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Abstract

While genotypes are defined as the set of genes an organism holds, its phenotype is defined as
the set of its observable characteristics. To determine the correlation of genotype and phenotype
or how a phenotype is affected by environmental conditions, an evaluation on large datasets is
needed. An automatic analysis of image data and extraction of characteristics allows for large-
scale evaluations.
This thesis presents a comparison of two types of graph-based image representations: medial
axis transformation and Reeb graphs and evaluates the feasibility of using these representations
in image based plant phenotyping.
A presegmented binary image of roots (of the plant Arabidopsis thaliana) is the basis for gen-
erating the well-known medial axis and the Reeb graphs. For phenotyping of plants their root
structure is analysed. The main characteristics used here are branching points, branch endings
as well as the length and width of individual branches. These characteristics are captured by the
presented graph representations. For the computation of the Reeb graphs two different Morse
functions are used: height function and geodesic distance.
As the roots are pictured as 2D images, the projection of a 3D structure to a 2D space might
result in an overlap of branches in the image. One major advantage, when analysing roots based
on Reeb graphs, is posed by the ability to immediately distinguish between branching points and
overlaps in the root structure as an overlap introduces a cycle and thereby a certain type of node
(saddle - merge) in the Reeb graph. This differentiation is not as easily possible by a medial axis
representation or by an analysis solely based on contours.
In order to use the advantages of different representations and the characteristics provided by
them, a possibility to combine different graph representations of one root image is needed.
Therefore the equality of graphs is evaluated. This thesis shows that all three representations
of a root are either isomorphic graphs or have a common subgraph.
A new normalised graph representation for root images is introduced. This representation is
based on a (Reeb) graph and represents the branching structure of a root as side branches to the
left and right of a main root. This normalised representation focuses on the branching pattern
and the length of branches and allows for an efficient comparison and evaluation of root images.
The graph representations computed for this thesis were compared to human generated ground
truth. Here the Reeb graphs based representations approximate the ground truth best.
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Kurzfassung

Ähnlich zu den als Menge der Gene eines Organismus definierten Genotypen, sind Phänotypen
definiert als die Menge der beobachtbaren Eigenschaften dieses Organismus. Um den Zusam-
menhang von Genotypen und Phänotypen sowie den Einfluss von Umweltbedingungen auf den
Phänotyp zu bestimmen, werden große Datensätze evaluiert. Eine automatische Analyse von
Bilddaten und Extraktion von Charakteristiken ermöglicht die Auswertung dieser großangeleg-
ten Studien.
Diese Diplomarbeit widmet sich dem Vergleich zweier graphbasierter Bild-Repräsentation: Me-
dial Axis Transformation und Reeb Graphen und analysiert die Einsatzmöglichkeit dieser Ab-
bildungen in der bildbasierten Pflanzen Phänotypisierung.
Ein segmentiertes Binärbild der Wurzeln (der Pflanze Arabidopsis thaliana) bildet die Grund-
lage zur Berechnung der bekannten Medial Axis und der Reeb Graphen. Zur Phänotypisierung
von Pflanzen wird ihre Struktur analysiert. Die wichtigsten Charakteristiken dabei sind: Ver-
zweigungen, Enden von Zweigen, sowie die Länge bzw. Dicke der einzelnen Zweige. Diese
Eigenschaften werden von den verwendeten Graph-Repräsentationen erfasst. Zur Berechnung
der beiden Reeb Graphen werden zwei unterschiedliche Morse Funktionen verwendet: die Hö-
henfunktion sowie die geodätische Distanz.
Da die Pflanzen als 2D Datensatz abgebildet werden, findet eine Projektion der 3D Wurzelstruk-
tur in den 2D Raum des Bildes statt. Diese Projektion kann in Überlappungen einzelner Wur-
zelzweige im Bild enden. Ein bedeutender Vorteil der Reeb Graph Repräsentationen ist durch
die Möglichkeit, Verzweigungspunkte sofort von Überlappungen unterscheiden zu können, ge-
geben. Dies beruht auf der Eigenschaft der Reeb Graphen, dass durch die Überlappungen der
Wurzeln im Bild Zyklen in der Graphstruktur entstehen. Diese Zyklen erzeugen einen Knoten
vom Typ Sattel (merge) im Graph. Eine Unterscheidung zwischen Überlappungen und Verzwei-
gungen ist, für eine Darstellung basierend auf der Medial Axis oder einer Analyse der Wurzel-
struktur anhand der Kontur, nicht so leicht möglich.
Um die Vorteile verschiedener Darstellungen und die entsprechenden Charakteristiken zu ver-
wenden, wird eine Kombination der unterschiedlichen graphbasierten Repräsentationen benö-
tigt. Dazu muss die Gleichwertigkeit der Graphen bewertet werden. Im Rahmen dieser Diplom-
arbeit zeigt sich, dass die Graphen aller drei Darstellungen entweder isomorph sind oder einen
gemeinsamen Teilgraphen enthalten.
Letztendlich wird eine neue normalisierte graphbasierte Darstellung für Wurzelbilder präsen-
tiert. Diese Repräsentation basiert auf (Reeb) Graphen und stellt die Verzweigungsstruktur einer
Wurzel als Seitenäste zur linken und rechten Seite der Hauptwurzel dar. Diese normaliserte Dar-
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stellung konzentriert sich auf die Abbildug der Verzweiungsstruktur und der Länge der Wurzeln
und erlaubt effizienten Vergleich und Evaluierung von Wurzelbildern.
Die vorgestellten graphbasierten Repräsentationen wurden mit menschlich generierten Refe-
renzdaten verglichen. Die Reeb Graph Repräsentationen approximieren diese Referenzwerte am
besten.
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CHAPTER 1
Introduction

This thesis addresses the problem of shape analysis and representation within the context of
image based plant phenotyping.
A first definition of phenotypes was given by Johannsen in 1911 [26]:

“All “types” of organisms, distinguishable by direct inspection or only by finer
methods of measuring or description, may be characterised as “phenotypes”.”

While an organism’s genotype is defined as the set of genes this organism holds, its phenotype
is defined by its observable characteristics (from Greek: phainein = to show).
Gregor Mendel first introduced the concept of dominance, which stated that some inherited traits
were dominant over others as a heterozygot (genotype consisting of two different alleles) off-
spring could show the same phenotype as its homozygot (genotype consisting of two identical
alleles) parent. However, the relationship between genotypes and phenotypes proved to be more
complex than this simple dominant pattern described by Mendel [34].
While the phenotype of an organism is based on its genes, it is just as well influenced by environ-
mental conditions. While the genome of certain plants or animals (so called model organisms)
is completely characterised [40], their phenome (the full set of phenotypes of an individual) can
never be completely characterised as phenotypes vary strongly [23].
Apart from this application in molecular biology, this thesis is set within the field of image pro-
cessing, more precisely within the area of topological image analysis and shape representation.
The following keywords describe the overall context:

• Graph Theory

• Topological Image Analysis

• Shape Extraction, Representation and Comparison

1



1.1 Problem Statement

To address this major question in biology, how genotypes translate into phenotypes, the ability
to phenotype a large number of individuals is needed. Therefore an efficient extraction and rep-
resentation of characteristics is needed.
For phenotyping of plants their root development, the architecture of their root systems and
thereby root characteristics such as branches and branch endings are analysed. The root of the
small plant Arabidopsis thaliana is excellently suited for large-scale non-invasive phenotyping
because it can be grown on transparent media in large numbers and projections of the young root
essentially capture all the important biological features at the organ level [25]. For analysis of
the plant development, the plants are imaged on several successive days of their growth cycle.
The root characteristics used in plant phenotyping, for example branching points or length of
branches, can be captured and described by a graph based shape representation.
Branches in the root structure depict a change in the topology of the structure. Reeb graphs
describe these changes in topology in the represented structure. As the 3D structure of the root
is projected to the 2D image space, overlaps of branches may occur in the root images. These
overlaps need to be distinguished from branching points. One of the advantages in using Reeb
graphs is that such overlaps can immediately be detected, as they introduce a particular type
of node in the graph. Reeb graphs are based on Morse theory and analyse the image content
according to a function (Morse function). An important question in this context is to determine
how much and where two or more functions defined on the same model differ [6]. A combined
graph representation overcomes these differences of various representations and allows to com-
bine the advantages of multiple representations.
In the context of plant phenotyping, a combined representation is needed to compare plants or
their development based on various characteristics and thereby various representations.

1.2 Aim of the Work

In order to simplify the examination of root characteristics and enable an efficient comparison
of roots, a representation of imaged root data by Reeb graphs is introduced in this thesis.
Reeb graphs capture the topology of the represented structure - in this case the locations of
branches and branch endings of the roots - and form a skeletal graph representation of the un-
derlying image data in this way. The computation of the Reeb graphs on the root images is
based on a Morse function. For the root images a Reeb graph representation based on the height
function and the geodesic distance is presented. The medial axis transformation was applied for
a third representation. Based on these three representations the following characteristics of the
roots can be acquired:

• number of branches,

• number of branch endings,

• length of branches,
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• width of branches,

• branching pattern (according to a main stem).

To allow for an efficient comparison of different plants or of one plant in different stages of its
development, a normalised representation is defined.
Graphs provide a representation that allows to compare and match shapes. However, for such
comparisons it is usually assumed that all graphs were computed based on the same method. In
order to combine characteristics based on all three mentioned graph representations, to obtain the
final combined representation, the similarity of graphs based on different functions is measured.

1.3 Contribution

Based on three graph based shape descriptors an approach to represent root structures is de-
scribed in this thesis. The medial axis is a popular shape descriptor for branched structures such
as roots. In this thesis a representation of branched structures based on Reeb graphs is intro-
duced. In order to combine characteristics of different representations, the equality of various
types of representations is evaluated. A definition for the comparison and matching of two differ-
ent graph representations forms a central part of this work. For the efficient comparison of root
images of different plants or of one plant of different days of growth, a normalised graph rep-
resentation is developed. The derived root representations are compared to the representations
computed with the 2014 published tool “Root System Analyser” [31].

1.4 Structure of the Thesis

An overview on graph based shape representations in general and the theoretical background
particularly needed for the introduction of Reeb graphs are given in Chapter 2. Based on this
knowledge the state of the art regarding (Reeb) graph based representations as well as the state
of the art in image based plant phenotyping are discussed in Chapter 3. Chapter 4 presents the
dataset used within the scope of this thesis. Details on the presented approach for Reeb graph
based root representations are given in Chapter 5, while results are discussed in Chapter 6. A
comparison with the recently published tool “Root System Analyser” [31] is given in Section
6.3. The possibility of a combination of the different representations is discussed in the Sections
6.4 - 6.6. Chapter 7 concludes this thesis and gives an outlook to future work.
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CHAPTER 2
Graph Based Shape Representation

For the purpose of graph based shape representation, fundamentals of skeletons and graphs are
needed. The following sections provide the theoretical basis for the concepts presented in this
thesis.

2.1 Graphs and Skeletons

In shape representation a skeleton is a thinned version of a shape with equal distance to the
boundaries of the shape. Morphological skeletons, known as medial axis, are the most common
skeletons. Sometimes the terms skeleton and medial axis are used interchangeably as synonyms.
However, Figure 2.1 presents a comparison of two different types of skeletons. Figure 2.1a
shows an example for a medial axis skeleton, while Figure 2.1b shows another type of skeleton:
a straight line skeleton.

(a) medial axis skeleton (b) straight line skeleton

Figure 2.1: Shape representation: skeleton.
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(a) 10x10 pixel image - one
node per pixel

(b) graph based on 4-connected
grid

(c) graph based on 8-connected
grid

Figure 2.2: Graphs on image pixels.

Definition 1 A graph G is defined as a tupel (V,E) where V is the set of nodes (vertices) of the
graph and E the set of edges connecting the nodes in the graph (E ∈ V ×V ). Edges in a graph
may be directed or undirected [18].

