In Proceedings of Graphed-based Representation Workshop GbR. 2003, York.

Constructing Stochastic Pyramids by MIDES -
Maximal Independent Directed Edge Set *

Y1l Haxhimusa®! and Roland Glantz? and Walter G. Kropatsch!

! Pattern Recognition and Tmage Processing Group 183/2
Institute for Computer Aided Automation
Vienna University of Technology
Favoritenstrasse 9, A-1040 Vienna, Austria
{y11l, krw}@prip.tuwien.ac.at
% Dipartimento di Informatica
Universita di Ca’ Foscari di Venezia
Via Torino 155, 30172 Mestre (VE), Italy

glantz@dsi.unive.it

Abstract. We present a new method (MIDES) to determine contraction
kernels for the construction of graph pyramids. Experimentally the new
method has a reduction factor higher than 2.0. Thus, the new method
yields a higher reduction factor than the stochastic decimation algorithm
(MIS) and maximal independent edge set (MIES), in all tests. This means
the number of vertices in the subgraph induced by any set of contractible
edges is reduced to half or less by a single parallel contraction. The lower
bound of the reduction factor becomes crucial with large images.
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1 Introduction

In a regular image pyramid the number of pixels at any level &, is A times higher
than the number of pixels at the next reduced level £+ 1. The so called reduction
factor A is larger than 1 and it is the same for all levels k. If P denotes the number
of pixels in an image I, the number of new levels on top of I amounts to logy(P)
(Figure 1(a)). Thus, the regular image pyramid may be an efficient structure to
access image objects in a top-down process. For more in depth on the subject
see [20].

However, regular image pyramids are confined to globally defined sampling
grids and lack shift invariance [1]. In [19,10] it was shown how these drawbacks
can be avoided by irregular image pyramids, the so called adaptive pyramids,
where the hierarchical structure (vertical network) of the pyramid was not a
priori known but recursively built based on the data. Moreover in [18,4,16, 2] it
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Fig. 1. (a) Pyramid concept. (b) Partition of pixel set into cells. (c) Representation of
the cells and their neighborhood relations by a dual pair (G, ) of plane graphs.

was shown that the irregular pyramid can be used for segmentation and feature
detection.

Each level represents a partition of the pixel set into cells, i.e. 4-connected
subsets of pixels. The construction of an irregular image pyramid is iteratively
local [17,9]:

— the cells have no information about their global position.
— the cells are connected only to (direct) neighbors.
— the cells cannot distinguish the spatial positions of the neighbors.

On the base level (level 0) of an irregular image pyramid the cells represent
single pixels and the neighborhood of the cells is defined by the 4-connectivity
of the pixels. A cell on level £+ 1 (parent) is the union of some neighboring cells
on level k (children). This union is controlled by so called contraction kernels
(decimation parameters [13]). For more in depth on the subject see the book of
Jolion [11]. Neighborhoods on level k + 1, are derived from neighborhoods on
level k. Two cells ¢; and ¢ on level k + 1 are neighbors if there exist children p;
of ¢; and ps of ¢» such that p; and po are neighbors in level k, Figure 1(b). We
assume that on each level [+1 (I > 0) there exists at least one cell not contained
in level [. In particular, there exists a highest level h . Furthermore, we restrict
ourselves to irregular pyramids with an apex, i.e. level h contains one cell.

In this paper we represent the levels as dual pairs (G, G ) of plane graphs G,
and G, Figure 1(c). The vertices of G represent the cells and the edges of G,
represent the neighborhood relations of the cells on level k, depicted with circle
vertices and solid edges in Figure 1(c). The edges of G, represent the borders of
the cells on level k, depicted with dashed lines in Figure 1(c), possibly including
so called pseudo edges needed to represent the neighborhood relation to a cell
completely surrounded by another cell. Finally, the vertices of G, the squares
in Figure 1(c), represent points where at least three edges from G meet. The
sequence (Gg,G), 0 < k < h is called (dual) graph pyramid.

