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Abstract. Eccentricity measures the shortest length of the paths from
a given vertex v to reach any other vertex w of a connected graph.
Computed for every vertex v it transforms the connectivity structure of
the graph into a set of values. For a connected region of a digital im-
age it is defined through its neighbourhood graph and the given metric.
This transform assigns to each element of a region a value that depends
on it’s location inside the region and the region’s shape. The definition
and several properties are given. Presented experimental results verify
its robustness against noise, and its increased stability compared to the
distance transform. Future work will include using it for shape decom-
position, representation, and matching.

1 Introduction

Recognition, manipulation and representation of visual objects can be simpli-
fied significantly by “abstraction”. Abstraction extracts essential features and
properties while it neglects unnecessary details. Shape is one such form of visual
abstraction, which describes distinctive features of the object’s appearance i.e.
its projection on the surface of a 2D sensor (in our case the retina). If shape
matching is done invariant with respect to certain deformation classes (e.g. ar-
ticulated motion), shape based object recognition can be used for generic object
recognition, a much desired ability of humans.

Different approaches that use shape for recognition exist [1–4], with many
of them using the distance transform [5] derived skeletons [6, 7] as a basis for
shape description. Skeletons have proved themselves to be the basis of powerful
shape descriptors [2] with the main advantages including their ‘cue’ for a natural
decomposition of shapes into parts (e.g. usually the parts of the skeleton of a
human decompose its shape into body, limbs, and head) and their invariance to
certain types of movement including the very important articulated motion. On
the other hand, one of their weak points come from their apparent locality and
the fact that they are derived from the distance transform which is known to be
unstable with respect to small perturbation of the shape (e.g. spurious branches
can appear in the skeleton if a few pixels are added at the border of the region).
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Fig. 1. Isoheight lines for distance (a-c) and eccentricity (d-f) transform of 2 images,
using the euclidean (a,d), 4− (b,e), and 8− (c,f) neighbourhood. (where continuous,
lighter means higher value)

The distance transform associates to each point of the shape, the minimum
distance from it to the border of the shape (see Fig. 1a: gray values are indepen-
dent between the two images, and where continuously changing: lighter means
higher value), which makes it very unstable with respect to Salt and Pepper
noise and certain kind of segmentation errors. Approaches like removing regions
below a certain size or pruning spurious branches of the obtained skeleton have
been used to cope with these kinds of problems, but this has been shown not to
be the optimal way and should be avoided mainly because the size of a region
does not tell anything about its importance [8].

Instead of minimum distance, other measures have also been used, e.g. the
mean time for a randomly moving particle to hit the border [9].

Inspired from graph theory, we present a new transform which associates to
each point the longest distance (geodesic) from it to the points on the border
of the shape (see Fig. 1d). We show that it is robust against the types of noise
mentioned above, and comment about it’s applicability to shape description and
matching.

We recall the distance transform in Sec. 2, including a formulation for the
distance transform of a graph (Sec. 2.2). The eccentricity transform is presented
in Sec. 3, beginning with a recall of the graph theory based definition for ec-
centricity (Sec. 3.1). The properties of the transform are discussed in Sec. 4,



1

»»»»

1

1

1
1

2

2

2

2

2

3

1

1

1

¡
¡

¡¡

hhhhHHHH!!!!!
HHH

hhh.......
.......
.......
.......
.......
.......
.......
.......
...

T
T
TT

aaaa!!!!
HHH!!!HHH

·
·

··T
T

T
T

@
@@
aaaa

%
%

¡
¡

¡¡
©©

................................................................................

»»»»

hhhhh
v

v
v

v v

v
v

v v

v
v

v

v

v 4

4

3

3

3

2

3

3

b

c

a

4

4

e

d

¡
¡

¡¡

hhhhHHHH!!!!!
HHH

hhh.......
.......
.......
.......
.......
.......
.......
.......
...

T
T
TT

aaaa!!!!
HHH!!!HHH

·
·

··T
T

T
T

@
@@
aaaa

%
%

¡
¡

¡¡

»»»»
©©

................................................................................