A digital image is formed by a set of pixels. A graph on such an image can be defined by map-
ping a node to each pixel and connecting nodes of neighbouring pixels with edges. Figure 2.2
shows an example of such a graph assuming a 4-connected pixel grid and an 8-connected one.
For graph-based image representations nodes may not be assigned to every pixel in the graph.
Pixels are rather grouped and each group is represented by a single node in the graph. The ar-
rangement of pixels into groups can be based on similarity of an assigned label or value as for
example their colour-value. An example for such a graph is shown in Figure 2.3a. This graph
is a region-adjacency-graph (RAG): each region is represented by one node, the edges represent
adjacency between regions. In such a way graphs can for example be used in segmentation ap-

(a) RAG - nodes represent regions,
edges their adjacency

(b) representation of shape - nodes
describe characteristic locations

Figure 2.3: Two examples for graph based image representation.
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proaches.
For the description of shapes, nodes are placed at characteristic positions of a shape and con-
nected accordingly to it. The triangle image in Figure 2.3b is represented by 3 nodes at the
vertices of the triangle and edges according to the triangle edges.

Definition 2 A graph contains a cycle if there exists a subset of edges in the graph, that forms a
path that starts and ends at the same node [18].

The graph for the triangle in Figure 2.3b for example forms a cycle. The number of nodes, edges
and cycles in a graph are linked to each other through the Euler characteristic:

Definition 3 The number of edges in a graph equals the number of nodes in the graph minus
one, plus the number of cycles in the graph. For a graph G = (V,E) with cycles C the number
of edges |E| is given as: |E| = |V | − 1 + |C| [18].

Operations on graphs

To remove or insert nodes or edges in a graph, edit operations are defined for graphs. These
modifications on a graph may change to connectedness of this graph.

Definition 4 A graph G = (V,E) is called connected if, for any pair of nodes p ∈ V and
q ∈ V , there exists a path from p to q . Otherwise this graph is said to be disconnected [18].

Definition 5 Edit operations for graphs based on [18]:

1. Edge Removal:
deletes an edge from the graph, while keeping the endpoints of the graph unchanged in
the set of nodes (see Figure 2.4a).

2. Edge Contraction:
removes an edge from the graph by merging the two nodes that were connected by the
edge (see Figure 2.4b).

3. Node Removal:
deletes a node from the graph, all edges containing this node are removed from the graph
as well (see Figure 2.4c).

4. Node Contraction:
merges two nodes of a graph to one node. The adjacency of this new node is given as
the union of the sets of adjacent nodes of the two merged nodes. A restriction, that the
two nodes need to be connected by an edge, does not necessarily apply. Edge contraction
therefore is a special case of node contraction (see Figure 2.4d, respectively see Figure
2.4b).

5. Smoothing:
removes a node from the graph by removing the edges connecting it to other nodes and es-
tablishing edges between these nodes (see Figure 2.4e). This operation is only possible for

7



(a) Edge Removal (b) Edge Contraction (c) Node Removal (d) Node contraction

(e) Smoothing (f) Edge Insertion (g) Node Splitting (h) Subdivision

Figure 2.4: Operations on graphs. The top half shows the original graphs with changing parts
labelled blue, the bottom half of the images shows the altered graphs.

nodes of degree two (nodes adjacent to two other nodes). The difference to edge contrac-
tion lies in the node that is kept when applying this operation. Edge contraction applied
to the graph in Figure 2.4e would remove one of the degree-1 nodes, while smoothing
removes the degree-2 node. This is particularly important, when the position of nodes is
needed to further represent the geometry of the structure, the graph is based on.

6. Node insertion:
adds a node to the set of nodes of the graph. This node is not connected to any other nodes
of the graph, edges need to be inserted (see edge insertion) in order to connect this node
to other nodes.

7. Edge insertion:
establishes an edge between two nodes in the graph (see Figure 2.4f).

8. Node Splitting:
splits one node into two nodes, which are connected by an edge. Both nodes are adjacent
to all nodes the original node was adjacent to (see Figure 2.4g).

9. Subdivision:
divides an edge into two edges by introducing a new node that is adjacent to the two nodes
of the original edge (see Figure 2.4h). Subdivision is the reverse operation to smoothing.

8



Subgraphs and Graph Isomorphism

An equivalence relation on graphs is given by graph isomorphism. If only parts of two graphs are
considered equivalent, the equivalence relation is defined for this parts of the graphs as subgraph
isomorphism.

• Graph isomorphism:

Definition 6 Graph isomorphism is a bijection between the sets of nodes of two graphs
G1 and G2, such that for each edge in G1 there exists an edge in G2.

The bijective function f : G1 7→ G2 is called isomorphism [8]. The two graphs in Figure
2.5a are isomorphic graphs, corresponding nodes are coloured the same way.

• Subgraphs:

Definition 7 The node set of a subgraphG′ = (V ′, E′) of a graphG = (V,E) is a subset
of the node set of G. The edge set of the subgraph G′ is the subset of the edge set of G
restricted to the nodes in V ′: V ′ ⊆ V and E′ = E ∩ (V ′ × V ′) [8].

Figure 2.5b shows graphG1 as a subgraph ofG2, the corresponding edges of the subgraph
are coloured in blue.

• Subgraph isomorphism:

Definition 8 A subgraph isomorphism from G to G′ is the injective function on the two
graphs G = (V,E) and G′ = (V ′, E′): f : G 7→ G′ if there exists a subgraph S ⊆ G′ so
that f is a graph isomorphism from G to S [8].

(a) G1 and G2 are isomorphic graphs (b) G1 is a subgraph of G2 (edges of the
subgraph are marked in blue)

Figure 2.5: Definition of subgraphs and graph isomorphism.
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Figure 2.6: Computation of a medial axis by inscription of maximal circles.

In Figure 2.5b there is a subgraph isomorphism from G1 to G2.

2.2 Medial Axis Transformation

The medial axis transformation (MAT) was introduced by Blum in 1967 [19] and has since been
widely used in shape analysis and representation. A skeleton (the medial axis) is computed on a
shape.

Definition 9 For a shape S (for example a polygon) the medial axis M(S) is the set of points
{p} inside S, for which at least two points in the boundary of S are closest and equidistant to
{p} [30].

The skeleton, derived based on the MAT, is a symmetric axis of the shape.
Using a geometric description: the medial axis is formed by the centres of maximal circles
that are inscribed into the shape at any position. Figure 2.6 shows an example. Therefore the
MAT further provides a measurement of width, as for each point on the medial axis, a radius

(a) shape 1 (b) distance transfor-
mation

(c) shape 2 (d) distance transfor-
mation

Figure 2.7: Distance transformation computed for two shapes. Red indicates high distance
values, blue indicates low distance values.
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Figure 2.8: Graph representation of a shape derived based on the medial axis skeleton.

(the distance to the boundary of the shape) is associated with this point [30]. The shape can
be reconstructed based on the medial axis and the width information stored with each skeleton
point.
A distance transformation on a shape labels each foreground pixel with the distance to the next
background pixel. The medial axis corresponds with the ridges formed by the local maximum
values in the distance transformation. Figure 2.7 shows the values of a distance transformation
computed for two shapes.
The medial axis skeleton can be used as an intermediate step to build a graph representation of a
shape. In order to compute a graph based on the skeleton, branching points and endpoints in the
skeleton need to be detected. These are used as the nodes in the graph. For the medial axis graph
the nodes are connected by edges according to the skeleton. The medial axis skeleton computed
on a shape, along with the corresponding graph, is shown in Figure 2.8.

2.3 Morse Theory and Reeb Graphs

Reeb graphs are compact shape descriptors that preserve the topological characteristics of the
described shape [6]. Reeb graphs are named after the French mathematician Georg Reeb and are
based in Morse theory [7]. Morse theory provides an analsis of the topology of a manifold. The
topological characteristics of interest are the number of connected components and the number
of holes in the 2D structure. These two characteristics are the first two Betti numbers b0 and
b1. b0 is defined as the number of connected components of a topological space and b1 as the
number of its 2-dimensional holes [22].
Based on critical points according to a scalar function a Reeb graph describes the topological
structure that is the connectivity of level sets of e.g. 2D or 3D content [12]. In order to build a
Reeb graph, critical points, of the structure to be represented, need to be computed.

Definition 10 A point (a, b) of a function f(x, y) is called a critical point if both derivatives
fx(a, b) and fy(a, b) are equal to 0 or if one of these partial derivatives does not exist [41].

Such a critical point can either be degenerate or non-degenerate, an example in 1D for both types
of critical points is given in Figure 2.9. These two cases can be distinguished via the Hessian
matrix for a twice differentiable function. The determinant of the Hessian matrix at a critical

11



Figure 2.9: Degenerate and non-degenerate critical points of a function.

point x is then called the discriminant. If this determinant is zero then x is called a degenerate
critical point of f (or non-Morse critical point of f ). Otherwise, it is non-degenerate (or Morse
critical point of f ).

Definition 11 A smooth, real-valued function f :Md → R is called a Morse function if it sat-
isfies the following conditions (M1 - M3) for a d manifold Md with or without boundary:

• M1: all critical points of f are non-degenerate and lie inside Md,

• M2: all critical points of f restricted to the boundary of Md are non-degenerate,

• M3: for all pairs of distinct critical points p and q, f(p) 6= f(q) must hold [11].

Critical points of such a real-valued function are those points where the gradient becomes zero.
The topological information of a shape described by a Reeb graph based on a function is related
to the level sets of this function on the shape [6]. A change in topology appears with a change
in the number of connected components in a level set. At regular points no topology changes
occur. Topological changes occur at critical points only.
Nodes of the Reeb graph correspond to critical points of the function (points where the topology
changes), edges describe topological persistence [6]. In other words: All nodes having the same
function value are represented by one node in the graph, connections between nodes describe
connections between segments of the underlying structure. A first example for such a Reeb
graph is shown in Figure 2.10. The white foreground region is here analysed top down. With a
change in the number of connected components at a certain height a node is introduced in the
graph.
Reeb graphs are originally defined for the continuous space, but have been extended to the dis-
crete domain: Here the Reeb graph is defined on a piecewise linear Morse function [12]. As
the approach presented in this thesis provides an analysis of 2D image content, it is based in the
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discrete domain (image pixels). The Reeb graphs that are built on the root images are therefore
discrete Reeb graphs and are based on the definitions below.

In order to define a discrete Reeb graph, connective point sets and level-set curves are defined
first:

Definition 12 Two point sets are connected if there exists a pair of points (one point of each
point set) with a distance between these two points below a fixed threshold [44].

Definition 13 If all non-empty subsets of a point set, as well as its complements, are connected,
such a point set is called connective [44].

Definition 14 A group of points that have the same Morse function value and that form a con-
nective point set, is called a level-set curve [44].

Based on the Definitions 12 - 14 a discrete Reeb graph is defined as follows:

Definition 15 The nodes in a discrete Reeb graph represent level-set curves, the edges connect
two adjacent level-set curves, therefore the underlying point sets are connected [44].

The critical points are computed on the shape according to a Morse function. The most popular
function in this scope is the height function. But distance functions as for example the geodesic
distance are suitable as well.

Definition 16 The height function in 2D is defined as the function f that associates for each
point p = (a, b) of a function f(x, y) the value b as the height of this point p: f(x, y) 7→ y.

Definition 17 The geodesic distance is defined as the shortest distance measured between two
points.

Figure 2.10: Critical points computed based on the height function (downwards) and corre-
sponding Reeb graph. The white image region shows the foreground region described by the
Reeb graph, black parts are background.
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(a) height function (b) geodesic distance (c) height function (d) geodesic distance

Figure 2.11: Example images for the two Morse functions: the height function is computed
top-down, the source point for the geodesic distance is in the centre of the topmost image row
of the foreground, the chessboard distance is used as metric here. The input images are shown
in Figure 2.7a and 2.7c. Red indicates high function values, blue low function values.