The homogeneous region does not offer additional information to be used to
contract this region. Thus the stochastic selection principle is used to contract a
homogeneous region. The aim of this paper is to combine the advantage of regular
pyramids (logarithmic tapering) with the advantages of irregular graph pyramids
(their purely local construction and shift invariance). The aim is reached by ex-




changing the stochastic selection method (MIS) for contraction kernels proposed
in [17] by another iteratively local method (MIDES) that has a reduction factor
higher than 2.0 in all out experiments. The other goal is not to be limited by
the direction of contraction, which is a drawback of MIES [7]. Experiments with
both selection methods show that:

— the MIS method does not lead necessarily to logarithmic tapering graph
pyramids, i.e. the reduction factors of graph pyramids built by the MIS can
get arbitrarily close to 1.0 [19].

— the sizes of the receptive fields from the new method (MIDES) are much
more uniform.

Not only stochastic decimation [17], but also connected component analysis [15]
gains from the new method.

The plan of the paper is as follows. In Section 2 we recall the main idea of
the stochastic pyramid algorithm and in Section 2.3 we see that graph pyramids
from maximal independent vertex sets (MIS) may have a very small reduction
factor. Moreover, experiments show that small reduction factors are likely, es-
pecially when the images are large. We propose a new method (MIDES), in
Section 3, based on directed graphs and show in Section 3.2 that this method
has a reduction factor larger than 2.0.

2 Maximal Independent Vertex Set

In the following the iterated stochastic construction of the irregular image pyra-
mid in [17,4,16] is described in the language of graph pyramids. The main idea
is to first calculate a so called mazimal independent verter set* [5]. Let Vj and
E,; denote the vertex set and the edge set of G, respectively and let +(-) be the
mapping from an edge to its set of end vertices. The neighborhood I;(v) of a
vertex v € Vj is defined by

Iy(v) = {v} U{w € V}, | Je € Ej, such that v,w € i(e)}.
A subset W}, of V} is called maximal independent vertex set if:

1. wy & Iy(wy) for all wy # wy € Wy,
2. for all v € V, \ W}, there exists w € Wy, such that v € I';(w).

Put in words, two members (survivors) of maximal independent vertex set can-
not be neighbors (condition 1) and every non-member (non-survivor) is in the
neighborhood of at least one member (condition 2). An example of a maximal
independent vertex set is shown with black vertices in Figure 2(a), the arrows
indicate a corresponding collection of contraction kernels.

L also called maximal stable set; we distinguish maximal from maximum independent
set, whose construction is NP-complete. See [5] for algorithmic complexity.
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Fig. 2. (a) Maximal independent vertex set. (b) A graph pyramid from maximal inde-
pendent vertex set.

2.1 Maximal Independent Vertex Set Algorithm (MIS)

The maximal independent vertex set (MIS) problem was solved using parallel,
probabilistic symmetry breaking algorithm [17]. The number of iterations to
complete maximal independent set converges in most of the cases very fast, only
few iterations for correction are needed [17] .

MIS may be generated as follows.

Algorithm 1 — MIS Algorithm

1: Mark every vertex v of V; as candidate.

2: while there are candidates do

3:  Assign random numbers to the candidates of V;.

4 Determine the candidates whose random numbers are larger than the random
numbers of all neighboring candidates and mark them as member (of the maximal
independent set) and as non-candidate. Also mark every neighbor of every new
member as non-candidate and as non-memober.

5: end while

6: In each neighborhood of a vertex that is not a member there will now be a member.

Let each non-member choose its neighboring member, say the one with the maximal
random number (we assume that no two random numbers are equal).

