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Abstract:

We review multilevel hierarchies under the special aspect of their potential for abstraction and

grouping. Motivated by claims to ’bridge the representational gap between image and model

features’ and by the growing importance of topological properties we discuss several exten-

sions to dual graph pyramids: structural simplification should preserve important topological

properties and content abstraction could be guided by an external knowledge base.

1 Introduction

A question is raised in [14] referring to several research issues: ”How do we bridge the represen-

tational gap between image features and coarse model features?” They identify the one-to-one

correspondence between: salient image features (pixels, edges,...) and salient model features

(generalized cylinders, invariant models,...) as limiting assumption that makes generic object

recognition impossible. It is suggested to bridge and not to eliminate the representational gap,

and to focus efforts on: region segmentation, perceptual grouping and image abstraction.

Regions as aggregations of primitive pixels play an extremely important role in nearly every

image analysis task. Regional (internal) properties (color, texture, shape, ...) help to identify

them and their external relations (adjacency, inclusion, similarity of properties,...) are used

to build groups of regions having a particular meaning in a more abstract context. The union

of regions forming the group is again a region with both internal and external properties and

relations. Let us take these observations as a guideline to re-consider research efforts in the

area of cognitive vision using multiresolution representations under the viewpoint of grouping

and abstraction. A representational concept that supports processes working at multiple levels

of abstraction with the possibility to access semantic knowledge from the external world is

extremely complex. We would like to highlight approaches that may have the potential to

be extended into a future complex cognitive vision system bridging the representational gap

identified above. We address some of these issues in the context of gradually generalizing

our discrete image data across levels where geometry dominates up to levels of the hierarchy

where topological properties become important.

1)This work was supported by the Austrian Science Foundation under grants P14445-MAT, P14662-INF

and FSP-S9103-N04.



We review the formal definition of abstraction (Sec. 2) and the concept of dual graphs (Sec. 3)

including a ’natural’ example of vision based on an irregular sampling. Image pyramids of

dual graphs are the main focus of Sec. 4. Abstraction in multilevel structures can be done

either by modifying the contents of a representational cell or by ’simplifying’ the structural

arrangement of the cells while major topological properties are preserved (Sec. 5).

2 Visual Abstraction

By definition abstraction extracts essential features and properties while it neglects unneces-

sary details. Two types of unnecessary details can be distinguished: redundancies and data

of minor importance. Details may not be necessary in different contexts and under different

objectives which reflect in different types of abstraction. In general we distinguish: isolating

abstraction: important aspects of one or more objects are extracted from their original con-

text; generalizing abstraction: typical properties of a collection of objects are emphasized and

summarized. idealizing abstraction: data are classified into a (finite) set of ideal models, with

parameters approximating the data and with (symbolic) names/notions determining their se-

mantic meaning. These three types of abstraction have strong associations with well known

tasks in cognitive vision: recognition and object detection tries to isolate the object from the

background; perceptual grouping needs a high degree of generalization; and categorization

assigns data to ideal classes disregarding noise and measurement inaccuracies. In all three

cases abstraction drops certain data items which are considered less relevant. Hence the im-

portance of the data needs to be computed to decide which items to drop during abstraction.

The importance or the relevance of an entity of a (discrete) description must be evaluated

with respect to the purpose or the goal of processing. The system may also change its focus

according to changing goals after knowing certain facts about the actual environment, other

aspects that were not relevant at the first glance may gain importance. Representational

schemes must be flexible enough to accommodate such attentional shifts in the objectives.

Multiresolution hierarchies, image pyramids or trees in general posses the potential for ab-

straction. We consider the structure of the representation and the content stored in the

representational units separately. In our generalization we allow the resolution cell to take

other simply connected shapes and to describe the content by a more complex ’language’. The

first generalization is a consequent continuation of the observations in [2] to overcome the lim-

ited representational capabilities of rigid regular pyramids. Since irregular structures reduce

the importance of explicitly representing geometry, topological aspects become relevant.

3 Discrete Representation - Dual Graphs

A digital image is a finite subset of ’pixels’ of the discrete grid 6Z2. The discretization process

maps any object of the continuous image into a discrete version if it is sufficiently large to

be captured by the sensors at the sampling points. Resolution relates the unit distance of
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Figure 1: a) Partition of pixel set into cells. b) Representation of the cells and their neighbor-

hood relations by a dual pair (Gk, Gk). c) Pyramid concept, and d) discrete levels.

the sampling grid with a distance in reality. The properties of the continuous object, i.e.

color, texture, shape, as well as its relations to other (nearby) objects are mapped into the

discrete space, too. The most primitive discrete representation assigns to each sampling point

a measurement, be it a gray, color or binary value. In order to express the connectivity or

other geometric or topological properties, the discrete representation must be enhanced by a

neighborhood relation. In the regular square grid 4- or 8-neighborhood have the well known

problems in conjunction with Jordan’s curve theorem. The neighborhood of sampling points

is represented by a graph. Although this data structure consumes more memory space it

has several advantages, among which we find the following: the sampling points need not be

arranged in a regular grid; the edges can receive additional attributes too; and the edges may

be determined either automatically or depending on the data.

