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Abstract. The region’s internal properties (color, texture, ...) help to
identify them and their external relations (adjacency, inclusion, ...) are
used to build groups of regions having a particular consistent mean-
ing in a more abstract context. Low-level cue image segmentation in a
bottom-up way, cannot and should not produce a complete final “good”
segmentation. We present a hierarchical partitioning of images using a
pairwise similarity function on a graph-based representation of an im-
age. The aim of this paper is to build a minimum weight spanning tree
(MST ) of an image in order to find region borders quickly in a bottom-up
’stimulus-driven’ way based on local differences in a specific feature.

1 Introduction

The authors in [16] asked: ”How do we bridge the representational gap be-
tween image features and coarse model features?” They identify the 1-to-1 corre-
spondence between salient image features (pixels, edges, corners,...) and salient
model features (generalized cylinders, polyhedrons,...) as limiting assumption
that makes prototypical or generic object recognition impossible. They suggested
to bridge and not to eliminate the representational gap, and to focus efforts on:
i) region segmentation, ii) perceptual grouping, and iii) image abstraction.
In this paper, these goals are taken to consider multiresolution representations
under the viewpoint of segmentation and grouping. The multiresolution is con-
sidered under the abstraction viewpoint in [18].

The union of regions forming the group is again a region with both inter-
nal and external properties and relations. The segmentation process results in
“homogeneous” regions w.r.t the low-level cues using some similarity measures.
Problems emerge because i) homogeneity of low-level cues will not map to the se-
mantics [16] and ii) the degree of homogeneity of a region is in general quantified
by threshold(s) for a given measure [6]. The low-level coherence of brightness,
color, texture or motion attributes should be used to come up sequentially with
hierarchical partitions [29]. It is important that a grouping method has follow-
ing properties [5]: i) capture perceptually important groupings or regions,
which reflect global aspects of the image, ii) be highly efficient, running in time
linear in the number of pixels, and iii) creates hierarchical partitions [29].

? This paper has been supported by the Austrian Science Fund under grants P14445-
MAT, P14662-INF and FSP-S9103-N04



The aim is to build an MST of an image by combining the advantage of regu-
lar pyramids (logarithmic tapering) with the advantages of irregular graph pyra-
mids (their purely local construction and shift invariance). The aim is reached
by using the method for selecting contraction kernels to achieve logarithmic ta-
pering, local construction and shift invariance [12]. Bor̊uvka’s algorithm [2] with
dual graph contraction (DGC) algorithm [17] builds in a hierarchical way an
MST (of the region) preserving the proper topology. After presenting related
works and the pyramid representation, we recall the Bor̊uvka’s MST algorithm
in Sec. 3. In Sec. 4 are given the definition of internal and external contrast, the
merging criteria and building the hierarchy of an image. Sec. 5 reports results.

1.1 Related Works

A graph-theoretical clustering algorithm consists in searching for a certain com-
binatorial structure in the edge weighted graph, such as an MST [5, 8], a mini-
mum cut [31, 29] and, the complete linkage clustering algorithm [19], reduces to
a search for a complete subgraph i.e. the maximal clique [24]. Early graph-based
methods [33] use fixed thresholds and local measures in finding a segmentation,
i.e MST is computed. The segmentation criterion is to break the MST edges
with the largest weight, which reflect the low-cost connection between two ele-
ments. To overcome the problem of fixed threshold, [30] attempts by normalizing
the weight of an edge using the smallest weight incident on the vertices touch-
ing that edge. The methods in [5, 8] use an adaptive criterion that depends on
local properties rather than global ones. The methods based on minimum cuts
in a graph are designed to minimize the similarity between pixels that are being
split [31, 29, 7]. A cut criterion in [31] is biased toward finding small components.
The normalized cut criterion [29] is defined to avoid this problem, which takes
into consideration self-similarity of regions. In contrast with the simple graph-
based methods, such as breaking edges in the MST , cut-criterion methods cap-
ture the non-local properties of the image. It also produces a divisive hierarchical
tree, the dendogram. However, they provide only a characterization of such cut
rather than of final segmentation as provided in [5]. A minimum normalized cut
approximation method [29] is computationally expensiv and the error in these
approximation is not well understood. The clustering algorithms based on max-
imal clique work on unweighted graphs derived from the weighted graphs by
means of some thresholding [15]. In [24] the concept of maximal clique is gen-
eralized to weighted graphs. Discrete replicator dynamics are used to find the
maximal cliques, which is an instance of the relaxation labeling algorithm [27].