Within the scope of this thesis the geodesic distance is measured as the chessboard distance be-
tween any point of the root and the starting point of the root which is located at the centre pixel
of the topmost foreground image row.
A comparison of the function values generated by these two Morse functions is shown in Figure
2.11. For Figure 2.11a and 2.11b the function values are very similar, as are their Reeb graphs
(shown in Figure 2.12). The Figures 2.11c and 2.11d show an example where the function val-
ues for height function and geodesic distance as well as the according Reeb graphs vary strongly.

In 2D critical points and corresponding nodes in the Reeb graph are minima, maxima or sad-
dles [11]. The saddle nodes can be further distinguished: a saddle node that appears with a
reduction in the number of connected components is further called merge (saddle) node, a split
(saddle) node describes an increase in the number of connected components. When considering
these two different types of saddle nodes that might appear in a Reeb graph, four different types
of critical points and according nodes in the graph can be distinguished.

Definition 18 The different types of nodes for a Reeb graph in 2D are: maximum node, mini-
mum node, split (saddle) node and merge (saddle) node.

Within the scope if this thesis, a maximum node is defined as the birth of a new connected com-
ponent, while a minimum node describes the death of a connected component.
Besides these nodes corresponding to critical points, regular nodes can be added at any position
and along any edge in the Reeb graph, as they do not describe a change in topology. Neverthe-
less, regular nodes can, for example, be used to describe changes in the colour of the foreground
region (see [5]).

Definition 19 A node of type minimum or maximum has degree one (it is adjacent to one node
in the graph), saddle nodes have degree three (they are adjacent to three nodes) while regular
nodes have degree two (adjacent to two other nodes).

Figure 2.10 shows an example for a Reeb graph based on a height function, containing all five
types of nodes and the actual image, the graph was computed on. Each edge in the Reeb graph
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Figure 2.12: Reeb graph, computed for the white foreground region, according to the height
function (going downwards) and the geodesic distance (the source pixel is located in the centre
of the top foreground image row). Here both Morse functions generate identical critical points.

describes a connected component. Therefore, the edges of a Reeb graph are formed by con-
necting the node representing the birth of a connected component to the corresponding node
representing the death of this component.
Another example Reeb graph containing all possible types of nodes is shown in Figure 2.12. The
nodes in this graph correspond to the critical points of two Morse functions: the height function
(going downwards) as well as the geodesic distance (the source pixel is located in the centre of
the top foreground image row) both result in this set of nodes.

The Reeb graph not only depends on the shape it represents but as well on the Morse func-
tion, used to compute the critical points. While the height function is easy to compute, it is
not rotational invariant [4]. A geodesic distance from a source point provides a Morse function
invariant to rotations, as long as the source point is set to the same position inside the shape.
Height function and geodesic distance as Morse functions produce equivalent Reeb graphs, in
case the maximum point (source point) of the geodesic distance is at the same position as maxi-
mum node according to the height function and changes in the topology of the represented shape
occur only in a vertical direction (see Figure 2.12).
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CHAPTER 3
State of the Art

This thesis addresses two main areas of research: image based plant phenotyping and graph
based shape representations.

3.1 Image Based Plant Phenotyping

In the research area of plant phenotyping the (semi-)automatic extraction of traits from image
data allows for an analysis of large numbers of individuals. Table 3.1 shows an overview of
available applications 1 that allow for a description of root systems or measurements on the
roots. A very recent approach to describe root structures based on a skeleton representation
of 2D image data and a 3D root reconstruction that allows for comparisons of root systems is
discussed in the following sections.

Root System Analyser

The 2014 published tool “Root System Analyser” [31] recovers root architectural parameters
based on 2D images of the roots. The root system is represented as a graph in this approach.
The approach proceeds based on the following operations:

1. Skeleton representation:
The root image is transformed into a medial axis skeleton in a first step.

2. Graph representation:
The branching points and end points are detected in order to form the nodes of the graph.
As neighbouring nodes are connected in the graph, an adjacency matrix is created, that
stores this neighbourhood information. The coordinates of edges are stored in an edge-
list. Figure 3.1 shows four different root input images, the colour indicates the age of the

1http://www.plant-image-analysis.org/
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Table 3.1: Available root system analysis and measurement applications.

Root system analysis tools
Name Analysis / measurements Published in
DART length, insertion, topology [29]
EZ-Rhizo length, insertion, topology, insert.-angle, #branches [1]
GiA Roots convex hull, length, perimeter, surface, volume,

#branches, depth
[14]

GrowScreen-Root length, insert.-angle, #branches [35]
IJ-Rihzo length, diameter [37]
RootFly length, diameter, colour [45]
RootNav length, count, convex-hull, insertion, insert.-angle [38]
RooTrak 3D reconstruction [33]
RootReader 2D #branches, length, topology, depth [9]
RootReader 3D length, width, depth, volume, surface, convex-hull,

#branches, orientation, insert.-angle
[10]

RootScape shape [39]
Root System Analyser length, insertion, insert.-angle, diameter, count [31]
RootTrace length, curvature, #branches [13]
SmartRoot diameter, insertion, insert.-angle, length, orienta-

tion, #branches, topology
[32]

WinRhizo / WinRhizo TRON colour, diameter, length, topology, volume, surface [2]

Figure 3.1: Images A-D show root input images, colours indicate the age of the root, with red
labelling the oldest parts of the root. The corresponding graph representation of image A is
shown in image E, individual branches of the root system are marked in the images F-H. Image
taken from [31].
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Figure 3.2: User interface of the “Root System Analyser”. Image taken from [31].

root, with red parts being the oldest parts of the root. For image A the nodes forming the
graph are shown in image E.

3. Root tracking:
To determine individual branches, an underlying dynamic root architecture model is ap-
plied. The algorithm starts at predefined tips of roots and estimates the growth of the root
for a small time step. All possible paths for this time step are found in the graph. The op-
timal growth path is determined dependent on the following characteristics: straightness
and average diameter and it is penalised if an edge is already assigned to a root. Based
on this method, overlaps and branching points can be distinguished. Figure 3.1 shows the
marked individual branches of input images B-D in the images F-H.

A graphical user interface allows the user to select individual branches, characteristics of these
branches as for example length or width of the branch are then displayed. Moreover the user is
able to correct the root system to a certain degree, by deleting roots or adding roots. Figure 3.2
shows an example for this graphical user interface.

Reconstruction of 3D Plant Root Shape

A related work on the analysis of branching patterns of roots based on a 3D reconstruction of the
root architecture of rice plants is provided in [46].The aim of this work is to build a 3D model
of the branching pattern of roots based on 2D images. This 3D model allows for a comparison
of the root systems of plants with different genotypes. The approach progresses in three steps:

1. Harmonic Background Substraction:
For the separation of the foreground (the root) from the background (the rest of the im-
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(a) grayscale input
root image

(b) normalised inten-
sities

(c) harmonic back-
ground model

(d) segmented root
image

Figure 3.3: Segmentation process to separate foreground (root) from background. Image taken
from [46].

age) the background is modeled according to a harmonic function. The foreground is
constructed using the difference between an image and the background model. Figure 3.3
illustrates this segmentation process. The authors showed that this approach more reliably
preserves fine root structures than a single threshold or hysteresis thresholding.

2. Regularised Visual Hull:
3D shapes are often reconstructed from 2D images by the visual hull method. In this
approach the visual hull is extended by a regularisation term to a regularised visual hull.
The visual hull can be defined as the set of voxels that maximises the total consistency.
When v ∈ π−1k (Fk) is the maximal set of voxels with projection Fk (Fk is the foreground
in the k-th image):

“Define the consistency of a voxel v with the k-th image as:

consk(v) =

{
1 if v ∈ π−1k (Fk),

-N otherwise.
(3.1)

and its total consistency as cons(v) =
∑N

k=1 consk(v). Then the visual hull is the set of
voxels that maximises the total consistency:

V = arg m
S
ax

∑
v∈S

cons(v).” [46] (3.2)

Additionally, one of the root images is used to improve the 3D reconstruction based on a
regularisation parameter λ ≥ 0. This one image guides the 3D reconstruction dependent

20



on λ. If λ is small, the influence of this image is low. The standard visual hull V is
computed and taken as a first regularised visual hull Vλ. Each pixel in the foreground
of the “regularisation image” Fi is visited next. If pixel u is not covered, a voxel with
maximal consistency measure cons(v) in the set of all voxels with projection Fi is found.
cons(v) is negative here as u is not covered yet. If cons(v) + λ is positive, v is added to
Vλ, otherwise v is discarded.

3. Repairing Connectivity:
Two voxels are connected if they share a 2-dimensional face. As the regularised visual
hull can consist of more than one connected component, the connectivity is repaired in
a final step of the reconstruction. This is done by solving an optimisation problem: as
a solution a connected set of voxels U is required that minimises the maximum distance
to Vλ and the minimum inconsistency with the 2D images. This is done by building a
graph that describes the connectivity of the voxels in the 3D reconstruction. The weights
of the edges are set as the larger inconsistency value of the two nodes of the edge. Based
on this, a minimum spanning tree is computed. The minimum cost path describes the
path between two voxels that minimises the weight of the edges in between. A voxel that
lies on such a path is called a separating voxel. The solution to the optimisation problem
consists of all voxels in Vλ and all separating voxels of the minimum spanning tree.

3.2 Graph Based Shape Description

Skeletons and graph structures are used for shape representation and comparison.
Since its introduction in 1967 the medial axis has been used in a multitude of applications and
developed into a standard approach for a simple shape representation. While the medial axis
provides a skeleton representation that can serve as a basis for a graph representation, Reeb
graphs derive a graph directly on the image data (as shown in [15]). For the representation of
3D data Reeb graphs can be efficiently derived from meshes (as shown in [44]) or from point
clouds (presented in [36]). The following sections discuss a Reeb graph based approach to
derive a skeleton representation based on a point set as input data as well as an approach for
skeletonisation of 3D scan data. Both approaches use the geodesic distance as a basic function
to compute the Reeb graph. Besides the height function, the geodesic distance is as well used
for the Reeb graph computation in the approach presented in this thesis.

Data skeletonisation via Reeb graphs

The basic idea of the approach presented in [15] is to find a hidden space in discrete samples that
has a graph-like geometric structure. A skeleton graph is computed based on a point set as input
data. An example of a skeletonisation of a 2D image of a Chinese character obtained through
this approach is shown in Figure 3.4. The proposed method proceeds as follows:

1. Simplicial complex K:
The hidden domain, the input points are sampled from, needs to be approximated. This is
done using a simplicial complex K. First a proximity graph is constructed. All input points
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Figure 3.4: Reeb graph based skeletonisation result of the input data in gray. Image taken
from [15].

are therefore connected to their neighbours based on either the k-nearest neighbourhood
(the k neighbours that are closest to a point) or the r-neighbourhood (the neighbours
within distance r from a point) definition. All points and edges from this proximity graph
are added to the simplicial complex. For any three points that are pairwise connected in
the proximity graph, a triangle is added to the simplicial complex.

2. Reeb graph computation:
The Reeb graph is computed on the simplicial complex K using the geodesic distance ac-
cording to a base point b ∈K. b is obtained by taking an arbitrary point v ∈K and defining
b as the point furthest away from v. The geodesic distance function is here approximated
by the shortest distance in the proximity graph. The (augmented) Reeb graph is computed
according to the approach described in [20]: for a point q and the connected component
Cq that holds q, all triangles of the simplicial complex that intersect Cq are collapsed onto
q and its adjacent edges. This procedure is repeated for all vertices in K.

3. Post-processing:
In case the represented data was not already embedded in 2D or 3D, the input points
are projected to R3. The projected points are connected according to the Reeb graph
connectivity and are iteratively smoothed by substituting the position of a point by the

Figure 3.5: Reeb graph based skeletonisation (left to right): input points in yellow - augmented
Reeb graph - iterative smoothing - post-processing: adding missing links (top) and removing
spurious branches and loops (bottom). Image taken from [15].
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average of its neighbours. Missing links are added by connecting pairs of degree-1 nodes
with a distance smaller than a certain threshold. To remove spurious branches or loops
in the Reeb graph features and their persistence are computed on the graph. The graph is
simplified by merging features with a persistence smaller than a predefined threshold.

