components of V− as
well as b1, b2 from different components of V+. a1
and a2 have to be connected by a monotonic path, but
this path has to move outside of V since the points
are from different components of V− and by virtue
of being monotonic, the path cannot go through V+.
Analogue for b1 and b2.

Again by the Jordan Curve Theorem, these two
paths have to cross in some point c, which again
yields a contradiction.

f(c) ≤ max(f(a1), f(a2)) <

< f(s) < min(f(b1), f(b2)) ≤ f(c)

Thus the assumption that s is a interior point has to
be false. �

Example 3.5. Let Ω = A = R3. Let f be the dis-
tance from the unit circle laying in the x-y-plane.

f : R3 → R : (x, y, z) 7→



∥∥∥
(
x− x

||x,y||2 , y −
y

||x,y||2 , z
)∥∥∥

2
‖(x, y)‖2 6= 0

‖(1, 0, z)‖2 ‖(x, y)‖2 = 0

Again, let us look at the levelsets to showA is a slope
region. The levelset of f ≡ 0 is the unit circle. For
0 < f < 1 the levelsets are tori. f ≡ 1 marks
a transition and the levelset is a torus with its hole
closed. Then, for f > 1 the levelsets look like the
exterior surface of a self intersecting torus, topolog-
ically equivalent to a sphere. All these levelsets are
connected. Thus, A is indeed a slope region.

Now consider the point (0, 0, 0). Along the x and
y-direction it is a local maximum, however along the
z-direction it is a local minimum. Thus, it is a saddle
point. Therefore, theorem 3.4 does not hold in higher
dimensions.

4. Motivating The Border Propagation (BP)
Algorithm

Now we will work our way to the central in-
sights on which the border propagation algorithm
(BP) hinges. Let us develop ideas for smooth

Figure 4. evolution of discretized regions during the algo-
rithm

(hyper-)surfaces first, and deal with discrete variants
in the next section.

Slope regions can be constructed and grown in
a straight-forward iterative manner by sweeping
through the function values from lowest to highest.
This is similar to the intuition employed in Morse
theory[4, Section 1.4]. Visualize a smooth, compact
2D surface in 3D space. We want to decompose this
surface into slope regions. Initially, our decomposi-
tion is empty, i.e. there are no slope regions (thus
we don’t have an actual decomposition yet). This is
shown in Figure 4, Image 1.

Imagine a water level rising from below the sur-
face, up to the point of first contact. Starting at this
global minimum, we add a new region, containing
only the argmin (i.e. a single point on the 2D image
where the minimal value is taken).

Now, there might be many points where the global
minimum is taken. This will either be due to a con-
nected region (plateau) on the surface, which we
want to include into the single existing region, or it
will be due to individual dales, which all have their
lowest point at the same height. In this case, we can’t
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put the points into the existing region, because we
would not be able to get from one argmin to another
via a monotonic path. Instead, we need to add a new
region for each individual dale.

Both cases can be dealt with by contracting con-
nected points into their connected component, and
creating a new region for each resulting component.
This will ensure that plateaus are assigned to a single
region.

As the water rises, we can add points to an exist-
ing region growing it upwards if they are just outside
the region1. Otherwise they correspond to a distant
local minimum and have to be dealt with as before,
by opening a new region for each point (or rather,
each connected component). This is shown in Figure
4, Image 2.

With the water rising further still, the regions will
grow upwards to a point where they meet (Figure 4,
Image 3). Any such point is a saddle point, and we
have to account for it the next time we want to grow
any one of the touching regions. The saddle point
connects the edges of the regions which meet in it,
at the current height of the water level. It might be
the case that the not-yet-assigned points (the ones
above the water) get separated into multiple con-
nected components, or they might remain connected.

If the points remain connected, then we decide for
a single one of the involved regions to be allowed
to grow upwards from the component. This means
that one region effectively inherits the growth direc-
tions from the other region(s). The other region(s)
lose their potential for expansion and remain frozen
in their current state.