»»»»

hhhhh

3

3

3

3

v

v

v
v

v v

v
v

v v

v
v

v

v

a) b)

Fig. 2. Distance transform (a) and eccentricity transform (b) of a graph.

followed by computation strategies in Sec. 5. Experimental results in Sec. 6 will
complete the presentation, summed up in Sec. 7 with conclusions and outlook.

2 Distance Transform

The distance transform assigns to each point in the binary image a value of
a distance to the closest point on its border (obstacles). Let I = B ∪ B be a
binary image and let a point p ∈ B. We adapt the definition of the general
distance function [10] for the rest of the section. A neighbourhood Ni is a pair
of (Pi, di), where Pi is a finite subset of ZK and di is a function di : P → R+, for
i = 0, ..., T −1 and T,K ∈ Z+. We say that pi is adjacent to pi+1 iff pi+1 = pi +r
for some r ∈ Pi. Let α be a finite sequence of neighbourhoods N0N1... NT−1,
where T is called the period of the sequence. The distance transform dtα of I
associates to every point p ∈ B the minimal distance from p to B, formally we
write:

dtα(p) = min{λ(πα(p, q)) | q ∈ B ∧ q ∈ Nα(q), q ∈ B}, (1)

where Nα is an α-adjacency, πα(p, q) is the set of all α-paths from point p to
q, and λ(πα(p, q)) is the length of one of the paths πα(p, q). The α-path is a
sequence of points (p0, p1, ..., pn), such that end points are p0 = p, pn = q, and
pi+1 is α-adjacent to pi (0 ≤ i ≤ n− 1), then the length of this path is the sum
of di(pi+1 − pi) for all i = 1, ..., n. If di(r) = 1 then the length of the path is
n, the number of points. To define the chessboard distance (dt8) or the square
distance (dt4) one takes the sequence of neighbourhood with T = 1 (α = N0) and
defines the neighbourhood P0 as in [10, page 239]. Note that there may be many
shortest paths. If there is no other shorter α-path between the same end points,
then this path is called α-geodesic [11]. The border point q ∈ B is α-neighbour
of a point not being in B. In the Euclidean space there is always a unique path
between two points, which is the straight line between the points. This straight
line does not exist in digital images and thus the distance transform computed
is dependent on the way the neighbourhood is defined, i.e. how the Euclidean
distance is approximated. In the section below we use the definitions above as
the basis of defining the distance transform of digital images and graphs.



2.1 Distance Transform of a Digital Image

The transformation of the continuous space Rn into a discrete space Zn is done
by sampling Rn. A particular sampling scheme can be used to digitise the con-
tinuous space. If there is no a priori knowledge about the local variation, the
usual scheme is the square or hexagonal grid. For the sake of the presentation we
will constrain the discussion only on digital images on 2D square grids with the
4−neighbourhood (city block metric), and the 8−neighbourhood (chessboard
metric). Using Eq. 1 one can define the distance transform dt4 and dt8, respec-
tively. These distance transforms are easy to compute by scanning the image
twice [12, 11], although they are not a good approximation of the Euclidean dis-
tance. In Fig. 1b,c) distance transforms dt4 and dt8 of a binary image are shown.
Better approximations can be found by chamfer distances [13].

2.2 Distance Transform of a Graph

If the sampling grid is not regular, one could use graph representation for the
sampling points. Let G = (V,E, a, w) be the undirected weighted graph with
vertices v ∈ V representing sampling points, edge set e = (v, w) ∈ E representing
the connection between vertices; and a : V → Z+ and w : E → Z+ are attributes
on vertices and edges respectively. Let the weights on edges represent the cost of
going from one vertex to the other. In order to define the distance transform one
should define the boundary vertices [14]. Any bounded region has a boundary
that separates it from the background. The background can be considered as the
complement of the region with respect to the embedding space. Border faces are
faces of the dual graph that are surrounded by both vertices of G ⊂ G′ and G′.
The boundary of a subgraph G = (V, E) ⊂ G′ = (V ′, E′) collects all the vertices
C ⊂ V which bound border faces.