Figure 3.5 shows example images for the methodological sequence described above.

Human body scan segmentation based on Reeb graphs

The overall goal of the approach presented in [44] is to segment a 3D human body scan into sub-
sets which correspond to functional body parts. As this segmentation is done pose-independent,
a graph representation is computed on the 3D data first. The approach is divided into the follow-
ing operations:

1. Computation of Morse functions:
For the computation of the Reeb graph two Morse functions are used: the geodesic dis-
tance between a point and a source point and the sum of geodesic distances. The sum of
geodesic distances for one point is computed as the sum of the geodesic distances to all
other points of the surface. The geodesic distance to a source point is computed on the
voxels using a wavefront approach: starting from a source point in each iteration all 26
neighbouring voxels are taken as a level set with the same distance to the source. In this
way the level-sets are already extracted while computing the Morse function. The sum of
geodesic distances requires the computation and summation of the geodesic distance for
all voxels with the current voxel as source point.

2. Decomposition into level-set curves:
Based on the extracted level-sets the Reeb graph is constructed by representing each level-
set curve, a iso-valued connective point set, by a node in the graph. The edges in the Reeb
graph are formed according to the connection of level-set curves with each other and
connect nodes of two adjacent level-set curves.

3. Extraction of branches:
In order to extract branches corresponding to body parts, critical nodes in the Reeb graph
need to be detected. The main problem is that noise in the data leads to false positives,
critical nodes that only describe noise. Critical nodes are divided into three types of nodes:
O-type (loop), λ-type (split) and Y-type (merge). While the O-type consist of two saddle
nodes connected by two edges, the types λ and Y are both consistent of one saddle node
connected to two leaf nodes. While these two types are topologically equivalent, they
can be distinguished when taking the direction of the Morse function into account. The
human body topology cannot produce O-type saddle nodes. Based on the direction of
the Morse function one of the two saddle nodes λ-type and Y-type cannot occur for a
human body as well: According to the geodesic distance, there is only one maximum
node (the source voxel), all other nodes are saddle nodes of type split or minimum nodes.
These nodes are therefore caused by data corruption and can be discarded. Furthermore,
it is assumed that a branch associated to a true either λ-type or Y-type saddle node may
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Figure 3.6: Segmentation results of simulated scans. Image taken from [44].

not be shorter than the length of the smallest body part. In this way false critical nodes
are discarded. The experiments in [44] show the robustness of the approach considering
artefacts as O-type saddle nodes, or added Gaussian noise of different amplitudes. True
critical nodes are detected: these nodes represent the bottom of the feet, the groin, hand
tips, armpits and top of the head. Body parts are identified based on the branches between
the nodes and the 3D data is segmented into legs (branches between feet and groin) and
arms (branches between hands and armpits). The rest of the data corresponds to the torso
and head segment.

Figure 3.6 shows the final segmentation for synthetic 3D data.
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CHAPTER 4
Dataset and Pre-Processing

The images of the root dataset were acquired by the Gregor Mendel Institute of Molecular Plant
Biology (GMI). For this dataset images of the plant Arabidopsis thaliana were taken. This plant
is a model organism, which is widely used in plant sciences, due to the small size of its genome,
the small size of the plant itself and its rapid life-cycle [21].

The whole set of plant images used here consists of 9 sets of time series. Each set holds 6
images of one plant taken over time (day 1, day 4, day 8, day 12, day 16 and day 20 of the
growth period). Of these 54 images, 34 images (day 4 -day 20) are analysed, the day 1 images
(as well as two day 4 images) are too early in the growth process and therefore too small in
structure to be represented by a non-trivial Reeb graph.

4.1 Image Acquisition

At the GMI the seeds are planted on a nutrient containing agar gel surface [42] in plastic petri
dishes (plates). One of these petri dishes holds 24 plants (2 rows of 12 plants each). Figure 4.1
shows one of these petri dishes, the plants in this image are already 20 days old. The plates
are stored vertically in growth chambers that allow for controlled conditions such as constant
temperature, illumination or humidity. The vertical orientation of the plates is based on the fact
that roots grow primarily in the direction of gravity. The amount of water, or for example certain
nutrients, further affect the speed of the growth process of the roots.
The images are taken using an image scanner. A special fixture allows for two plates to be placed
in an exact known position inside the scanner. A ruler at this fixture is imaged together with the
plate and serves as a reference marker. This allows for later measurements on the image to be
converted from pixel measurements to real world dimensions as for example millimetre.

The images are acquired with a scan at 1200 dpi resolution with 8bit colour depth, therefore
one image is of approximately 6000x6000 pixels in size. The images are stored as bmp files of
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Figure 4.1: Plants grown inside a petri dish, picture on day 20 of their growth cycle. The ruler
at the bottom of the image is used as a reference marker for measurements on the image.

(a) day 8 (b) day 12 (c) day 16 (d) day 20

Figure 4.2: Example images of the root dataset: root004 on several days during the growth cycle.
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about 150MB.
Along time several successive images are acquired this way, as each plate is scanned at several
successive days of the growth process. A 3D stack of 2D images over time is thus created for
each root. An example for such successive images of one plant is shown in Figure 4.2

4.2 Pre-Processing

The approaches presented in this thesis take as input image a segmented image of a single plant.
Therefore as a first step in the process of these graph based root representations pre-processing
methods need to be applied.
As a set of 24 plants is pictured in one petri dish, each of these images needs to be cut to single
plant images. The size of these single plant images is determined based on the image of the last
day of the growth cycle. All younger plants are extracted accordingly. For the images in Figure
4.2 this pre-processing step has already been carried out.

The single plant images are segmented in the next pre-processing step. For this segmentation
procedure a pyramid based approach is used. Image pyramids describe an image at multiple
levels of resolution. The bottom level of the pyramid corresponds to the high resolution of the
original image. For higher levels the resolution decreases based on a reduction factor applied
to the pixels within the reduction window [27]. The segmentation approach is presented in [17]
and [16]. It takes an arbitrary image as input and returns a hierarchy of segmented images.
In a next step the user can interactively modify the segmentation: The user has the possibility
to merge regions or prevent them from being merged in higher levels of the hierarchical seg-
mentation. For changes, made by the user, the pyramid is recomputed to adapt the underlying
combinatorial maps [17]. All images of the root dataset used in this thesis were segmented using
this interactive, hierarchical segmentation tool.

The segmented images of the root dataset consist of 2 foreground regions (leaves and roots,
only the roots are analysed for this approach) and up to 2 holes in the foreground structure. Due
to this required segmentation, the dataset is restricted in its size, as this semi-automatic segmen-
tation approach is costly in terms of time. For the thin root structures a high amount of user
interaction is needed to generate a suitable segmentation result. Figure 4.3 shows the segmenta-
tion results for the root images shown in Figure 4.2.
More details on the complete root dataset are shown in [24].
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(a) day 8 (b) day 12 (c) day 16 (d) day 20

Figure 4.3: Segmented images of root004, day 8 to day 20.
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CHAPTER 5
Graphs on Root Images

Within the scope of this thesis, root images are represented by three alternative graph based rep-
resentations: graphs based on a medial axis skeleton, Reeb graphs based on the height function
as Morse function and Reeb graphs based on the geodesic distance as Morse function.

Figure 5.1: Example root with characteristic locations labelled and a possible graph representa-
tion.
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These graph representations capture characteristics of the roots such as branching points and end
points of branches. Figure 5.1 shows an example image of a root, with the characteristic points
labelled.
An overview of the implementation is given as pipeline for the three approaches to achieve the
graph based representations presented in this thesis in Figure 5.2. The approaches are discussed
in detail in the following sections.

Figure 5.2: Implementation pipeline for the three approaches.
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5.1 Computation of Medial Axis Graph

For the computation of the medial axis an iterative thinning approach is applied to the foreground
region of the segmented image. Such a thinning procedure generates a one pixel thick represen-
tation of the root. However this only approximates the medial axis as an exact reconstruction is
not possible for structures of even width [43].
For each pixel, in order to determine whether the pixel is a skeleton pixel, three conditions (G1,
G2 and G3, respectively G′3 ) based on the neighbourhood of the pixel are checked in two sub-
iterations. These two sub-iterations make one iteration of the thinning algorithm. If all three
conditions hold for one sub-iteration, the pixel is removed. If one or more of the three condi-
tions do not hold, the pixel is identified as a skeleton pixel and kept. The thinning algorithm
is set to be repeated for an infinite number of iterations, but stops when the foreground region
cannot be thinned further. For each skeleton pixel identified in this way, the shortest distance to
the background is additionally stored as the width of the root.
For the thinning the conditions are checked on the neighbourhood of a pixel p. The east-
neighbour is labelled x1, the others are labelled with successive numbers counter-clockwise
as illustrated by the following Figure 5.3 (pixel x9 is defined as being equal to x1):

Figure 5.3: Pixel neighbourhood.

According to [28] the following conditions are checked for pixel p:

1. sub-iteration: the pixel p is deleted if the conditions G1, G2 and G3 hold:

• G1:
4∑
i=1

bi = 1, with:

bi =

{
1 if x2i−1 = 0 and (x2i = 1 or x2i+1 = 1),

0 otherwise.

• G2: 2 ≤ min(n1(p), n2(p)) ≤ 3, with:

n1(p) =
4∑

k=1

x2k−1 ∨ x2k and n2(p) =
4∑

k=1

x2k ∨ x2k+1

• G3: (x2 ∨ x3 ∨ ¬x8) ∧ x1 = 0

2. sub-iteration: the pixel p is deleted if the conditions G1, G2 and G′3 hold:

• G1: same as for sub-iteration 1

• G2: same as for sub-iteration 1

• G′3: (x6 ∨ x7 ∨ ¬x4) ∧ x5 = 0
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(a) branching point (b) endpoint

Figure 5.4: Branching point in a medial axis skeleton marked red, endpoint marked pink.

For each computed skeleton, branching points and endpoints of branches are detected according
to their neighbourhood-structure. These points are used as nodes of the graph. An endpoint
is detected as a pixel with only one neighbouring skeleton pixel (see Figure 5.4b), a branching
point has more than two neighbouring skeleton pixels (see Figure 5.4a).
Finally the actual graph is built on the skeleton using line tracing and stored as an adjacency
matrix. For each branching point all skeleton connections are followed until another branching
point or an endpoint is reached. If a branching point or endpoint is reached, the corresponding
entry in the adjacency matrix is set to one.

5.2 Computation of Reeb Graphs with the Height Function

For the computation of the critical points of the foreground region according to the height func-
tion, the basic idea is to analyse the borders of the foreground region in the root image. The
borders of the foreground region (defined as the root region in the segmentation image) are
therefore analysed with regard to horizontal borders (borders parallel to the x-axis) as these
might describe a change in the number of components.

Proposition 1 Critical points according to the height function as given in Definition 161, only
occur at the border of a region but not within a region.

(a) maximum / birth (b) saddle (split) (c) minimum / death (d) saddle (merge)

Figure 5.5: Four different types of critical points, computed according to the height function
[25].

1Definition 16 on page 13
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Proof 1 The function values computed on the foreground region are strictly monotonically in-
creasing, when analysing the foreground in the direction of the height function. According to
Definition 10 2, critical points occur at the positions of local maxima or minima. Therefore the
critical points according to the height function can only appear at the border of a foreground
region.

