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Abstract:
2D Topology preserving hierarchies have been under study for a long time. Representations
like dual-graphs and 2D combinatorial maps have been used to produce such hierarchies which
themselves have offered support for applications spanning from segmentation to line drawing
representation and Traveling Salesmen Problem solving. An obvious step was to extend these
2D hierarchies to 3D, opening the door for the processing of 3D volumetric data and videos
(2D+time). Theoretical foundation for this extension already exists (3D combinatorial maps
and 3D generalized maps), but very little work has been done to collapse a huge amount of
volumetric data into a small topologically equivalent data structure. This paper presents 3D
combinatorial maps and the primitive operations needed to simplify such a representation. First
experimental results and possible applications show the potential of the approach.

1 Introduction

Handling “structured geometric objects” is important for many applications related to geometric
modeling, computational geometry, image analysis, etc.; one has often to distinguish between
different parts of an object, according to properties which are relevant for the application (e.g.
mechanical, photometric, geometric properties). For e.g. in image analysis, a region is a (struc-
tured) set of pixels or voxels, or more generally an abstract cellular complex consisting of
dimensions 0, 1, 2, 3 ... (i.e. 0-cells are vertices, 1-cells are edges, 2-cells are faces, 3-cells are
volumes, ...) and a bounding relation [18].
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The structure, or the topology, of the object is related to the decomposition of the object into
sub-objects, and to the relations between these sub-objects. Many topological models have been
conceived for representing the topology of subdivided objects, since different types of subdivi-
sions have to be handled: general complexes [8, 9] or particular manifolds [1, 2], subdivided
into any cells [14, 12] or into regular ones (e.g. simplices, cubes, etc.) [13, 21]. Few models
are defined for any dimensions [3, 20]. Some of them are (extensions of) incidence graphs or
adjacency graphs. Their principle is often simple, but they cannot deal with any subdivision
without loss of information and operations for handling such graphs are often complex. Other
structures are “ordered” [5, 20], and they do not have the drawbacks of incidence or adjacency
graphs. A subdivided object can be described at different levels, so several works deal with
hierarchical topological models and topological pyramids [11, 3, 19]. For geometric modeling,
levels are often not numerous. For image analysis, more levels are needed since the goal is to
rise up information which is not known a priori.

[7, 15] show that 2D combinatorial maps are suitable topological structures to be used in 2D
segmentation. Many domains need to work in 3D imagery (e.g. medicine, geology), so the
theoretical framework of 2D combinatorial maps has been extended to 3D [10, 4]. In order to
use 3D topological structures for 3D image segmentation one has to define basic operations. In
this paper only two basic operations are introduced: the contraction and the removal operation.

Attempts have been made to reduce such representations [10] to a certain extent, without guar-
anteeing the minimal representation. We extend this work in order to find minimal represen-
tations of the topological configurations [16] of the initial data, and distinguish between them
using the remaining pseudo-elements. In this paper, we focus on the algorithmic aspects of
collapsing the representation for this purpose.

A short introduction of the 2D and 3D combinatorial map is given in Section 2. In Section 3
the two operations, namely contraction and removal, are properly applied to three objects. We
show examples of the three basic structures in 3D: a simply connected volume, a volume with
a hole (volume enclosing other volume), and a volume with a tunnel (donut).

2 Combinatorial Maps

Combinatorial maps and generalized maps define a general framework which allows us to en-
code any subdivision of nD topological spaces orientable or non-orientable with or without
boundaries. They encode all the incidence relations and consist of abstract elements, called
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Figure 1: 2D Combinatorial maps using different notations.

darts D and a set of permutations βi. i-cells are implicitly encoded by subsets of D which
can be obtained using the βi permutations. (When encoding the same configuration, differences
between the two mentioned map types are limited to the number of darts, number of permuta-
tions, and their meaning). In the case of combinatorial maps, for each dimension, there is more
then one way of attributing the permutations, but the number of permutations used for a certain
dimension and how many of them are involutions is fixed i.e. for an nD combinatorial map
there is 1 permutation and n− 1 involutions (an involution is a permutation whose orbits are of
size 1 or 2). 2D and 3D combinatorial maps are given in more detail in the following sections.