The assignment of the non-members to their members determines a collection of
contraction kernels: each non-member is contracted toward its member and all
contractions can be done in a single parallel step. In Figure 2(a) the contractions
are indicated by arrows. A stochastic graph pyramid with MIS can be seen in
Figure 2(b), where Go,G1, ... etc. represent graphs on different levels of the
pyramid. Note that we remove parallel edges and self-loops that emerge from
the contractions, if they are not needed to encode inclusion of regions by other
regions (in the example of Figure 2(b) we do not need loops nor parallel edges).
This can be done by the dual graph contraction algorithm [13].



2.2 Experimental Setup and Evaluation

Uniformly distributed random numbers are assigned to vertices or edges in the
base grid graphs. We generated 1000 graphs, on top of which we build stochas-
tic graph pyramids. In our experiments we use graphs of sizes 10000 and 40000
nodes, which correspond to image sizes 100 x 100 and 200 x 200 pixels, respec-
tively. Figure 3 summarizes the result of the first 100 of 1000 tests. Data in
Table 1 and Table 2 were derived using graphs of size 200 x 200 nodes with 1000
experiments.

We extract the following parameters: the height of the pyramid (height); the
maximum and the mean of the degree of vertices 2 (maz-degree and mean-degree);
and the number of iterations for correction (correction) to complete maximal
independent set for any graph in the contraction process (Table 1). In Table 2 are
shown reduction factors for vertices (|Vi|/|Vi+1]) and edges (|Eg|/|Ex+1]). We
average these values on the whole data set (u-mean and o-standard deviation).
The degree of the vertex is of importance because it is directly related to the
memory costs for the graph’s representation [9]. We compare the quality of
selection methods in Section 2.3 and 3.2. A full documentation of the experiments
can be found in the technical report [8].

2.3 Experiments with MIS

The number of levels needed to reduce the graph at the base level (level 0) to an
apex (top of the pyramid) are given in Figure 3(a),(b). The vertical axis indicates
the number of nodes on the levels indicated by the horizontal axis. The slopes of
the lines correspond to the reduction factors. From Figure 3(a),(b) we see that
the height of the pyramid cannot be guaranteed to be logarithmic, except
for some good cases.

In the worst case the pyramid had 22 levels for the 100 x 100, respectively
41 levels for the 200 x 200 graphs. See [8] for numerical details. In these cases
we have a very poor reduction factor. A poor reduction factor is likely, as
can be seen in Figure 3(a),(b), especially when the images are large. This is
due to the evolution of larger and larger variations between the vertex degrees
in the contracted graphs (Table 1 maa-degree and mean-degree columns). The
absolute maximum vertex degree was 148. The a priori probability of a vertex
being the local maximum dependents on its neighborhood. The larger the neigh-
borhood the smaller is the a priori probability that a vertex will survive. The
number of iterations necessary for correction are the same as reported by [17]
(Table 1 correction columns).

To summarize, a constant reduction factor cannot be guaranteed.

2 the number of edges incident to a vertex, i.e the number of non survivor contracted
into the survivor.
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Fig. 3. Comparing MIS and MIDES. Number of vertices in levels of MIS and MIDES
pyramids. The base levels are rectangular grid graphs containing 100 x 100 and 200 x 200
vertices . Dashed lines represent the theoretical reduction factor of 2.0 (MIES [7]).

Table 1. Comparison of MIS,MIES and MIDES.

Process | p o I o I o o o

MIS 20.78 5.13 | 70.69 23.88 | 4.84 0.23 | 2.95 0.81
MIES 14.01 0.10 | 11.74 0.71 | 4.78 0.07 |4.06 1.17
MIDES | 12.07 0.46 | 13.29 1.06 | 4.68 0.14 | 2.82 1.07

hetght ‘maw-degree mean-degree | correction
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Fig. 4. (a) The direction of contraction. (b) A legal configuration of directed edges.
(¢) Forbidden pairs of directed edges. (d) The reduction factor of a star with n edges
pointing away from the center is n/(n — 1). (e) The directed neighborhood N(e). (f)
Maximal independent directed edge set with respect to N(e).