Based on this proof, critical points for the height function appear with horizontal borders (per-
pendicular to the direction of the height function) in the image. Therefore each horizontal border
is followed until a vertical border is reached at its ends. As critical points only occur for local
maxima and minima, the connected vertical borders are checked:

• no change in topology - no critical point: one end of the border connected to a vertical
border that is in the direction of increasing height values, the other connected to a vertical
border that is in the direction of decreasing height values

• split or birth: both endpoints connected to a vertical border that is in the direction of
increasing height values (local minimum)

• merge or death: both endpoints connected to a vertical border that is in the direction of
decreasing height values (local maximum)

The so found critical points are located at the centre of the horizontal edge. Figure 5.5 shows
examples for computed critical points.

Correction of critical points to satisfy the definition of Morse theory

Due to the resolution of the image, the discretisation of the root and further distortions during
the segmentation process, two critical points may be computed at the same height. Critical
points with the same Morse function value contradict condition M3 in Definition 11 3 of Morse
functions. For critical points on the same height a unique Reeb graph cannot be built, as the
connections of the nodes in the graph are ambiguous [25]. Figure 5.6a illustrates the problem.
In order to solve ambiguous edges of critical points on the same height, the following technique
is used:
For two critical points on the same height, a correction is applied by adding a factor f , 0 ≤ f ≤
1. A critical point p = (x, y) is translated to p′ = (x, y+f) with f computed as f = 1

w · (x−1),
w being the image width. The order of heights is preserved by this controlled shift. The critical
points are mathematically discriminative after applying this correction, but stay in the original
image row, when rounding down the y-coordinate of such a critical point to an integer value [25].
The configuration of the nodes in Figure 5.6a is moved to the configuration in 5.6b. As the
critical points are now on different heights, a unique Reeb graph can be built. The Reeb graph
for Figure 5.6a after application of the proposed correction by factor f is drawn in Figure 5.6b.

2Definition 10 on page 11
3Definition 11 on page 12
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(a) critical points on same
height

(b) corrected critical points

Figure 5.6: For critical points on the same height a unique Reeb graph cannot be built: solid lines
indicate well-defined connections in the graph, the dotted lines indicate possible connections.
From these possible connections, one connection from the black centre node to a red node is
needed and the green node needs to be connected to one of the red nodes as well.

Construction of the graph

The identified critical points of the foreground region are represented by nodes in the Reeb
graph.

Proposition 2 These nodes are level-set curves according to Definition 14 4.

Proof 2 Each node represents a set of points (pixels) that form a connected component in an
image row. These points have the same Morse function value according to the height function.
Furthermore, for each point in the point set there is a path to at least one other point in the set.
Hence, the points form a so-called connective point set.

As a final step the edges of the graph need to be inserted. The edges are stored as an adjacency
matrix.
In order to obtain the connections between nodes, all critical points are sorted according to their
height. Starting with the topmost critical point an approach similar to the flood fill algorithm is
deployed for all nodes:

1. The image row of the current critical point is followed to the right until a critical point in
the same image row or a background pixel is reached.

2. In case a background pixel was reached, the search is moved one row down and this image
row is followed to the left, until a critical point or a background pixel is reached.

3. In case a background pixel was reached, the search again moves down one row and pro-
gresses to the right until a critical point or background pixel is reached.

4Definition 14 on page 13
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(a) critical points

(b) edge P1P2 (c) cycle P2P3

Figure 5.7: Computation of edges in a Reeb graph

4. Step 2 and 3 are repeated until the adjacent critical point is found.

Once the search terminates, a pair of adjacent critical points is identified and the adjacency
matrix is set to one for the according edge. In case the search started from a critical point of type
saddle (split) the search for critical points is done twice, once starting to the right of the critical
point and once to the left. Figure 5.7 shows how the connections are computed for the critical
points P1 (Figure 5.7b) and P2 (Figure 5.7c) in the white foreground region of Figure 5.7a.

Proposition 3 The edges resulting from the flood-fill approach described above connect adja-
cent level-set curves.

Proof 3 According to the Definitions 15 5 and 12 6, level-set curves are adjacent if their point
sets are connective. A flood fill algorithm only reaches points in a connective point set. A critical
point p2 with height function value h2 is reachable by a flood fill algorithm from a critical point

5Definition 15 on page 13
6Definition 12 on page 13
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p1 with height function value h1 (h1 < h2). The pixels pi at function values h1 ≤ hi ≤ h2,
covered by the flood fill algorithm, form a connective point set, therefore the level-set curves are
adjacent.

5.3 Computation of Reeb Graphs with the Geodesic Distance

For each foreground pixel the geodesic distance to one predefined source pixel is computed. For
the root images the distance is computed from the centre pixel of the topmost pixel row. As a
distance measurement for computing the critical points the Chebyshev (chessboard) distance is
used. Starting from one pixel, all pixels in the 8-neighbourhood have distance one to the source
pixel. The distance therefore spreads in concentric squares. Based on the discrete pixel grid
of a 2D image, this allows for an easy computation of critical points. An approach similar to
the one used for the height function in Section 5.2 can be employed: The foreground (defined
as the root region in the segmented image) is analysed, looking for a change in the number of
connected components (topology changes) from one distance value to the next. Critical points
can be identified in this way.
A maximum node describes the birth of a new connected component, a minimum node the death
of a connected component.

Proposition 4 There is only one maximum node in a Reeb graph, built based on the geodesic
distance, which is the source point.

Proof 4 As the distance values for all foreground pixels are computed starting from the source
pixel, the distance increases with the distance to the source point. Therefore there is only one
maximum node at distance 0 (at the source point).

Figure 5.8: Geodesic distances are computed for this thesis using the chessboard distance. Here
the source pixel is located in the top right corner. At distance 8 the foreground is split into two
connected components, this would result in a critical point of type saddle (split) at distance 7.
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Proposition 5 Minimum nodes are found at the position of a maximum distance in a connected
component (local maximum).

Proof 5 As the source point for the geodesic distance is located at the top of the root and the
distance is strictly monotonically increasing inside the root, a connected component (a branch
of the root) can only end in a local maximum.

Proposition 6 Saddle points are determined as locations at which foreground regions, with the
same distance to the source, are split into two connected components or are merged from two
into one connected component.

Proof 6 Nodes in the Reeb graph represent level-set curves (see Definition 14 7). For each
connected set of points (pixels) at a certain distance a node may represent this level-set curve.
According to Definition 19 8 a node corresponding to a critical point of type saddle has degree
three. In case a connective point set at the next smaller or larger distance (distance-1 or dis-
tance+1) exists for a point set, the level-set curves of these point sets are adjacent. Therefore,
the level-set curve of a saddle node is adjacent to three other level-set curves. Two of these
level-set curves need to be at the same distance but represent non-connective point sets. Hence,
the foreground is split into two components for this distance.

Figure 5.8 shows an example for a critical point of type split. Here the source pixel is located
in the top right corner (distance 0). At distance 8 the structure is split into two connected com-
ponents, this would result in a critical point of type split at distance 7. The split in Figure 5.8
would not be determined as a critical point when analysing the structure according to the height
function, as the number of connected components stays one for all heights in this structure. The
geodesic distance is more flexible in the identification of critical points than the height function;
an alignment of the analysed structure to the perpendicular axis is not needed.

Correction of critical points to satisfy the definition of Morse theory

As for the Reeb graphs based on the height function, critical points with the same Morse func-
tion value (in this case distance to a source pixel) may occur also for Reeb graphs based on the
geodesic distance. This contradicts conditionM3 in the definition of Morse functions (Definition
11 9). However, for this type of Reeb graph there is no direct correction applied to the critical
points. The critical points are rather connected as described in the next section, to the next
critical point that is encountered while tracing back the foreground structure from one critical
point towards the source pixel. However, if two critical points at the same chessboard distance
are encountered - this might for example happen for the closest points to the maximum node
- a second distance measurement is used for the decision. Starting from the source pixel, the
geodesic distance is computed based on the Euclidean distance.
The values obtained by the Euclidean distance are never smaller than the chessboard distance

7Definition 14 on page13
8Definition 19 on page 14
9Definition 11 on page 12
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Figure 5.9: Geodesic distance computed as chessboard distance from the centre pixel leads to
concentric squares. The Euclidean distance is described by the concentric circles.

as the Euclidean distance is the radius of the incircle of the square formed by the chessboard
distance (see Figure 5.9).
The risk of encountering two critical points in the same branch having the same Euclidean
geodesic distance to a source pixel is neglected within the scope of this thesis: For the dis-
crete pixels of an image, two pixels may have the same Euclidean distance to a source pixel.
However, with increasing distance to a source pixel the variance in the Euclidean distance val-
ues increases as well. All pixels at a chessboard distance d are represented by d + 1 different
Euclidean distances. Moreover, the thin root structures decrease the possibility of encountering
two pixels with the same Euclidean distance to a source pixel in the same branch.
Using the Euclidean distance as decision criteria may result in wrong decisions. One saddle node
may be adjacent to four other nodes, while another saddle node only has two adjacent nodes. As
illustrated in the “geodesic distance” branch in Figure 5.2 a correction procedure is applied to
repair the graph in case of incorrect decisions.

Construction of graph

Based on the computed critical points, that form the nodes of the Reeb graph, the edges in the
graph are obtained in two steps (a correction may be needed as a third step):

1. First all adjacent critical points of type saddle or merge are connected. For each saddle
node the foreground is traced backwards in the direction of decreasing distances until a
critical point is reached. This means starting at a saddle node P with distance x to the
source node, the algorithm moves from the region with distance x − 1 that is reachable
from P to x−2 etc. until a critical point is found. Figure 5.10 demonstrates this procedure
for the critical point P2 at distance 19. For saddle nodes of type merge this is done for
both branches until two connections are found.

Proposition 7 For each saddle node in the graph, there is always another adjacent node
at a smaller distance.
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(a) critical points (b) distances (c) 1st iteration

(d) 2nd iteration (e) 3rd iteration (f) critical point found

Figure 5.10: Example for the computation of edges in the geodesic distance Reeb graph. The
connection between critical point P2 and P1 is built.

Proof 7 For each saddle node in the graph there exists another node at a smaller distance
to the source pixel, which is either a saddle or a maximum node. The source pixel is at
distance 0 and forms a maximum node in the graph. Hence, the source pixel is always at
a smaller distance than any saddle node in the graph.

2. As the second step, the maximum node (source node) in the Reeb graph is connected to
the node closest to it. All minimum nodes are connected to the closest split or merge node.
Again the foreground is traced backwards in the direction of decreasing distance until a
critical point is found.

Proposition 8 For the maximum node, there is always an adjacent saddle or minimum
node in the graph. For each minimum node in the graph, there is always another adjacent
node at a smaller distance.

Proof 8 Each Reeb graph contains at least two nodes, as there is always a maximum node
representing the birth of component and a minimum node representing the death of said
component. Therefore there is always at least a minimum node adjacent to the maximum
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node. For a branched structure, further saddle nodes are introduced in the graph accord-
ing to Proof 6 10. Therefore there exists a saddle node adjacent to the maximum node.
This argument applies analogous for minimum nodes: there is at least the maximum node
adjacent to the minimum node if there are only two nodes in the graph. Otherwise there
exists an adjacent saddle node in the graph.

3. For two critical points at the same distance, wrong decisions may be taken during the
second step of this process. Therefore the correctness of the graph is checked after both
steps are finished. In case a saddle node is adjacent to four other nodes, there needs to be a
second saddle node at the same distance with only two adjacent nodes. For a saddle node
with four adjacent nodes, the minimum or maximum node, that is at the smallest distance
from a saddle node with degree two, is deleted from the adjacency matrix and connected
to this saddle node that so far only had two adjacent nodes.

Proposition 9 For saddle nodes with a degree higher than three, there is always a second
saddle node at the same distance with a degree smaller than three, so that the correction
presented above may be applied.

Proof 9 Based on Definition 19 11 a saddle node in a Reeb graph has degree three. For
minimum and maximum nodes only one edge is computed. These nodes will always have
degree one. Therefore a saddle node of degree >3 always causes a saddle node of de-
gree<3.

All edges that are computed in that way are stored in an adjacency matrix.