A path πG(v, w) is a sequence of vertices (v0, v1, ..., vn) in G such that the
end vertices are v = v0, w = vn, all vertices are distinct and ∃e = (vi, vi+1) ∈
E, i = 0, 1, ..., n− 1. The length λ(πG) of path λG is the sum of the edge weight
in the sequence:

dtG(v) = min{λ(πG(v, w)), v ∈ G \ C ∧ w ∈ C}. (2)

Usually, the border vertices are set to 1. If vertices v and w are not connected,
we say that the λ(πG(v, w)) is infinite. If the graph G is connected then this
distance is a graph metric [11]. A simple example of the distance transform on a
graph is given in Fig. 2a, where the edge cost is set to 1. Note that square grid
can be easily represented by graphs. In this case the weight on edges could be
set to 1 (but not necessarily). Similar to the square grid, we can define the 4-,
8-neighbourhood of vertices.

3 Eccentricity Transform

The eccentricity transform assigns to each point in the binary image the shortest
distance to the point farthest away from it. Analogously, to the notation pre-
sented in Sec. 2 we define the eccentricity transform eccα(p) of I = B ∪B such



that it associates to every point p ∈ B the longest of the distances to any other
point q ∈ B, formally we write:

eccα(p) = max{λ(πα(p, q)) | ∀q ∈ B}, (3)

where πα(p, q) is the shortest α-path from point p to q, and λ(πα(p, q)) is the
length of the path πα(p, q). In the section below we use the Eq. 3 as the basis in
defining the eccentricity transform of graphs and digital images.

3.1 Eccentricity Transform of a Graph

Let G = (V, E, w) be an attributed undirected and connected graph with vertex
set V , edge set E and with edge weights w : E → Z+ as the cost of going from
one vertex to the other. Let v be a vertex in V . The eccentricity eccG(v) of v is
the distance to a vertex farthest from v and it is defined as [15, Page 31]:

eccG(v) = max{λ(πG(v, w)) | ∀w ∈ V }, (4)

where λ(πG(v, w)) is the length of the shortest path between the two vertices v
and w. One could say that eccentricity of a vertex is the longest shortest path
to any other vertex in the graph. A simple example of the eccentricity transform
is given in Fig. 2b), where we set the edge’s cost to 1.

Some definitions concerning the eccentricity transform are of importance [15]:
– the eccentric vertices of v are all the vertices w at a distance eccG(v);
– the radius r(G) of G is the minimum eccentricity;
– the diameter d(G) of G is the maximum eccentricity;
– v is a central vertex of G if eccG(v) = r(G);
– the center C(G) is the set of all central vertices;
– v is a peripheral vertex of G if eccG(v) = d(G);
– the periphery P (G) is the set of all peripheral vertices;

For the graph in Fig. 2b) the radius r(G) = 2, the diameter d(G) = 4, central ver-
tex c, the center C(G) = {c}, peripheral vertices a, b, d and e, and the periphery
P (G) = {a, b, d, e}. Sec. 4 presents a detailed discussion of the properties.

3.2 Eccentricity Transform of a Digital Image

Similarly to distance transform, a particular sampling scheme can be used to
discretize an image. We constrain our discussion only on a 2D square grid, and
two classical pixel adjacencies; the 4− and 8−neighbourhood. Let I be a binary
image I = B ∪B, and let a pixel p be in B. Now we can use Eq. 3 to define the
eccentricity transform eccα on a square grid digital image for the connected set
B. One can say that eccentricity of a pixel is the longest shortest path to any
other pixel in the same connected region. Similarly to the distance transform also
the eccentricity transform is affected by how well the Euclidean distance can be
approximated. The same concerns made in Sec. 2 with respect to the Euclidean
plane apply for eccentricity transform as well. Thus eccentricity transform is
also dependent on the way one defines the pixel neighbourhood. In Fig. 1e,f
eccentricity transforms ecc4 and ecc8 are shown on the same hand image as in
Fig. 1b,c.



4 Properties of the Eccentricity Transform

We shortly discuss some of the properties of the eccentricity transform, some of
them known from graph theory and extended to the discrete domain, some are
interesting and useful in the context of describing the shape of a region.

Center: The vertices with the minimum value of the eccentricity transform
are called the center of the graph. They lie in a block of the graph, i.e. the
corresponding subset of vertices containing the center is connected and does not
contain a cut vertex. We notice that the center of a discrete region is always
a part of the region in contrast to the center of gravity which can be located
outside the region in case of a concavity or a hole in the middle of the region.
This may be useful in several applications, e.g. in tracking where the center of
a tracked region may be used as the start for searching the region in the next
frame of the sequence.