2.1 2D Combinatorial Maps

2D Combinatorial maps may be understood as a particular encoding of a planar graph, where
each edge is split into two half-edges, the so called darts. A 2D combinatorial map is formally
defined by the triplet G = (D, σ, α) [6] where D represents the set of darts, σ is a permutation
on D encountered when turning clockwise around each vertex (the cycles of σ encode the
vertices), and α is an involution on D which maps each of the two darts of one edge to the other
one (the cycles of α encode the edges). The cycles of the permutation ϕ, defined as ϕ = σ ◦ α,
encode the faces of the combinatorial map. (see Fig. 1d) [10] uses β1 to refer to ϕ and β2 to
refer to α and represents the 2D combinatorial map as G = (D, β1, β2) (see Fig. 1b).

2.2 3D Combinatorial Maps

A 3D combinatorial map is formally defined by G = (D, permutation, involution1, involution2),
with the following two notations (and meanings) for the permutations studied until now: G =

(D, β1, β2, β3) [4] and G = (D, γ, σ, α) [4]. Further on, we will present the first one.

Like in the similar 2D combinatorial map notation, the permutation β1 connects darts belong-
ing to the same face and the same volume, preserving their ordering on the boundary of the



face, and the involution β2 connects 2 darts, part of the same edge and the same volume. The
additional involution, β3, links 2 darts that belong to the same face and same edge (and the 2
volumes separated by the respective face). β3 can be regarded like a glue, which brings together
neighboring volumes defined be the 2D manifolds encoded by β1 and β2 (See Fig. 2).

Figure 2: 3D Combinatorial map permutations

For a certain dart d, the set of darts implicitly representing the i-cell containing the dart d is
obtained by applying 2 of the 3 permutations βi any number of times and in any combination to
the dart d. (i is defined by the 2 permutations applied) [4].

2.2.1 Operations on the 3D Combinatorial Maps

We apply two operations to an i-cell: removal (removes the i-cell and merges the 2 (i+1)-cells
that it was separating) and contraction (contracts the i-cell to a (i-1)-cell by merging it’s 2
neighboring (i-1)-cells). For our experiments we only used the following 4 operations: edge
contraction, face contraction, volume contraction and face removal. (See Table 1)

Our maps encode volumes from the input data as vertices and thus edge contraction is the
equivalent to merging two such neighboring volumes. The other 3 operations are applied to
simplify/collapse the resulting representation, while preserving the correct topological config-
uration. The last one (face removal) is needed to deal with the special case of “face self loop”,
which is a face that encloses a volume alone, and which is bounded by one edge. (Such a self
loop can be the result of the contraction operations described).

2.2.2 Pseudo elements

To keep the topological encoding consistent, the simplification process keeps i-cells which help
encoding inside-like relations. In 2D this means keeping self-loops and parallel edges which



Operation Preconditions Result
edge contraction edge connects 2 different vertices, the 2 vertices are merged,

no volumes or faces will be removed contracted edge is removed
face contraction face is bounded by 2 different edges the 2 bounding edges are merged

no volumes or vertices will be removed contracted face is removed
volume contraction volume is bounded by 2 different faces the 2 bounding faces are merged

no vertices or edges will be removed the volume is removed
face removal face is incident to 2 different volumes the 2 incident volumes are merged

no vertices or edges are removed the face is removed

Table 1: Operations applied to the 3D Combinatorial map

surround at least one vertex, in 3D this concept is translated as parallel faces and “face self
loops” (faces bounded by a single edge) which enclose a vertex. As shown in the following
sections, these pseudo elements let us discriminate between different topological configurations.

2.2.3 Multiple minimal encodings

Every i-cell needs to be bounded by at least one (i-1)-cell i.e. a volume is bounded by at least
one face, a face by at least one edge, and an edge by at least 1 vertex. This leads to multiple
encodings for the same topological configuration which cannot be reduced/collapsed anymore.
For example a single volume, can be represented as a volume bounded by 2 faces bounded by
the same edge (self loop) and 1 vertex (a globe obtained from gluing together 2 halves around
the self loop which is the equator) (Fig. 3a), or as a volume bounded by 1 face, bounded by
1 edge connecting 2 vertices (a soap bubble hanging in the middle of the straw)(Fig. 3b). So,
depending on the operations applied and their order, starting from the same initial configuration,
we can obtain different output configurations that are topologically equivalent.

a) 2 faces, 1 vertex b) 1 face, 2 vertices

Figure 3: Multiple minimal encodings for one volume



a) initial map b) final map

Figure 4: 2 × 2 × 2 3D connected object.