Again the nodes of the Reeb graph are level-set curves and the edges connecting nodes con-
nect adjacent level-set curves. Proof 2 12 and 3 13 provided for the Reeb graphs based on the
height function apply for Reeb graphs based on the geodesic distance as well. Based on the
geodesic distance the nodes form level-set curves for a set of points with the same distance to
a source point. The computation of the edges in the graph is again based on an algorithm that
traces the foreground. For the geodesic distance the foreground is not traced in succeeding im-
age rows according to the height function but following succeeding distance values and their
level-set curves in the foreground.

5.4 Improvements on the Graphs

During pre-processing the image is segmented. This segmentation procedure may generate
frayed borders in the foreground region. These artefacts introduce additional, spurious nodes
in the graphs. In order to use the graphs as a representation of the root structure, these additional

10Proof 6 on page 37
11Definition 19 on page 14
12Proof 2 on page 34
13Proof 3 on page 35
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branches need to be removed. A simple graph pruning approach as for example described in [3]
is applied for this purpose. Branches and endpoints are discarded according to certain criteria.
If needed, nodes are relinked after pruning. Saddle nodes that are reduced to a degree-2 node by
the pruning process are smoothed out (see Definition 5 14) and therefore disappear in the graph.
The graphs representing the root dataset according to the implementation described in the Sec-
tions 5.1, 5.2 and 5.3 are connected graphs according to Definition 4. The pruning procedure
described in the following sections does not change to connectedness of the graphs. However,
for a different dataset, that might contain disconnected graph representations (for example due
to segmentation artefacts) these disconnections need to be corrected as well.

Pruning based on length

This pruning approach identifies and discards edges that are smaller than a predefined length.
The images are cut in a pre-processing step to single plant images. The size of the image for
each plant is based on the latest day of its growth cycle. All earlier images of this plant are cut to
the same size. The image height therefore is directly linked to the length of the longest branch as
this determines the image size. The approach used within this thesis dismisses branches with an
Euclidean distance between the endpoints of less than 1.5% of the image height. The threshold of
1.5% of the image height was determined empirically. For justification of this pruning threshold
see the results in Chapter 6, Table 6.1.

Pruning based on width

For the medial axis graph a second pruning approach based on the width of branches was tested.
The basic idea is that branches due to segmentation artefacts are in most cases only one or two
pixels wide. True branches that resemble the spurious branches in length are mostly broader than
that. However, the pruning process cannot be based on the width of branches only, as especially
longer branches tend to be thin in the end part and may be discarded during pruning.
Therefore, pruning candidates are detected using the length based pruning approach described
before. These pruning candidates are verified for pruning by checking the average width of the
branch between the endpoints of the edge forming the branch. This can be done easily as the
width of the foreground structure is stored with the medial axis skeleton. In case the average
width is below seven pixels, the pruning candidate is verified as an artefact and the according
branch is discarded. The width threshold again was determined empirically.

14Definition 5 on page 7
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CHAPTER 6
Results

The overall goal presented in this thesis, is to define graph based representations of root images,
that correctly capture the structure (branching points and endpoints) of the root as well as char-
acteristics such as for example the length or width of branches.
Furthermore, the different graph based representations are compared. In order to combine char-
acteristics captured by different representations, the equality of different representations for the
same image needs to be evaluated.
For the results presented in the following sections, the root dataset of 34 root images (as defined
in Chapter 4) was evaluated.
Figure 6.1 shows results of the graph representations for root 09, day 20. In this example the
Reeb graph based on the height function produces the best result: the true branching points and

(a) medial axis graph (b) Reeb graph (height
function)

(c) Reeb graph (geodesic
distance)

Figure 6.1: Resulting graphs for root 09, day 20.
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endpoints of branches are correctly detected and the representation introduces the least spurious
branches. This is due to the fact that the root is well aligned with the perpendicular axis and the
response to the artefacts introduced by the segmentation approach is lower for this type of Reeb
graph compared to the Reeb graph based on the geodesic distance. This behaviour is based on
the restriction of the critical points of the height function, as these only occur with horizontal
borders of gaps in the foreground structure. The medial axis responds very sensitive to noise in
the foreground borders, the high number of spurious branches shows this.
Figure 6.2 shows again the resulting images for root 09, day 20 with length based graph pruning
applied. By application of graph pruning all spurious branches are detected and discarded for
the two Reeb graph representation. The resulting graphs based on the Reeb graph approaches
after pruning therefore capture the characteristics, that were intended to be obtained, well: start-
point and the three endpoints of the roots are found, as well as the two branching points. For the
medial axis representations under pruning, the number of spurious branches was reduced by up
to 90% (depending on the pruning approach). The actual startpoint (for the medial axis there is
no special node of type maximum) is not secure under pruning and was discarded in the pruning
approach. This created a regular node (degree-2) for the higher branching point in which thus
was discarded as well. While the startpoint and one branching point are missing, one spurious
branch was kept. By application of width based pruning described in Section 5.4, the missing
startpoint and branching point are kept, but two more spurious branches (in total three spurious
branches) are kept just as well (see Figure 6.2b.)

(a) medial axis graph
(length pruning)

(b) medial axis graph
(width pruning)

(c) Reeb graph (height
function)

(d) Reeb graph (geodesic
distance)

Figure 6.2: Pruned graphs for root 09, day 20 - length based graph pruning was applied to the
results shown in Figure 6.1. For the medial axis based representation the width pruning approach
was applied as well.
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6.1 Pruning Effect

For the comparison of the three different graph representations used in this thesis, the numbers of
nodes computed for the graphs are compared. As illustrated by the Figures 6.1 and 6.2 spurious
branches may be introduced due to segmentation artefacts. Due to these segmentation artefacts
the number of nodes is in general high for all three representations, but can be reduced by up
to 70% under the application of graph pruning (see Table 6.2). The applied graph pruning is
able to remove most of the spurious branches. However, spurious branches may still be accepted
using graph pruning (false positives), while true branches that resemble the spurious branches
(in length) are therefore discarded during the pruning process (false negatives). Table 6.1 shows
the number of false positives and false negatives that occur for the root dataset of 34 images for
each of the discussed approaches. More than one false positive or false negative or even both
incorrect decisions may occur in one image. Thus, the number of images in the root dataset
for which incorrect decisions were taken is given in the column “#images” as well. The medial
axis approach introduces the most false positives, especially the width pruning approach is very
likely to accept spurious branches. However, the number of false negatives here is lower than
for the medial axis with graph pruning based on length only.

Table 6.2 shows the numbers of nodes for all root images in the dataset and the reduction of
the node numbers when using graph pruning. The number of nodes in the Reeb graphs without
graph pruning is high compared to the human ground truth, for all three representations. This is
due to artefacts in the segmentation images, that create spurious branches in the graphs. For the
images of the roots 04 and 05 on day 16 the number of nodes in the Reeb graphs is higher than
the number of nodes in the Reeb graphs of these roots on day 20. The images of day 16 show
a lot of noise due to humidity (fog and water drops on the surface of the petri dishes) which
created artefacts in the segmentation images and thus spurious branches in the graphs.
Graphs that contain a cycle are marked with a ? sign, respectively ?? for two cycles in the graph.
The number of edges is not mentioned in the table as it is implicitly given through the number
of nodes and cycles in the graphs according to Definition 3 1. The graphs generated for the root
dataset were compared to human generated ground truth as well. Graph representations that are
equal to the human ground truth in number of nodes as well as in structure are highlighted in
bold font in Table 6.2.

Table 6.1: Branches wrongly discarded (false negative) and wrongly accepted (false positive) in
the graph pruning approaches.

Wrong decisions on graph pruning
representation # images # false negatives # false positives

RG height function 11 9 5
RG geodesic distance 11 8 6

medial axis 21 18 11
medial axis width pruning 22 12 23

1Definition 3 on page 7
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The abbreviations used in Table 6.2 are:

• RG1: Reeb graph based on height function

• RG1 + P: Reeb graph based on height function including pruning

• RG2: Reeb graph based on geodesic distance

• RG2 + P: Reeb graph based on geodesic distance including pruning

• MAG: Medial axis graph

• MAG + P: Medial axis graph including pruning

• MAG + WP: Medial axis graph including width based pruning

• RSA: Result from the Root System Analyser tool [31]

• GT: Human generated ground truth

Figure 6.3 shows the according graphs to the results presented in Table 6.2. The graphs show
the numbers of nodes in the graph representations with and without graph pruning, as well as
the human generated ground truth.
The geodesic distance based Reeb graphs with graph pruning approximate the human ground
truth best regarding the number of nodes in the graphs. As well the structure of the graphs
according to the human ground truth is best approximated by the Reeb graph representations
with graph pruning (65% matches). The numbers of nodes highlighted in bold in Table 6.2
indicate a match of the structure of the graph representation with the human generated ground
truth. Out of the 34 images in the root dataset 23 graphs are equal to the human ground truth for
each of the two Reeb graph approaches.
For the two medial axis representation only 13 respectively 12 root representations match the
human generated ground truth. For some roots the structure of the medial axis graph does not at
all match the ground truth, as branches are destroyed in the graph pruning approach. As there
is no distinct start node in the medial axis graph, the node that corresponds with the start node
in the Reeb graph representation may be discarded in the graph pruning process. The branching
node that results in a degree-2 node is smoothed out of the graph and the branches are connected
contrary to the actual branching pattern (see Figure 6.2a for an example).
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Table 6.2: Overview: number of nodes for the different graphs representations.

Number of nodes in the graph
Image RG1 RG1

+ P
RG2 RG2

+ P
MAG MAG

+ P
MAG
+ WP

RSA GT

root04, day 8 8 2 8 2 6 2 2 5 2
root04, day 12 14 4 14 4 12 2 4 6 6
root04, day 16 36 6 32 6 42 4 8 25 6
root04, day 20 ? 24 8 32 8 52 6 6 32 8
root05, day 8 6 2 4 4 6 2 4 2 2
root05, day 12 8 4 12 4 10 6 8 7 4
root05, day 16 36 4 32 6 38 4 4 15 4
root05, day 20 ? 12 8 24 8 30 6 10 21 6
root07, day 8 4 2 4 2 6 4 4 6 2
root07, day 12 8 6 12 6 12 8 8 11 6
root07, day 16 ? 12 6 14 6 12 10 10 9 6
root07, day 20 ? 12 8 20 8 18 14 14 18 8
root09, day 8 4 2 2 2 4 2 2 2 2
root09, day 12 18 6 18 6 20 10 10 17 6
root09, day 16 24 6 18 6 24 4 6 16 6
root09, day 20 14 6 22 6 29 6 12 24 6
root12, day 8 4 2 2 2 4 2 2 3 2
root12, day 12 10 4 8 6 4 4 4 4 6
root12, day 16 18 6 14 6 20 4 4 14 8
root12, day 20 ? 28 12 46 14 54 12 14 40 18
root17, day 12 4 2 8 2 6 2 2 4 2
root17, day 16 14 6 10 6 14 6 6 10 6
root17, day 20 10 6 12 6 14 4 6 12 6
root19, day 8 4 2 6 2 10 2 2 4 2
root19, day 12 4 4 6 4 6 2 4 4 4
root19, day 16 ? 14 8 18 8 18 6 10 12 10
root19, day 20 ?? 38 14 42 14 48 12 14 28 12
root20, day 8 2 2 4 2 2 2 2 2 2
root20, day 12 8 4 6 4 6 2 2 3 4
root20, day 16 14 4 14 4 18 2 6 13 6
root20, day 20 ? 30 12 20 10 20 8 12 12 10
root24, day 12 6 2 6 2 8 2 2 5 2
root24, day 16 10 4 10 4 14 4 6 8 4
root24, day 20 20 10 24 10 22 8 8 13 8
Sum 478 184 524 190 609 174 218 407 192
Reduction 61.5% 64.1% 71.4% 64.2%
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6.2 Overlapping Branches

The roots are imaged as a projection of a 3D structure (the root) to the 2D image space. Branches
may therefore overlap in the 2D image. One major advantage when analysing roots based on
Reeb graphs is posed by the ability to immediately distinguish between branching points and
overlaps in the root structure [25]. An overlap introduces a cycle in the graph and therefore a
saddle node of type merge in the set of critical points. For a medial axis based graph there are
only two types of nodes: endpoints and branching points. Therefore, a merge of the foreground
structure cannot be immediately distinguished from a split of the structure based on the type of
node in the graph.