Gestalt grouping factors, such as proximity, similarity, continuity and sym-
metry, are encoded and combined in pairwise feature similarity measures [29,
26, 7, 32, 28]. Another method of segmentation is that of splitting and merging
region based on how well the regions fulfill some criterion. Such methods [4,
25] use a measure of uniformity of a region. In contrast, [5, 8] uses a pairwise
region comparison rather than applying a uniformity criterion to each individual
region. Complex grouping phenomena can emerge from simple computation on
these local cues [20].



Our method is related to the works in [5, 8] in the sense of pairwise compar-
ison of region similarity. Rather than trying to have just one “good” segmenta-
tion [5], the method produces a stack of (dual) graphs (a graph pyramid), which
down-projected on the base level will give a multi-level segmentation (a class of
segmentation). The segmentation result of [5] is also included in our hierarchy.

2 Irregular Pyramid Representation

Hierarchical structures for description of the data for clustering purposes are
studied very early in [19], or for image segmentation in [11]. In a regular image
pyramid the number of pixels at any level k, is λ times higher than the number
of pixels at the next reduced level k + 1. The so called reduction factor λ is
greater than one and it is the same for all levels k. If s denotes the number of
pixels in an image I , the number of new levels on top of I amounts to logλ(s)
(Figure 1a). Thus, the regular image pyramid is an efficient structure for fast
grouping and access to image objects in top-down and bottom-up processes [14],
because of the apriori known structure. However, the regular image pyramids are
confined to globally defined sampling grids and lack shift invariance and have
to be rejected as general-purpose segmentation algorithms [1]. These drawbacks
are avoided by irregular image pyramids (adaptive pyramids) [23, 13], where the
hierarchical structure (vertical network) of the pyramid is recursively built on
the data. In [22] is shown that irregular pyramid can be used for segmentation.

In irregular pyramids, each level represents a partition of the pixel set into
cells, i.e. connected subsets of pixels. The construction of an irregular image
pyramid is iteratively local [21, 12]. This means that we use only local properties
to build the hierarchy of the pyramid. On the base level (level 0) of an irregular
image pyramid the cells represent single pixels and the neighborhood of the cells
is defined by the 4 -connectivity of the pixels. A cell on level k + 1 (parent) is
a union of neighboring cells on level k (children). This union is controlled by so
called contraction kernels (decimation parameters) [17]. Every parent computes
its values independently of other cells on the same level. This implies that an
image pyramid is built in O[log(image diameter)] parallel steps. We represent
the levels as dual pairs (Gk , Gk) of plane primal graphs Gk and duals Gk. The
vertices of Gk represent the cells, and edges the neighborhood relations of the
cells on level k. The edges of Gk represent the borders of the cells on level k and
vertices meeting points of at least three edges from Gk. The sequence (Gk , Gk),
0 ≤ k ≤ h is called (dual) graph pyramid. See [17] for the complete formalism.
In order to simplify the paper presentation only graph Gk is used afterwards.

3 Minimum Weight Spanning Tree: Bor̊uvka’s Algorithm

Let G0(V, E, attrv , attre) be a given undirected, connected, attributed plane
graph consisting of the finite vertex set V and of the finite edge set E on the
base level (level 0) of the pyramid, attrv : v ∈ V → R

+ and attre : e ∈ E → R
+.