3 Maximal Independent Directed Edge Set

In many graph pyramid applications such as line image analysis [3, 14], the de-
scription of image structure [6,12], a directed edge e with source u and target
v # uw must be contracted (from u to v, Figure 4(a)), only if the attributes of e,
u, and v fulfill a certain condition, making the direction of contraction an impor-
tant issue. In line drawings end point of lines or intersection must be preserved
for geometric accuracy reasons. In particular, the condition depends on u being
the source and v being the target. The edges that fulfill the condition are called
preselected edges.

From now on the plane graphs in the pyramid have (bi)directed edges. Typ-
ically, the edges in the base level of the pyramid form pairs of reverse edges, i.e.
for each edge e with source v and target v there exists an edge e’ with source
v and target u. However, the set of preselected edges may contain e without
containing e’. The goal is to build contraction kernels with a “high” reduction
factor from the set of preselected edges, such that a predetermined target v sur-
vives. The reduction will always be determined according to the directed graph
induced by the preselected edges. For example, if the number of vertices in the
induced subgraph is reduced to half, the reduction factor will be 2.0. To per-
form the contractions in parallel, we need a vertex disjoint union of contraction
kernels. The plan is to define such a union in terms of independent directed
edges, where "independent” means that no pair of directed edges belongs to the
same neighborhood N(e) (see Definition 3). Then, dealing with edges instead
of vertices, we may find the contraction kernels as in MIS.



Definition 1. A contraction kernel is a vertex disjoint rooted tree of depth one
or zero (single vertex), each edge of which is directed toward the root (survivor).

Note that the direction of edges uniquely determines which vertex survives on
the next level of the pyramid, i.e determines the contraction kernel (decimation
parameter [13]). Figure 4(b) shows a configuration of directed edges, which yields
a contraction kernel.

Definition 2. Let v be a vertex of bi-directed graph G. We define the out-degree
as

s(v) :=#{e € G |v is source of e},
and in-degree as
t(v) :=#{e € G |v is target of e}.

In Figure 4(b) the number of edges with target in root is t(root) = 5; and for
the center vertex with n edges pointing away s(center) = n, Figure 4(d).

Proposition 1. Let D denote a set of directed edges from a bi-directed graph
G and Gp denote the subgraph induced by D. Then the following statements are
equivalent:

(a) s(v) <2 A s(v)-t(v)=0, YveGp.
(b) Gp is a vertex disjoint union of contraction kernels.

Proof. i) (a) = (b): Let R := {r| r is target of some e € D A s(r) = 0} be
the set of roots. Furthermore, set E, := {e € D| r is target of e}, r € R.
Then E = UreR E, and E, induces a contraction kernel C, for any r € R.
It remains to show that the C, are vertex disjoint. Assume the opposite, i.e.
there exists a vertex u contained in C,, and in C', for some v # w € R. From
(a) it follows that u ¢ {v,w}. Hence, there exist edges (u,v), (u,w) € D, a
contradiction to s(u) < 2.

ii) (b) = (a): Let T be the set of roots of the vertex disjoint contraction kernels
and let C} denote the unique contraction kernel with root ¢, ¢ € T. Fur-
thermore, let v € Gp. Since the C; are vertex disjoint, exactly one of the
following holds:

1. veT and s(v) =0.
2. v ¢ T and s(v) = 1,t(v) =0.

Examples of kernels which do not fulfill the Definition 1 are shown in Figure 4(c1)
where s(v) = 1 and t(v) = 1; and (¢2) where s(v) = 0 and #(v) = 2. From the
example in Figure 4(d) it is clear that only one edge can be contracted (otherwise
one ends with forbidden contraction kernels), which means in general, vertex
reduction factor can get arbitrarily close to 1.0.