(a) medial axis
graph

(b) Reeb graph
(height function)

(c) Reeb graph
(geodesic dis-
tance)

Figure 6.4: Resulting graphs for root 12, day 20: branches overlap in the image and form a cycle
in the graphs. The saddle node of type merge is marked in red in the two Reeb graphs.

49



(a) merge node based on height function (b) merge node based on geodesic distance

Figure 6.5: Comparison of position of merge nodes in the two Reeb graphs.

Figure 6.4 shows an example of such an overlap of branches and the computed graphs for root
12, day 20. There is a cycle in all three images, however only in the Reeb graph representations
the overlap is explicitly marked by the merge node (marked in red in Figure 6.4).
For Reeb graph representations based on the geodesic distance, the saddle node of type merge
may not always be at or near the location of the actual overlap of branches as it is computed at
the location of a merge of connected components with the same distance. As illustrated in Figure
6.5b this position can be inside one of the branches forming the cycle. For the Reeb graph based
on the height function, the merge node is located as shown in Figure 6.5a. However, for the
height function, saddle nodes of type merge may be introduced without any cycle in the graph.
For the height function more than one maximum node may appear in the graph, these maximum
nodes are connected to the foreground structure by a saddle node of type merge, without any
cycle in the graph (respectively the hole in the foreground structure).
For the geodesic distance such branches are represented by split nodes. Merge nodes only appear
for an overlap of the branches. However considering the merge node in Figure 6.5b the position
of the merge node may be inside a branch instead at the actual overlap. This must be taken into
account when solving the overlaps.

6.3 Comparison: Root System Analyser

The root dataset was evaluated using the tool “Root System Analyser” (RSA) [31] as well. This
tool provides the number of branches for a root, the length of branches, as well as the width
of a branch. The number of nodes computed by RSA is listed in Table 6.2 in column “RSA”.
Although a smoothing is applied, a large number of nodes that represent noise is kept by this
approach. This is indicated by the high number of nodes needed for the root dataset (compare:
407 nodes RSA to 190 nodes geodesic distance Reeb graph with pruning to 192 nodes human
ground truth). Nodes of degree two that have no influence on the topology of the foreground
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Figure 6.6: Result for root09, day 20. Computed using the “Root System Analyser”: Some
small branches due to noise are kept in the final representation.

structure are kept in the representation as well.

Spurious branches

The representation shown in Figure 6.6 was computed using RSA. The main branches of the
root are well represented, some small branches due to noise are kept in the final representation.
While both Reeb graph representations presented in this thesis use 6 nodes and 3 branches (see
Figure 6.2) which conforms to the human ground truth, the RSA uses 23 nodes and detects 12
branches.

Overlapping branches

Figure 6.7 shows a comparison of the representation computed by RSA and a representation
computed using the geodesic distance based Reeb graph approach as presented in this thesis. The
RSA representation (Figure 6.7a) detects 16 branches, using 40 nodes for the representation. The
Reeb graph representation based on the geodesic distance with pruning (Figure 6.7b), needs 14
nodes for the representation and computes a total of 6 branches. However, two small branches
are wrongly discarded during the graph pruning as is the end part of one of the overlapping
branches. Just as the Reeb graph based representations, the RSA detects overlaps of branches
in the image and tries to reestablish the correct connectivity of the branches. However, in this
process incorrect decisions are likely to be taken. For Figure 6.7a this is shown as a detail. The
overlap of two branches is split into four branches here, none of them overlap, but two of them
share an endpoint.
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(a) RSA result (b) geodesic distance
Reeb graph incl. pruning

Figure 6.7: Results for root12, day 20. While some minor branches due to noise are wrongly
kept in the final representation of the RSA tool, three small true branches are wrongly discarded
in the pruning of the Reeb graph approach. The overlap of branches is wrongly dissolved by the
RSA tool.

Branch length

As the RSA tool provides root parameters such as the length of branches as well, the results of
this characteristic provided by RSA were compare to both Reeb graph representations presented
in this thesis. Table 6.3 shows the length of the longest branch in the root, measured in pixel
from the starting point of the root to the endpoint of the branch. “RG1+P” again indicates the
Reeb graph approach based on the height function with graph pruning, “RG2+P” the Reeb graph
approach based on the geodesic distance with graph pruning
The length of these branches computed based on the Reeb graph representations are very similar.
Due to the good alignment of the root with the vertical direction, both representations deliver
similar positioned critical points. The Reeb graph representation based on the geodesic distance
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Table 6.3: Overview: length of the longest branch in each root image in pixel.

Longest branch length
Image RG1 + P RG2 + P RSA
root04, day 8 359 363 365
root04, day 12 571 564 559
root04, day 16 816 816 833
root04, day 20 1111 1113 ×
root05, day 8 355 365 376
root05, day 12 580 580 ×
root05, day 16 837 836 891
root05, day 20 1155 1155 1171
root07, day 8 100 100 104
root07, day 12 118 118 112
root07, day 16 189 189 207
root07, day 20 232 232 ×
root09, day 8 123 126 127
root09, day 12 155 162 ×
root09, day 16 189 189 191
root09, day 20 316 316 346
root12, day 8 379 385 394
root12, day 12 585 590 589
root12, day 16 826 831 832
root12, day 20 1102 1105 ×
root17, day 12 464 457 486
root17, day 16 703 710 ×
root17, day 20 971 971 ×
root19, day 8 395 395 423
root19, day 12 677 677 706
root19, day 16 967 967 1027
root19, day 20 1312 1317 ×
root20, day 8 499 499 540
root20, day 12 774 774 ×
root20, day 16 1076 1079 ×
root20, day 20 1423 1442 ×
root24, day 12 606 607 628
root24, day 16 918 918 960
root24, day 20 1257 1257 ×
mean deviation from
mean length in %

-1.3 -1.0 +2.3

mean deviation from
mean length in pixel

-7 -6 +13
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yields equal long or longer branches as the height function based representation, as it measures
the intrinsic length of a root, that not only increases for vertical elongations but also for curva-
ture. In case the branch length based on the geodesic distance is shorter than the length computed
for the height function, this is due to graph pruning and the rejection of a small spurious branch
at the tip of a root.
The differences in the length of the branches between Reeb graph representation and RSA are
based on the different location of the start point of the root RSA may compute. RSA detects the
branches in the root and allows the length measurement for such a detected branch. As the struc-
ture provided by RSA may be different than the structure based on the Reeb graph, the length of
some branches could not be measured in the RSA tool. The sign “×” in the corresponding cell
in Table 6.3 indicates that a measurement was not possible for this root.
Based on the set of root images, for which all three length measurements were available, the
mean deviation from the mean length was computed. This deviation is ± 2.3%. The small per-
centage shows that the three different representations provide very similar length measurements.

6.4 Equality of Graphs

In order to combine the advantages of several representations, a measurement of equality of
graph representations is needed. Based on this graph equality, the characteristics of various rep-
resentations can be collected for a combined description of a root.

Within the scope of this thesis two graph representations of the same image are considered
topologically equal, if the graphs are isomorphic. Two representations that are not equal (their
graphs are not isomorphic) can be compared using a distance between these graphs. This dis-
tance can be measured based on the maximal common subgraph, as presented in [8]. For two
graphs G1 and G2 and their maximal common subgraph Gmcs the number of nodes in these
graphs is denoted as |G1| respectively |G2| and |Gmcs|. The distance between the graphs G1

and G2 is defined as:

d(G1, G2) = 1− |Gmcs|
max(|G1|, |G2|)

. (6.1)

The definition of subgraph and subgraph isomorphism needs to be further specified respectively
altered for the scope of this thesis:
In general a subgraph is a graph built from the subset of the nodes and corresponding edges of
a graph. Such a subgraph can be derived by defining a subset of the nodes and based on these
nodes the corresponding subset of edges connecting the nodes. This is called a node induced
subgraph. An edge induced subgraph is formed by defining a subset of edges in a graph and the
endpoints form the corresponding subset of nodes. Figure 6.8 shows the process of deriving a
modified subgraph. A modified subgraph is defined within the scope of this thesis as:

Definition 20 A modified subgraph is the edge induced subgraph which is altered by the smooth-
ing of nodes.
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(a) graph G1 (b) graph G2 (c) G′
1 (blue) as a

edge induced sub-
graph of G2

(d) smoothing the
marked node inG′

1

(e) G1 as subgraph
of G2

Figure 6.8: Based on the definition in this thesis graph G1 is a subgraph of G2.

Based on this definition of the modified subgraph and the distance measurement given in Equa-
tion 6.1, the distance between the graphs G1 and G2 in Figure 6.8 is given as:
d(G1, G2) = 1− |G1|

|G2| = 1− 4
6 = 0.33 .

Graph isomorphism respectively subgraph isomorphism (using the modified subgraph accord-
ing to Definition 20 2) were used to compare and evaluate the graph representations of the root
dataset. Table 6.4 shows this comparison. In each case two representations of a root image
are compared. Isomorphic graphs are indicated by the sign Xin Table 6.4. All pairs of graphs
that are not isomorphic, share a common subgraph. If one of the graphs already forms such a
subgraph the acronym of this graph is given in the table cell. If both graphs contain isomorphic
subgraphs, the corresponding cell of the table is labelled “both”.

The abbreviations used in Table 6.4 and Table 6.5 are:

• RG1 + P: Reeb graph based on height function including pruning

• RG2 + P: Reeb graph based on geodesic distance including pruning

• MA + P: Medial axis graph including pruning

• MA + WP: Medial axis graph including width based pruning

2Definition 20 on page 54
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Table 6.4: Graph isomorphism and isomorphic subgraphs in the root dataset.

Equality of graphs
Image RG1+P /

RG2+P
RG1+P /
MA+P

RG1+P /
MA+WP

RG2+P /
MA+P

RG2+P /
MA+WP

MA+P /
MA+WP

root04, day 8 X X X X X X
root04, day 12 X MA+P both MA+P both MA+P
root04, day 16 X MA+P both MA+P both MA+P
root04, day 20 X MA+P MA+WP MA+P MA+WP X
root05, day 8 R2+P X R1+P R2+P X MA+P
root05, day 12 X R1+P R1+P R2+P R2+P MA+P
root05, day 16 R1+P X X MA+P MA+WP X
root05, day 20 X MA+P R1+P MA+P R2+P MA+P
root07, day 8 X R1+P R1+P R2+P R2+P X
root07, day 12 X R1+P R1+P R2+P R2+P X
root07, day 16 X both both both both X
root07, day 20 X R1+P R1+P R2+P R2+P X
root09, day 8 X X X X X X
root09, day 12 both both both R1+P R2+P X
root09, day 16 X MA+P X MA+P X MA+P
root09, day 20 X MA+P R1+P MA+P R2+P MA+P
root12, day 8 X X X X X X
root12, day 12 R1+P both both MA+P MA+WP X
root12, day 16 X MA+P MA+WP MA+P MA+WP X
root12, day 20 R1+P both both both both MA+P
root17, day 12 X X X X X X
root17, day 16 X X X X X X
root17, day 20 X MA+P both MA+P both MA+P
root19, day 8 X X X X X X
root19, day 12 X MA+P X MA+P X MA+P
root19, day 16 X MA+P both MA+P both MA+P
root19, day 20 both MA+P X MA+P both MA+P
root20, day 8 X X X X X X
root20, day 12 X MA+P MA+WP MA+P MA+WP X
root20, day 16 X MA+P R1+P MA+P R2+P MA+P
root20, day 20 R2+P R1+P both R2+P R2+P MA+P
root24, day 12 X X X X X X
root24, day 16 X X R1+P X R2+P MA+P
root24, day 20 X MA+P MA+WP MA+P MA+WP X
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Table 6.5: Topological distances between the graph representations.