Let each edge e ∈ E be associated with a nonnegative unique real attribute



a) Pyramid concept b) Discrete levels c)

J
J

J
JJ











6

s
λn

λ3

λ2
λ
1

level 0

1

h
Gk−1

Gk

ui

uj
e

CC(ui)

CC(uj)

max{attre(.)}

:= Int(CC(uj))
min{attre(.)}

:= Ext(CC(ui), CC(uj))

Fig. 1. (a,b) Multiresolution pyramid. (c) Internal and external contrast.

Algorithm 1 – Bor̊uvka’s Algorithm

Input: Attributed graph G(V, E).

1: MST := empty edge list.
2: ∀v ∈ V do { make a list of trees L } .
3: while { there is more than one tree in L } do
4: each tree T ∈ L finds the edge e with the minimum weight which connects T to

G \ T and add edge e to MST .
5: using edge e merge pairs of trees in L.

Output: Minimum weight spanning tree - MST .

(weight). The problem is formulated as construction of an MST of G. A de-
terministic solution is proposed by Bor̊uvka [2]. Bor̊uvka algorithm is similar
to Prim’s algorithm but executed simulteonosly on the whole graph. We use
Bor̊uvka’s algorithm to build MST in parallel [3]. The proof that Alg. 1 builds
the MST is analogously with the MST Kruskal’s proof [10].

Observation 1 In 4th step of the Algorithm 1, each tree T ∈ L finds the edge

with the minimal weight, and as trees become larger, the process of finding the

edge with the minimal weight for each tree T takes longer.

4 Hierarchy of Partitions

Hierarchies are a significant tool for image partitioning as they naturally mix
with homogeneity criteria [11]. The goal is to find partitions Pk := {CC(u1),
CC(u2), ..., CC(un)} in kth level of the pyramid such that these elements sat-
isfy certain properties. We compare pairwise of neighboring vertices, i.e. par-
titions to check for similarities [5, 8]. In [5] a pairwise group merge criterion
Comp(CC(ui), CC(uj)) is defined, that judges whether there is evidence for a
boundary between two partitions CC(ui), CC(uj) ∈ Pk. This criterion measures
the difference along the boundary of two components relative to a measure of
differences of components’ internal differences. This definition tries to encapsu-
late the intuitive notion of contrast: a contrasted zone is a region containing
two connected components whose inner differences (internal contrast) are less
than differences within it’s context (external contrast).



4.1 Internal and Exernal Contrast

Let Gk be the graph on level k of the pyramid. Every vertex ui ∈ Gk is a
representative of a connected component CC(ui) of the partition Pk. The
equivalent contraction kernel (ECK) N0,k(ui) [17] of a vertex ui ∈ Gk , is a
set of edges of the base level e ∈ E0 that are contracted; i.e. applying ECK
on the base level, one contracts the subgraph G′ ⊆ G0 onto the vertex ui.
The internal contrast of the CC(ui) ∈ Pk is the largest dissimilarity of
component CC(ui), i.e. the largest edge weight of the N0,k(ui) of vertex ui ∈ Gk:

Int(CC(ui)) := max{attre(e), e ∈ N0,k(ui)}. (1)

Let ui, uj ∈ Vk be the end vertices of an edge e ∈ Ek . The external contrast

between two components CC(ui), CC(uj) ∈ Pk is the smallest dissimilarity

between component CC(ui) and CC(uj) i.e. the smallest edge weight connecting
N0,k(ui) and N0,k(uj) of vertices ui ∈ CC(ui) and uj ∈ CC(uj):

Ext(CC(ui), CC(uj)) := min{attre(e), e = (v, w) : v ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}.
(2)

In Fig. 1c an example of Int(CC(uj)) and Ext(CC(ui), CC(uj)) is given. The
Int(CC(uj)) of the component CC(uj) is the maximum of weights of the solid
line edges, whereas Ext(CC(ui), CC(uj)) is the minimum of weights of the
dashed line edges (bridges) connecting component CC(ui) and CC(uj) on the
base level G0. By contracting the edges N0,k(uj) one arrives to the vertex uj .
The pairwise merge criterion Comp(CC(ui), CC(uj)) between two connected
components CC(ui) and CC(uj) can be defined as:

Comp(CC(ui), CC(uj)) :=

{

T if Ext(CC(ui), CC(uj)) ≤ PInt(CC(ui), CC(uj)),
F otherwise,

P Int(CC(ui), CC(uj)) := min( Int(CC(ui)) + τ(CC(ui)),

Int(CC(uj)) + τ(CC(uj)) ) . (3)

PInt(·, ·) is the minimum internal contrast difference between two components.
For the merge criterion Comp(·, ·) to be false i.e. for the border to exist, the ex-
ternal contrast difference must be greater than the internal contrast differences.
Any non-negative function τ(CC) of a single component CC can be used [5].

4.2 Construct Hierarchy of Partitions

A consequence of Obs. 1 is that a contraction of the edge e, which connects T and
G\T in the 4th step of Alg. 1 will speed up the search for minimum weight edges
in Bor̊uvka’s algorithm. Since each tree (on level k) after edge contraction will
be represented by a single vertex (in the level k+1), the edge with the minimum
weight would be in a local neighborhood. The DGC algorithm [17] contracts
edges and creates “super” vertices with father-son relations between vertices in
subsequent levels, whereas Bor̊uvka’s algorithm is used to create son-son relation
between vertices in the same level (horizontal relation).



Algorithm 2 – Construct Hierarchy of Partitions

Input: Attributed graph G0.

1: k := 0
2: repeat
3: for all { vertices u ∈ Gk } do
4: Emin(u) := argmin{attre(e) | e := (u, v) ∈ Ek or e := (v, u) ∈ Ek}
5: for all { e := (ui, uj) ∈ Emin with

Ext(CC(ui), CC(uj)) ≤ PInt(CC(ui), CC(uj)) } do
6: include e in contraction edges Nk,k+1

7: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 = C[Gk, Nk,k+1].
8: for all { ek+1 ∈ Gk+1 } do
9: set edge attributes attre(ek+1) := min{attre(ek) | ek+1 := C[ek, Nk,k+1]}

10: k := k + 1
11: until { Gk = Gk−1 }

Output: A region adjacency graph (RAG) at each level of the pyramid.

The algorithm to build the hierarchy of partitions is shown in Alg. 2. Each
vertex ui ∈ Gk defines a connected region CC(ui) on the base level of the
pyramid. Since the presented algorithm is based on Bor̊ovka’s algorithm [2], it
builds an MST (ui) of each region, i.e N0,k(ui) = MST (ui) [9]. The idea is
to collect the smallest weighted edges e (4th step) that could be part of the
MST , and then to check if the edge weight attre(e) is smaller than the internal
contrast of both of the components (MST of end vertices of e) (5th step). If
these conditions are fulfilled then these two components are merged (7th step).
Two regions will be merged if their internal contrast is larger than the external
contrast, represented by the weight attre(e) of the connecting edge. All the edges
to be contracted form the contraction kernels Nk,k+1, which are then used to
create the graph Gk+1 = C[Gk, Nk,k+1] [17]. In general Nk,k+1 is a forest. We
update the attributes of those edges ek+1 ∈ Gk+1 with the minimum attribute of
the edges ek ∈ Ek that are contracted into ek+1 (9th step). This means the edge
attributes are inherited. It can be shown, that Alg. 2 produces an MST [10].
At each level of the pyramid a region adjacency graph (RAG) is created, in
an agglomerative way by topolgy preserving edge contraction. Each vertex of
these RAGs is the representative of a sub-trees of MST . This greedy algorithm
collects only the nearest neighbor with the minimum edge weights, known as
single linkage clustering, and merges them if the pairwise comparison (Eq. 3)
evaluates to “false”. See [9, 10, 5] for other properites of this algorithm.