Note that, in contrast to MIS, the roots of two contraction kernels may be
neighbors. Condition (a) in Proposition 1 is fulfilled, if and only if no pair of
directed edges from D belongs to the same N(e), e € D, where N(e) is defined



in Definition 3. Hence, a maximal vertex disjoint union of contraction kernels
may be found via a maximal set of directed edges that are independent with
respect to N(e). A parallel algorithm to find a maximal independent set with
respect to N (e) is specified in the next section.

Definition 3. Let ¢ = (u,v) be a directed edge of G. Then the directed neigh-
borhood N (e) is given by all directed edges e’ = (u',v") such that

uwe {Wu{v}vu =

Neighborhood N (e) of e is given by edges which point toward the source of e,
edges with the same source u as e and the edges the source of which is the
target of e. Note that edges pointing towards the target of e are not part of the
directed neighborhood. Figure 4(e) depicts N(e) in case of u and v both having
4 neighbors.

3.1 Maximal Independent Directed Edge Set Algorithm (MIDES)

To find a maximal (independent) set of directed edges (MIDES) forming vertex
disjoint rooted trees of depth zero or one, we proceed analogously to the gener-
ation of maximal independent vertex sets (MIS), as explained in the Section 2.
Let Ej, denote the set of bi-directed edges in the graph G, of the graph pyramid.
We proceed as follows.

Algorithm 2 - MIDES Algorithm

1: Mark every directed edge e of Ej as candidate.

2: while there are candidates do

3:  Assign random numbers to the candidates of Ej.

4 Determine the candidates e whose random numbers are larger than the random
numbers of all candidates in its directed neighborhood N(e) \ {e} and mark
them as member (of a contraction kernel) and as non-candidate. Also mark every
e’ € N(e) of every new member e as non-candidate.

5: end while

Since the direction of edges uniquely determines the roots of the contraction
kernels (the survivors), all the vertices which are the sources of directed edges
are marked as non-survivor. An example of a set of contraction kernels C' found
by MIDES is given in Figure 4(f) (the survivors are depicted with black and
non-survivors with white).

3.2 Experiments with Maximal Independent Directed Edge Sets

The same set of 1000 graphs (Section 2.2) was used to test MIDES. The numbers
of levels needed to reduce the graph on the base level to an apex of the pyramid
are shown in Figure 3 (c),(d). Again the vertical axis indicates the number of



Table 2. Reduction factors of vertices and edges.

V| ||
Vig1l [Epq1l

I o noo

MIS 1.941.49 | 1.78 0.69
MIES 2.270.21 | 257 1.21
MIDES | 2.62 0.36 | 3.09 1.41

Process

vertices in the levels indicated by the horizontal axis. The experiments show
that the reduction factor of MIDES is indeed higher than 2.0 (indicated by
the dashed line in Figure 3(c),(d), even in the worst case (see [8] for details
on numerical results). Also the in-degrees of the vertices is much smaller than
for MIS (maxz-degree column in Table 1). For the case of the graph with size
200 x 200 vertices, MIDES needs less levels than MIS and MIES and the number
of iterations needed to complete the maximal independent set was comparable
with the one of MIS (Table 1, correction column). In Table 2, statistics of
reduction factors for vertices (|Vi|/|Vi+1]) and edges (|Ex|/|Ek+1]) are given.
From this table one can read that MIDES algorithm shows a better reduction
factor than MIES [7] and MIS.

To summarize, in our experiments the reduction factor is always higher than
2.0 (outperforming MIS and MIES), even though the theoretical lower bound is
1.0.

4 Conclusion and Outlook

Experiments with (stochastic) irregular image pyramids using maximal indepen-
dent vertex sets (MIS) showed that the reduction factor can get arbitrarily close
to 1.0 for large images. After an initial phase of strong reduction, the reduction
decreases dramatically. This is due to the evolution of larger and larger variations
between the vertex degrees in the contracted graphs. To overcome this problem
we proposed a new method (MIDES). Experimentally, this method has a reduc-
tion factor larger than 2.0. Moreover, MIDES, in contrast to MIES, allows us to
take into account constraints on the directions of the contractions.
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