Robustness: The eccentricity transform is robust with respect to (salt and
pepper) noise. This is due to the fact that a noise vertex on the path between two
distant points ’just goes around’ the obstacle without prolongating the length by
much. In the case of discrete metrics (like 4− or 8−connectivity) the likelihood
of finding many paths with the same (shortest) length is very high. In such a
case the eccentricity is affected only if all shortest paths between the vertex and
its farthest vertex are interrupted by noise or a noisy pixel (vertex) p is added
to B such that p is at maximum distance from the vertex.

4-connectivity: In the Euclidean space two points are connected by a unique
straight line. In the discrete space with 4-connectivity this is only the case if the
two points are along the two coordinate axes, in all other cases there are more
than one shortest paths. In fact any permutation of the two primitive steps to
connect the two end points is also a shortest path.

This fact increases the robustness of the eccentricity transform but has also
two other consequences:

1. There is not a single midpoint between the two endpoints making the center
of an elongated region a diagonal line. In fact the length of this line is as
long as the smaller coordinate differences of the two end points.

2. Since the number of midpoints depends on the angle of the discrete line the
resulting centers are no more rotationally invariant (which they are in the
Euclidean case).

Maxima are all on the boundary if the graph has no inner pending
vertex: (See Sec. 2.2 for the boundary of a graph) If G′ is connected there are
paths between any pairs of vertices v, w ∈ V ′. Any non-border vertex has a
degree greater than 1. If none of the neighbours of a vertex of degree greater
than 1 belongs to a border face it cannot be extremal since any path leading to
it can be continued.

Complementarity between distance transform and eccentricity trans-
form: In the distance transform the smallest values are on the boundary and
the highest values can be found where a circle with maximum radius touches the



Algorithm 1 – Eccentricity Transform - naive implementation
Input: Attributed graph G = (V, E).

1: for all v ∈ V do
2: ecc(v)← 0
3: for all u ∈ V − {v} do
4: ecc(v)← max{ecc(v), shortestPathLength(v, u)}
5: end for
6: end for

Output: Eccentricity ecc(v) for all vertices v ∈ V of G.

boundary in at least two opposite points. These local maxima form the skele-
ton/medial axis/symmetry transform. Local maxima of the eccentricity trans-
form are on the boundary while the minimum defines the center. However there
are local minima along the boundary and discontinuities inside the region which
give rise to interesting partitionings of the region.

Invariance: The eccentricity transform computes the lengths of paths inside
a given region. It is therefore invariant to any translation and invariant to rota-
tion for the Euclidean metric. There is some dependency on the orientation for
discrete metrics but not for all shapes. Furthermore in the case of thin regions, it
is robust with respect to articulated motion, it may differ by the thickness of the
shape at the articulation point which in many natural cases is thin in relation
to the length (arms, legs, fingers).

5 Computation

Two algorithms for computing the eccentricity transform are given here. They
are both defined for graphs, but the adaptation to digital images is straight
forward. One has just to decide for a neighbourhood (α = {4, 8}) and choose the
pixels that make up the connected region for which the transform will be applied.
Note that Floyds [16] algorithm, that produces the minimum path length from
all vertices to all other vertices can also be used to obtain the eccentricity (for
each vertex, one has just to take the maximum of the values obtained for it).

Naive Alg. 1 iterates through all the vertices of G and for each, it calculates
the maximum of the length of the shortest paths to all other vertices in the graph.
Lines 3 - 5 can be implemented by taking the maximum of the lengths calculated
using Dijkstra’s single-source shortest path algorithm [16]. The complexity of the
naive implementation is between O(|V |3) and O(|V ||E|+|V |2 log |V |)) depending
on the implementation of the shortest path problem.

Alg. 2 uses the fact that the set of eccentric vertices is a subset of V and that
calculating the shortest path for each of these vertices to all the other vertices in
V and combining the results (i.e. taking the maximum) is enough to obtain the
eccentricity transform for the whole graph. The eccentric vertices can be found
by calculating the shortest path from the center of the graph to all the other
vertices and looking at the local maximum. To find the center of a graph we find
it’s diameter, which is connecting the vertices with the highest eccentricity.