The problem arising with irregular grids is that there is no implicit neighbor definition. Usually

Voronoi neighbors determine the neighborhood graph. The neighborhood in irregular grids

needs to be represented explicitly. This creates a new representational entity: the binary

relation of an edge in the neighborhood graph similar to the concept of relations between

observational entities in [6]. Together with the fact that a 2D image is embedded in the

continuous image plane, the line segments connecting the end points of edges partition the

image plane into connected faces which are part of the dual graph (Fig. 1a,b). In n dimensions

n + 1 basic entities are sufficient to describe a discrete configuration embedded in the space

spanned by the n coordinate axes, e.g. the cells of abstract cellular complexes [15].

4 Pyramids

In this section we summarize the concepts developed for building and using multiresolution

pyramids [13, 19] and put the existing approaches into a general framework. The focus of the

presentation is a representational framework, its components and the processes that transfer

data within the framework. A pyramid [19] (Fig. 1c,d) describes the contents of an image

at multiple levels of resolution. The base level is a high resolution input image. Successive

levels reduce the size of the data by a constant reduction factor λ > 1.0 while local reduction

windows relate one cell at the reduced level with a set of cells in the level directly below.

Thus local independent (and parallel) processes propagate information up and down in the

pyramid. The contents of a lower resolution cell is computed by means of a reduction function,



the input of which are the descriptions of the cells in the reduction window.

The number of levels n is limited by the reduction factor λ: n ≤ log(image size)/ log(λ). The

main computational advantage of image pyramids is due to this logarithmic complexity. We

intend to extend the expressive power of these efficient structures by several generalizations.

In order to interpret a derived description at a higher level, this description should be related

to the original input data in the base of the pyramid. The receptive field (RF) of a given

pyramidal cell ci, RF (ci), collects all cells (pixels) in the base level of which ci is the ancestor.

4.1 Content Models and Reduction Functions

In connected component labeling [20] each cell contains a label identifying the membership

of the cell to the class of all those cells having the same label. In this case the contents of

the cells merged during the reduction process can be propagated by simple inheritance: the

fused cell ’inherits’ its label from its children. In classical gray level pyramids the contents

of a cell is a gray value which is summarized by the mean or a weighted mean of the values

in the reduction window. Such reduction functions have been used in Gaussian pyramids.

Laplacian pyramids [5] and wavelet pyramids [21] identify the loss of information that occurs

in the reduced level and store the missing information in the hierarchical structure where it

can be retrieved when the original is reconstructed. These approaches use one single globally

defined model [10] which must be flexible to adapt its parameters to approximate the data.

In our generalization we would like to go one step further and allow different models to be

used in different resolution cells as there are usually different objects at different locations of

an image. The models could be identified by a name or a symbol (e.g black, white, isolated

etc.) and may be interrelated by semantic constraints (e.g adjacency etc.), Fig. 4. Simple

experiments have been done with images of line drawings. This research used the experi-

ences gained with a system for perceptional curve tracing based on regular 2 × 2/2 curve

pyramid [16] and the chain pyramid [22] in the more flexible framework of graph pyramids.

The model describes symbolically the way in which a curve intersects the discrete segments

of the boundary of a cell and the reduction function consists in the transitive closure of the

symbols collected in the reduction window. The concept works well in areas where the density

of curves is low, although the rigidity of the regular pyramid causes ambiguities to arise when

more curves appear within the same receptive field. This limitation can be overcome with

irregular pyramids [19] in which we could limit the receptive field of a cell to a single curve.

The content abstraction in this representation has following features:

• models are identified by names1), no parameters were used;

• adjacent models have to be consistent (’good continuation’);

• only one consistent curve is covered in one receptive field;

1)discrete names: empty cell, line end, crosses edge, junction etc



• this selection process is governed by a few contraction rules in Fig. 4,

The knowledge about the models and in what configurations they are allowed to occur needs

to be stored in a knowledge base [18]. In order to determine which are the best possible ab-

stractions, the local configurations at a given level of the pyramid must be compared with the

possibilities of reduction given in the knowledge base. This would typically involve matching

the local configuration with the right-hand sides of rules stored in the knowledge base. Such

a match may not always be perfect, one may allow a number of outliers. The match results

in a goodness of match, which can be determined for all local configurations. The selection

can then choose the locally best candidates as contraction kernels (CKs) and reduce the con-

tents according to the generic models which matched the local configuration. The goodness

of match may also depend on a global objective function to allow the overall purpose, task or

intention to influence the selection process.

5 Irregular Graph Pyramids

A graph pyramid is a pyramid where each level is a graph G(V, E) consisting of vertices V and

of edges E relating pairs of vertices. In the base level, pixels are the vertices, and two vertices

are related by an edge if the two corresponding pixels are neighbors. This graph is called the

neighborhood graph. The content of the graph is stored in attributes attached to both vertices

and edges. In order to correctly represent the embedding of the graph in the image plane [9]

we additionally store the dual graph G(V , E) at each level. Let us denote the original graph

as the primal graph. In general a graph pyramid can be generated bottom-up [19] (Alg. 1).