3 Connected component analysis

As mentioned in Section 2.2.1, in our setup voxels from the input data are represented as ver-
tices and adjacency relations between 2 voxels are represented by connecting their 2 associated
vertices by an edge. An additional vertex is used to represent the background volume. For the
sake of clarity, this vertex is not drawn in the initial configuration images of our experiments.

The algorithm for identifing the connected components is as follows (each operations is applied
only if the preconditions mentioned in Table 1 are satisfied):

1. contract all edges connecting two vertices that belong to the same connected component
2. contract all faces bounded by exactly two edges
3. contract all volumes bounded by exactly two faces
4. remove all ”face self loops”

The four steps are repeated until Step 1 does not find any more contractable edges. In each such
iteration, Steps 2-4 are repeated until neither of them finds any more candidates for contrac-
tion/removal.

The first experiment is the reduction of a 2 × 2 × 2 cube where each voxel has the same label.
Fig. 4a shows the initial combinatorial map for this object. (The labels of vertices and edges
correspond to the labels used by our library.) The final configuration is shown in Fig. 4b. One
vertex represents the background and the other one represents the voxels of the initial cube that
has been merged into 1 element. These 2 vertices are connected by 1 face that is bounded by 2
edges.

To demonstrate that the topology is preserved during the simplification of the combinatorial
map, the second experiment reduces a cube that completely encloses another object. Fig. 5
shows the initial and final combinatorial maps for this configuration. The outer cube enclosing



Configuration Darts Vertices Edges Faces Volumes
2x2x2 cube (initial/final) 120/4 9/2 20/2 18/1 7/1
3x3x3 with object inside (initial/final) 576/16 28/4 80/5 84/3 32/2
3x3x2 with tunnel inside (initial/final) 352/24 19/3 51/5 52/4 20/2

Table 2: Number of cells in each experimented configuration

the inner object is merged into 2 vertices connected by a single edge. These 2 vertices (vertex 17
and 26) connect to the background (vertex 28) and the inner object (vertex 14). In addition the
edge between these 2 vertices defines a face that completely encloses the inner object (vertex
14) representing the inclusion relation of this object being inside the outer cube.

In 3D there are basically 2 types of inside configurations. The 3rd experiment shows the re-
duction of a torus which is surrounding (but not completely enclosing) another object. Fig. 6
shows the initial and final combinatorial maps for this experiment. The torus is merged into
1 vertex (vertex 17) connected to the background (vertex 19) and the inner tunnel (vertex 14).
The tunnel (vertex 14) is connected on both sides with the background (edges -755 and -155).
The fact that the torus surrounds the tunnel is represented by the self loop (edge -679) and the
cone like face/surface (bounded by the self-loop edge -679 and the edge -826; visualized by the
dotted lines).

As can be seen from the experiment results, discriminating between the first configuration and
the other two is very easy, and can be done just by looking at the labels of the obtained vertices.
The second and third configurations are more complex, because of the containment relation and
cannot be discriminated based only on the vertices. Here, edges and faces have to be taken into
considerations. An object having an edge self loop (or edge cycle) surrounds another object

a) initial map b) final map

Figure 5: 3 × 3 × 3 3D connected object with enclosed object/hole inside.



a) initial map b) final map

Figure 6: 3 × 3 × 2 3D connected object with tunnel inside.

(Fig. 6), and an object having a face self-loop (or face cycle) encloses another one (Fig. 5).
Note that in experiment 3, the adjacency of the tunnel and the background is also shown by the
2 edges connecting it to the background.

4 Outlook

Connected component analysis is certainly one of the first experiments to do when testing out
a new representation that should preserve topology, but the possibilities do not stop here. Next
steps will include the extension to 3D of the Minimum Spanning Tree pyramid concept [15]
used for segmentation of 2D images, and using it to segment volumetric data and videos
(2D+time). Further on, having this implementation, we can pursue research in describing
videos using actions, events, and relations, following the concept presented in [17].

5 Conclusions

The paper presents the basic operations that can collapse a high resolution voxel complex into
its topologically equivalent smallest counterpart. We demonstrated the correctness of the un-
derlying software library by the three basic configurations in 3D: a simply connected volume,
a volume with a hole and a volume with a tunnel. The resulting structures contain pseudo
elements characterizing the respective topology.
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