Algorithm 2 – Eccentricity Transform - optimised implementation
Input: Attributed graph G = (V, E).

1: ∀v ∈ V, ecc(v)← 0 /* initialise eccentricity cumulation table with 0 */
2: vp← random vertex of V
3: repeat
4: mark vp as visited
5: ∀v ∈ V, ecc(v) = max{ecc(v), shortestPathLength(v, vp)}
6: vp← vertex with maximum ecc
7: until (ecc not changed) or (vp allready visited) /* iterate until the endpoints of a

diameter found */
8: repeat
9: m← one (random) or all unvisited vertices with minimum ecc

10: for all vm ∈ m do
11: ∀v ∈ V, ecc(v) = max{ecc(v), shortestPathLength(v, vm)}
12: mark vm as visited
13: end for
14: M ← all unvisited vertices with local maximum ecc

/* M includes non monotonic maxima */
15: for all vM ∈M do
16: ∀v ∈ V, ecc(v) = max{ecc(v), shortestPathLength(v, vM )}
17: mark vM as visited
18: end for
19: until ecc not changed /* repeat until converged */

Output: Eccentricity ecc(v) for all vertices v ∈ V of G.

Lines 3 - 7 start with a random point and iterate to find the vertices with the
highest eccentricity (diameter endpoints). The calculated shortest path lengths
are added to the cumulation table ecc and the vertex is marked as visited.
Lines 8 - 19 iterate finding the center vertices and the local maximum until the
ecc cumulation table converges. On line 9 (approximate the center), two options
have been tried, taking one or all the existing minima. On shapes without holes,
both have produced the correct solution, while on shapes with holes neither of
them did. In our experiments, the first loop (lines 3 - 7) converged after 3 cycles
(random point, first diameter end, second diameter end). The second loop is
bounded by the number of vertices on the border of the graph.

Alg. 2 is much faster than Alg. 1 but gives correct results only on simply
connected shapes (no holes). On shapes with holes, complex forms of the center
appear e.g. for a disc with a circular hole in the middle, the center consists of a
circle for euclidean distance, and a set of disconnected points for 4 connectivity,
all concentrated around the hole. In such cases, Alg. 2 produces results close to
the correct one, but we cannot give any upper bound for the error.

6 Experiments

We have conducted experiments to test the properties of the eccentricity trans-
form and find the important differences compared to the distance transform.
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Fig. 3. Transforms on a triangle. Capital letters denote triangle elements (A,B,C
points; X, Y, Z segments) and lower case letters denote their respective influence area.

6.1 Eccentricity Transform of a Triangle

First we have looked at a simple shape, the triangle, for which both transforms,
when using the euclidean distance, can be solved analytically. In the case of the
distance transform (see Fig. 1a and 3a), the 3 angle bisectors divide the triangle
into 3 parts (x, y, z in Fig. 3a), with all the points inside the same part having
the distance transform equal to the distance to the same side of the triangle.
The point with the highest distance transform is the intersection of the 3 angle
bisectors i.e the incenter. The isoheight lines are all polygonal lines (triangles).

In the case of the eccentricity transform, the 3 perpendicular bisectors divide
the triangle into 2 or 3 parts (see Fig. 1d and 3b) depending on whether the
triangle is an optuse one or not (i.e the circumcenter lies outside or within the
triangle). All points inside the same part have the eccentricity transform equal
with the distance to the same point. The isoheight lines are made out of arcs.

6.2 Properties depending on connectivity/metric

Fig. 1 shows the isoheight lines of the eccentricity transform for the 4 and 8
connectivities. One can see that the place of the center (global minima) and the
form of the isoheight lines changed. Depending on the shape, the positions of
the diameter ends/global maxima also change.

6.3 Robustness Against Salt and Pepper Noise

To test the robustness against Salt and Pepper noise, we have calculated the
eccentricity and distance transforms (using both 4− and 8− neighbourhood) for
89 randomly selected shapes from [2] (for some example shapes see the top row
from Tab. 1). We applied 5% Salt and Pepper noise to the images and calculated
the two transforms again.