Algorithm 1 – Graph Pyramid

Input: Attributed graph G.

1: while { further abstraction is possible } do

2: determine contraction kernels (CKs),

3: perform dual graph contraction and simplification of dual graph,

4: apply reduction functions to compute content of new reduced level,

Output: Irregular graph pyramid.

5.1 1st Iteration: group Connected Components

The 2nd step determines what information in the current top level is important and what

can be dropped. A CK is a (small) sub-tree, the root of which is chosen to survive. Fig. 2a

shows the window (G0) and the selected CK N0,1 each surrounded by an oval. The codes

of the vertices are given in Fig. 4. Selection criteria (code adjacency of Fig. 4 is ’yes’) in

this case contract only edges inside connected components except for isolated black vertices

(blobs) which are allowed to merge with their background, so that support of grouping is

distributed over a large receptive field bridging areas of background [7]. All the edges of the



contraction trees are dually contracted [19]. Dual contraction of an edge e (formally denoted

by G/{e}) consists of contracting e and removing the corresponding dual edge e from the dual

graph (formally denoted by G \ {e}). This preserves duality and the dual graph need not be

constructed from the contracted primal graph G′ at the next level.

Since the contraction of an edge may yield multi-edges and self-loops there is a simplification

step which removes all redundant multi-edges and self-loops (redundant edges). Note that

not all such edges can be removed without destroying the topology of the graph: if the cycle

formed by the multi-edge or the self-loop surrounds another part of the data its removal would

corrupt the connectivity! This can be decided locally by the dual graph since faces of degree

two (having the double-edge as boundary) and faces of degree one (boundary = self-loop)

cannot contain any further elements in its interior, since the original graph is connected.

Since removal and contraction are dual operations, the removal of a self-loop or of one of the

double edges can be done by contracting the corresponding dual edges in the dual graph. The

dual contraction of our example remains a graph G1 without redundant edges (Fig. 2b).

5.2 New Category: Isolated Blob

Step 3 generates a reduced pair of dual graphs. Their content is derived in step 4 from the level

below using the reduction function. In our example, reduction is very simple: the surviving

vertex inherits the color of its son. A new category ’isolated blob’ is introduced if a black

vertex is completely surrounded by white vertices. This new label allows the RF to grow into

its background and, eventually, close the gap to another isolated blob. In the only case where

the CK contains two different labels, the isolated vertex is always chosen as surviving vertex.

The result of the second dual contraction is shown in Fig. 2c. The selection rules and the

reduction function are the same as in the first iteration. The isolated blob adjacency graph

(IBAG) shows that the gaps between the isolated blobs of the original sampling have been

closed and the three surviving isolated blobs are connected after two iterations. A top-down

verification step checks the reliability of closing the gap. There are lots of useful properties

of the resulting graph pyramids. If the plane graph is transformed into a combinatorial map

the transcribed operations form the combinatorial pyramid [3, 4]. This framework allowed to

link dual graph pyramids with topological maps which extend the scope to 3D.
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Figure 2: a) Neighborhood graph G0 and CK N01; b) G1 and CK N12; c) The two gaps in G2.
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Figure 3: The two gaps in graph G2 .

may contract with e u re

empty background e yes no yes

black component u no yes no

isolated blob re yes no yes (gap)

Figure 4: Contraction rules to close gaps.

a) b) c) d)

Figure 5: Closing the gaps of a broken line. a) Dashed line, b) CCA, c) IBAG, and d) RF.

6 Experimental Result

Fig. 5a shows an example of closing the gaps of a broken line using the MIES 2) algorithm [11].

Connected components analysis (CCA) alone creates self loops, as shown in Fig. 5b. Grow-

ing isolated blobs into its background produces Fig. 5c, where vertices of isolated blobs are

connected by edges corresponding to the gaps. Fig. 5d shows the corresponding RF of the

isolated blobs in Fig. 5c. Isolated blobs represent edgel hypotheses and the neighborhood of

isolated vertices a line hypothesis. These hypotheses can be verified for confidence using the

hierarchy of the pyramid. It seems that there are much less concepts working on discrete

irregular grids than on their regular counterparts. How to group connected structures into

an extended RAG has been show before [12]. The many islands of highly splitted structures

remain isolated in these approaches. We show how to group isolated blobs or substructures

into IBAG if the blobs have a ’common’ background.

7 Conclusion

We motivated our discussion by the claim to ’bridge the representational gap’ [14] and to

’focus on image abstraction’. We first discussed the basic concepts, visual abstraction and

dual graphs in more detail. We then recalled a pyramidal approach having the potential to

cope also with irregular grids. These pyramids have some useful properties: i) they show the

need to use multi-edges and self-loops to preserve the topology; ii) they allow the combination

of primitive operations at one level (i.e. collected by the CK) and across several levels of the

pyramid (i.e. equivalent contraction kernels [17]); iii) repeated contraction converges to specific

2)Maximal Independent Edge Set



properties which are preserved during contraction; iv) termination criteria allow abstraction to

be stopped before a certain property is lost; v) pseudo/fictive elements characterize topological

relations ( a fictive edge characterizes a hole, a fictive face characterizes a tunnel, etc).
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