5 Experiments on Image Graphs

We start with the trivial partition, where each pixel is a homogeneous region.
The attributes of edges are defined as the difference of its end point vertices.
The attributes of edges can be defined as the difference between features of
end vertices, attre(ui, uj) := |F (ui) − F (uj)|, where F is some feature. Other

attributes could be used as well e.g. [29] attre(ui, uj) := exp{
−||F (ui)−F (uj)||

2

2

σI
},



where F is some feature, and σI is a parameter, which controls the scale of
proximity measures of F . F could be defined as F (ui) := I(ui), for gray value
intensity images, or F (ui) := [vi, vi · si · sin(hi), vi · si · cos(hi)], for color images
in HSV color distance [29]. However the choice of the definition of the weights
and the features to be used is in general a hard problem, since the grouping
cues could conflict each other [20]. For our experiments we use the difference
between pixel intensities F (ui) := I(ui), i.e. attre(ui, uj) := |I(ui) − I(uj)|. For
color images we run the algorithm by computing the distances (weights) in RGB
color space. We define threshold function τ(CC) to be function of the size of CC
e.g. τ(CC) := α/|CC|, where |CC| is the size of the component CC and α is a
constant. This function controls the influence of the size of the components CC.
The algorithm has one running parameter α. This constant is used to produce a
kind of the over-segmented image. The influence of τ in Eq.3 decays after each
level of the pyramid, since the |CC| gets bigger. A larger α sets the preference
for larger components. A complex definition of τ(CC), which is large for certain
shapes would produce a partitioning which prefers certain shapes.

We use indoor and outdoor RGB images. We found that α := 300 produces
the best hierarchy of partitions of the images shown in Monarch1, Object452

and Object112 Fig.2(1,3,4) and α := 1000 for the image in Fig.2(2), after the
average intensity attribute of vertices is down-projected onto the base grid. Fig. 2
show some of the partitions on different levels of pyramid and the number of
components. In all images there are regions of large intensity variability and
gradient. This algorithm copes with this kind of images. In contrast to [5] the
result is a hierarchy of partitions at multiple resolutions suitable for further goal
driven, domain specific analysis. On lower levels of the pyramid the image is over-
segmented whereas in higher levels it is under-segmented. Since the algorithm
preserves details in low-variability regions, a noisy pixel would survive through
the hierarchy. Image smoothing in low variability regions would overcome this
problem, and it is not done, since this would introduce another parameter into
the method. The hierarchy of partitions can also be built from an over-segmented
image to overcome the problem of noisy pixels. For an over-segmented image,
where the size of regions is large, the algorithm becomes parameterless.

6 Conclusion and Outlook

In this paper we introduced a method to build a hierarchy of partitions of an
image by comparing in a pairwise manner the difference along the boundary of
two components relative to the differences of components’ internal differences.
Even though the algorithm takes simple greedy decisions locally, it produces per-
ceptually important partitions in a bottom-up ’stimulus-driven’ way based only
on local differences. It was shown that the algorithm can handle large variation
and gradient intensity in images. Since our framework is general enough, we can
use RAGs of any over-segmented image and build the hierarchy of partitions.
External knowledge can help in a top-down segmentation technique. A drawback

1 1)Waterloo image database and 2) Coil 100 image database



1) Monarch 768 × 512 3) Object45 128 × 128

a) 0 (16 384) b) 10 (43)

a) 0 (393 216) b) 14 (108) c) 18 (35) d) 22 (18) c) 12 (13) d) 14 (3)

2) Woman 116 × 261 4) Object11 128 × 128

a) 0 (16 384) b) 10 (38)

a) 0 (25 056) b) 10 (38) c) 14 (7) d) 15 (3) c) 12 (6) d) 13 (2)

Level (# of partitions)

Fig. 2. Partitioning of images.

is that the maximum and minimum criterion are very sensitive to noise, although
in practice it has a small impact. Other criteria like median would lead to an
NP -complete algorithm [5]. Our future work is to define different comparison
functions which will prefer learned regions of specific shapes.
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