To measure the robustness, for each image, each neighbourhood, and each
transform, we have calculated the root mean square error (RMSE) between the
values obtained for the original and noisy images (calculation was done using
the values, of the pixels part of the shape, in both images i.e. noisy pixels are
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Fig. 4. Distance and eccentricity transform histograms, RMSE and Max. Diff. (solid -
original image, dotted - noisy image).

excluded). We have calculated for each image and each neighbourhood, the ratio
between the RMSE for the eccentricity and distance transforms. Then, for each
neighbourhood, we have calculated the mean of these ratios and inverted the
result (1/x) i.e. we obtain dt error divided by ecc error. The error of the distance
transform is 8.07 times higher in the case of the 4−neighbourhood and 22.63
times higher for the 8−neighbourhood, then the one of the eccentricity transform.

Fig. 4 shows the histogram of the eccentricity and distance transforms for
one of the images, the hand (original and noisy) using the 4 neighbourhood.
Also shown is the RMSE between the values of the transforms for the original
and noisy images, and the maximum difference value for each transform. One
can see that the error and maximum deviation of the eccentricity transform is
much smaller than that of the distance transform. Note that in the case of the
noisy image, a valid transform value has been calculated for less pixels. This
makes the histogram of the eccentricity transform of the noisy image lie below
the histogram of the original one.

6.4 Minor Segmentation Errors

For this experiment, we have selected a few shapes and simulated segmentation
errors and partial occlusion by removing some parts of the shapes i.e. simulated
noise on the border of the shape. We have calculated the correlation between the
local maxima of the eccentricity transforms of the original and the images with
partial occlusion (for each image, original and partially occluded, we have created
a matrix where the positions of the eccentricity transfrom regional maxima were
marked with 1, and the rest with 0, and calculated the correlation between the
2 matrices - only maxima that where located inside the partially occluded shape



Original Shapes

Partially occluded set 1

4−nb. 0.73 1.00 1.00 0.96 0.96 1.00 0.77 1.00 1.00 0.95
8−nb. 0.93 1.00 0.72 0.97 1.00 0.82 1.00 1.00 1.00 0.98

Partially occluded set 2

4−nb. 0.71 0.79 0.97 0.96 0.89 0.97 0.71 0.98 0.87 0.92
8−nb. 0.48 0.45 0.90 0.96 0.72 0.65 0.98 0.97 0.73 0.98

Table 1. Correlation results for local maxima in eccentricity transform of original (top
row) and partially occluded shapes (middle and bottom rows).

were taken into consideration). The correlation Tab. 1 shows these shapes and
the obtained correlation values.

6.5 Articulated Motion

To simulate articulated motion, two elongated parts have been overlapped at
one of their ends in a way in which they approximate a joint (the angle between
the two parts is a parameter, see Fig. 5a for some examples).

For each angle (in our experiment we have used 90◦, 105◦, 120◦, 135◦, 150◦,
165◦, and 180◦) we have applied the eccentricity transform and calculated the
minimum, maximum, and average eccentricity. Fig. 5b shows the mean and stan-
dard deviation of the 3 values over the whole spectrum of joint angles tested.
Note that the values are stable under these conditions.

a)

Min Max Average
neighbourhood mean std mean std mean std

4 66.00 4.63 131.88 9.11 97.86 7.06
8 54.33 3.39 108.11 6.60 80.33 5.37

b)

Fig. 5. Example of images used for testing the variation under articulated motion (a),
and mean and standard deviation of eccentricity value for the simulated joint (b).



7 Conclusion and Outlook

We propose a new transform for a digital image called the eccentricity transform.
This transform associates to every pixel the maximum length of the shortest
paths connecting it with all the other vertices. The definition, several proper-
ties, and algorithms have been given. Presented experimental results verify its
robustness against noise, and its increased stability compared to the distance
transform, e.g. in the case of 5% Salt and Pepper noise, we obtained changes
about 10 times higher of the distance transform compared to the eccentricity
transform (a distance change of 30 in the case of the distance transform is 3
in the case of the eccentricity transform). Behaviour under minor segmentation
errors and articulated motion has also been tested and shows promising results.
Future work will include using it for shape decomposition, representation, and
matching.
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