Topological distances between the graphs
Image RG1+P /

RG2+P
RG1+P /
MA+P

RG1+P /
MA+WP

RG2+P /
MA+P

RG2+P /
MA+WP

MA+P /
MA+WP

root04, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root04, day 12 0.00 0.50 0.50 0.50 0.50 0.50
root04, day 16 0.00 0.50 0.63 0.50 0.63 0.63
root04, day 20 0.00 0.25 0.25 0.25 0.25 0.00
root05, day 8 0.50 0.00 0.50 0.50 0.00 0.50
root05, day 12 0.00 0.33 0.50 0.33 0.50 0.25
root05, day 16 0.33 0.00 0.00 0.33 0.33 0.00
root05, day 20 0.00 0.25 0.20 0.25 0.20 0.40
root07, day 8 0.00 0.50 0.50 0.50 0.50 0.00
root07, day 12 0.00 0.25 0.25 0.25 0.25 0.00
root07, day 16 0.00 0.50 0.50 0.50 0.50 0.00
root07, day 20 0.00 0.43 0.43 0.43 0.43 0.00
root09, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root09, day 12 0.50 0.70 0.70 0.40 0.40 0.00
root09, day 16 0.00 0.33 0.00 0.33 0.00 0.33
root09, day 20 0.00 0.33 0.50 0.33 0.50 0.50
root12, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root12, day 12 0.33 0.50 0.50 0.33 0.33 0.00
root12, day 16 0.00 0.33 0.33 0.33 0.33 0.00
root12, day 20 0.14 0.33 0.43 0.50 0.50 0.14
root17, day 12 0.00 0.00 0.00 0.00 0.00 0.00
root17, day 16 0.00 0.00 0.00 0.00 0.00 0.00
root17, day 20 0.00 0.33 0.33 0.33 0.33 0.33
root19, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root19, day 12 0.00 0.50 0.00 0.50 0.00 0.50
root19, day 16 0.00 0.25 0.40 0.25 0.40 0.40
root19, day 20 0.14 0.14 0.00 0.14 0.14 0.14
root20, day 8 0.00 0.00 0.00 0.00 0.00 0.00
root20, day 12 0.00 0.50 0.50 0.50 0.50 0.00
root20, day 16 0.00 0.50 0.33 0.50 0.33 0.66
root20, day 20 0.17 0.33 0.17 0.17 0.17 0.33
root24, day 12 0.00 0.00 0.00 0.00 0.00 0.00
root24, day 16 0.00 0.00 0.33 0.00 0.33 0.33
root24, day 20 0.00 0.20 0.20 0.20 0.20 0.00
Average 0.06 0.25 0.26 0.25 0.25 0.17
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For all pairs of graphs in Table 6.4 the distance between the graphs was computed as well. These
distances are given in Table 6.5. The distances of all subgraph isomorphic graphs are computed
based on the distance definition given before. A distance of 0 indicates graph isomorphism.
The two Reeb graph representations based on height function and geodesic distance provide
isomorphic graphs for about 80% of the root images in the dataset. For a combination with char-
acteristics of the medial axis graphs both Reeb graph representations have an average distance
to the medial axis graphs of 0.25. In relation to graph equality within the scope of this approach
both Reeb graph representations yield comparable results. However, as the Reeb graphs based
on the geodesic distance approximate the human ground truth graphs best, the geodesic distance
will be used as the basis for the combined and the normalised representations.

6.5 Combined Root Representation

The three graph representations provide different characteristics of the root. The length of a root
in the Reeb graph based on the height function is determined by the height of the endpoint of a
root in the image. Additional length of the root due to curvature is not taken into account. This
is however done for the geodesic distance, as the length is measured as the intrinsic length of the
root structure. Compared to the Reeb graphs used in this thesis, the medial axis representation
is the only representation, that captures the width of the roots.

Figure 6.9: Combined Characteristics for root09, day 20.
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As the root images are taken as time series, several images of a root on different days of the
growth cycle can be used for a normalised representation. Therefore, the images will be aligned
based on the starting point of the latest image in a time series and orientated according to the
longest edge from the starting point of the latest image.
In order to combine the characteristics of the three graph based representations, corresponding
nodes in the graphs have to be obtained by matching of the graphs as discussed in Section 6.4.
The graph is built based on one representation, here the geodesic distance based Reeb graph is
a good choice, as this representation approximates the ground truth best (see Chapter 6.1). As
additional information the number of nodes, branches, and the width and length of branches can
be provided. Figure 6.9 shows an example for such a representation.

6.6 Normalised Root Representation

For the normalised root representation the roots are organised as branches of a main root. The
main root is determined as the longest branch in the root structure. The main branch and all
side branches are drawn as straight lines of their actual length. Branches occur perpendicular
to the left or the right a branch. This normalised representation therefore captures the number
of branches, their branching pattern, including the distances at which a branch appears, as well
as the lengths of the branches. An example is shown for the four roots in Figure 6.10. The
corresponding normalised representations are shown in Figure 6.11.
For root 09 the longest branch, that is taken as main root in the representation, is the branch in
the middle for day 16, for day 20 it is the right branch. Therefore the normalised representations
differ strongly. For root 17 both representations of day 16 and day 20 are very similar. Here

(a) root09, day 16 (b) root09, day 20 (c) root17, day
16

(d) root17, day
20

Figure 6.10: Input images for the normalised root representation.
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(a) root09, day 16 (b) root17, day 16

(c) root09, day 20 (d) root17, day 20

Figure 6.11: Examples for the normalised root representation. The axis indicate the length of
the branches in pixel.

the growth of the side branches is immediately visible. The difference in the distance of the
branching points on the main root is due to the discretisation during the segmentation.
Figure 6.12 shows a possibility to efficiently compare the root structure of a plant on different

days of the growth cycle, the individual representations are drawn as an overlay. This represen-
tation shows development of the root through the growth period very well.
For overlaps of branches in the images, this overlap is resolved by doubling the merge node for
the two overlapping branches. The branches are then connected for the resolved overlap accord-
ing to the angle: the branches are supposed to continue in their primary direction of growth,
therefore an angle of more than 90 degrees is sought for possible connections.
This normalised representation is well suited for small branched structures as the roots in this
dataset. For larger structures, with a higher number of branches, the representation may for re-
peated branching cause overlaps of the side branches due to the orthogonal branching represen-
tation. However, keeping the true branching angles, instead of the artificial orthogonal branching
angles used for this representation, may not eliminate this problem completely: branches, that
overlap in the images, still overlap in the representation. A trade-off between clear representa-
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Figure 6.12: Overlay of the normalised representations for root 17. The black nodes apply to
more than one graph, red indicates nodes for day 12, blue for day 16 and green for day 20. The
axis indicate the length of the branches in pixel.

tion of the branching structure, correct presentation of distances and length and prevention of
overlaps needs to be found depending on the represented dataset.

6.7 Summary of the Results

The results presented in this chapter show that the Reeb graph representations capture the root
characteristics such as branching points, end points of branches and length of branches well.
Comparison with human generated ground truth show that this ground truth is well approxi-
mated by the Reeb graph representations.
The different graph representations presented in this thesis are either isomorphic or share a com-
mon subgraph, this fact allows for a combination of the attributes of the subgraphs provided by
the different representations.
For comparison of root images of different plants or of different days in the growth cycle a
normalised representation is presented. This representation focuses on the structure of the root
and therefore its branching pattern, as well as on the length of branches and the distances be-
tween branching points. It allows for an efficient comparison of the growth and development of
branches of a plant on different days of the growth cycle as well for a comparison of branching
patterns of different plants.
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CHAPTER 7
Conclusion

In this thesis the possibility of a Reeb graph based representation of roots was inquired. Inter-
mediate results on the representation of root structures by Reeb graphs have been published in
the Computer Vision Winter Workshop 2014 [25].
For phenotyping of plants the length of branches, numbers of branches in a root structure and
the width of branches are analysed characteristics. All these traits are captured by the presented
graph representations.
Two Reeb graph based approaches as well as an approach based on the medial axis were eval-
uated and compared to human generated ground truth. For all three approaches the graphs are
based on a set of nodes and the adjacency between the nodes. The nodes are obtained by ei-
ther analysing the shape according to a (Morse) function to obtain the critical points that form
the nodes in the Reeb graphs or by computing a medial axis skeleton and detecting branching
points and endpoints, that form the nodes of the medial axis graph. For the Reeb graph based
approaches two Morse functions were used: the height function and the geodesic distance. Ac-
cording to the nodes, the connections in the graphs are obtained by analysing the structure. The
root is traced from one critical point to the next in order to compute the adjacency of the nodes.
Reeb graphs according to a height function are able to describe a root correctly, if its general
direction does not strongly deviate from the vertical direction. The length of branches in such
a Reeb graph is measured considering the height function. Additional length in a branch due
to curvature of the branch is not taken into account. Therefore, Reeb graphs according to the
geodesic distance proved to be better suited for the task of length measurement, as in this case
the intrinsic length of the root structure is measured. Reeb graphs according to the geodesic
distance captured the branching pattern of the root as well as the length of individual branches.
The width of a branch is implicitly coded in the medial axis transformation. Although a graph
can be built based on the medial axis as well, a combination of geodesic distance Reeb graph and
medial axis should be used to correctly describe the root, as the medial axis graph (especially in
combination with graph pruning) does not capture all branching points correctly.
All three representations are very sensitive to noise in the segmented image and introduce spu-
rious branches in the graphs. 70% of these spurious branches are discarded in a graph pruning
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process. However when choosing a parameter for graph pruning that removes the spurious
branches, some true branches may be discarded as well. The trade-off between false positives
and false negatives needs to be optimised.
As the roots are imaged through the projection of the 3D structure (the root) to the 2D image
space, branches may overlap in the image. These overlaps introduce a cycle in all graph repre-
sentations. One major advantage when using a Reeb graph based representation compared to a
medial axis representation is, that due to the different types of nodes in a Reeb graph, an overlap
generates a merge node in the graph. Therefore, an overlap can be immediately detected based
on the type of the corresponding node in the graph.

The results show that the Reeb graph based representations approximate the human generated
ground truth best, regarding the number of nodes in the representation as well as the structure of
the graph generated.
To include parameters from several representations, as for example the width of branches based
on the medial axis, the Reeb graphs can be combined with the medial axis representation. In
order to compare different graph based representations, a distance based equality measurement
was introduced. For isomorphic graphs the characteristics of corresponding nodes can be com-
bined immediately, for isomorphic subgraphs this is only possible for the nodes of the subgraphs.
The segmentation, that is done as a pre-processing step, proved to be a major drawback in the
attempt to automatically analyse large datasets. The semi-automatic segmentation method used
for the creation of the root dataset presented in this thesis, needs to be changed to either a fully
automatic approach or a semi-automatic one, that is optimised with respect to computation time
and needed user interaction. This would reduce the time and human input required for the pre-
processing step. Moreover, the current segmentation approach introduced artefacts in the form of
frayed borders, that generate spurious branches in the graphs. Although these spurious branches
can be discarded using graph pruning, true branches may be removed in the graph pruning pro-
cess as well. A reduction of this noise by either using a better suited segmentation method or by
application of smoothing on the segmentation results may reduce this problem.
For future work the temporal correlation of the root images should be taken into account. The
roots are imaged on several days of their growth cycle, therefore the development of a root in a
certain time frame is captured by such an image sequence. To distinguish a small true branch
from a spurious branch may for example not be possible based on one image. A later image of
the same root may help with this decision: in case there is a branch at this position in a later
image, the branch is detected as a true branch, otherwise it is discarded as a spurious branch.
Thus, the information and knowledge about a root gained on the images of later days in the
growth cycle can be used for decisions on earlier images.
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