If the unassigned points have multiple components
(as in Figure 4, Image 3: the unassigned grey points
are separated into the lower left and upper right ar-
eas), then we may assign one component to each in-
volved region. The regions will then grow only in the
directions determined by the assigned components as
the water rises. This can be observed in Figure 4,
Image 4: The green region is allowed to grow to the
lower left, while the red region floods the upper right.
The same procedure of swapping areas of expansion
also happens as we move from Image 5 to 6. Any re-
gion without an assigned component remains frozen.

1Why can we do that? By adding only points which are con-
nected to the region we ensure path-connectedness, and by grow-
ing the region upwards, we can construct ascending paths from
old points to new ones. The smoothness of the surface guaran-
tees that while moving at a fixed height, we can reach all points
of the region with that height.

Should there be more components than regions, then
we open up a new region for each surplus component,
as in the top of Image 7.

An oddity which can occur are self-loops: A re-
gion might grow into a ”C”-shape, and then proceed
to close up into an ”O”-shape. This case can be
treated similarly as above, the only difference is that
the saddle is found by recognizing that the region col-
lides with itself, not with another region.

Eventually this procedure will arrive at the global
maximum, and the entire surface will be divided into
regions. Since we proceeded with the necessary care
and attention along the way, we ensured that the re-
gions remained slope regions, and we also only cre-
ated additional regions when we absolutely had to,
showing that the resulting composition is maximally
coarse.

The same algorithm can be applied in higher di-
mensions. We deal with iso-hyper-surfaces as level
sets, but the topological considerations about con-
nectedness remain the same as in the illustrative 2D
case.

5. Discrete BP

The somewhat vague description of BP in the pre-
vious section assumed a continuous surface. In most
applications, however, the data will be provided in a
discrete raster format. Some intricacies arise from
this discretization, most notably iso-surfaces of a
smooth function f will not have a straight-forward
representation in the discrete grid obtained from ras-
terizing f . The data structure we use is a set of in-
dices, representing the positions in the discrete array
already assigned to a region.

Each region also has a set of (yet) unassigned
points, which determine where the region might
grow in the next iteration, called the border. This ef-
fectively models the smooth levelsets in the discrete
representation.

The pseudo-code for the algorithm is
printed below, the executable python code
can be accessed in our github repository:
https://github.com/SirFloIII/MustererkennungLVA

6. Further Potential Development

The result of BP is satisfactory, but we assume
that improvements can be made in running time.
The code was profiled multiple times and has been
adapted to run faster with significant gains in many
instances.
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Algorithm 1 Border Propagation
Enumerate all values of f and collect points into
levelsets.
for each levelset in bottom to top order do

Add points to regions if they are in the border
of a region

if an added point is in the border of different
region then

Find the union of the borders of the in-
volved regions

Find the connected components thereof
Assign these to the regions in an arbitrary

way
end if
if an added point splits the border of the region

in two then
Reduce the border the region to one com-

ponent
for each other component do

Create a new region containing the
component as border

end for
end if
for leftover points that cannot be added to any

regions do
Create a new region containing only that

point
end for

end for

Additional features we consider:

• Providing a tolerance parameter, which gov-
erns how steep a continuous function might
get, before an iso-surface is deemed discon-
nected in the discrete data. This would allow for
a trade-off between continuous connectedness
and discrete connectedness. Modeling continu-
ous connectedness creates fewer slope regions
and yields pleasing results on smooth data,
but the resulting regions are not monotonically
connected (in the discrete sense of connected)
in general. Discrete connectedness guaran-
tees monotonic connectedness, but it necessar-
ily creates significantly more and smaller slope
regions. On smooth data the latter tends to pro-
duce too fine of a decomposition.

• Using established data structures that model
smooth level sets from discrete data. There
might be performance gains in employing such
a data structure.

7. Conclusion

In this paper we have shown that slope regions
of continuous functions in high dimensions (n ≥
3) do not have the same critical point properties
well-established in 2D. Hence previous graph-based
methods of building slope region decompositions by
merging regions according to their border extrema
will fail in high dimensions. Instead we developed
a new, levelset-based method of growing regions,
which yields slope region decompositions on discrete
data of arbitrary dimension.
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