
Preface

Geleitwort des Doktorvaters

Die Dissertation von Dr. Yll Haxhimusa setzt die Forschungen mit Bildpyramiden auf der
Basis von Graphenstrukturen fort. Die Grundidee einer Bildpyramide ist die schrittweise Re-
duktion der Information eines digitalen Bildes um einen konstanten Faktor und die Stapelung
dieser Bilder in einer sich logarithmisch zuspitzenden Pyramide. Die dadurch entstehenden
regelmässigen Beziehungen der Pixel der verschiedenen Ebenen erlauben anschliessenden Pro-
zessen, auch auf Details zuzugreifen, die durch die Reduktion auf höheren Ebenen verloren gin-
gen. Diese Art der Pyramide hat Eingang in verschiedene Standards und zahlreiche effiziente
Bildverarbeitungsmethoden gefunden.

Die Regelmässigkeit der Ebenenbeziehungen bewirkt leider, dass eine kleine Verschiebung
oder Bewegung eines Objekts ganz neue Zugriffspfade erfordert (’Shiftvariance’). Daher wur-
den von Meer, Jolion, Montanvert und Rosenfeld Strukturen erforscht, die die Reduktion von
der Lage eines Objektes im Bild abhängig machen. Daraus resultierte die zu einem Forschungs-
schwerpunkt am PRIP-Labor gewordene unregelmässige Graphenpyramide. Durch Einsatz der
Operationen ’Kantenkontraktion’ und ’Kantenelimination’ kann das Bild hierarchisch mit in der
Bildebene eingebettete Graphen beschrieben werden. Dies hat den Vorteil, dass die Entschei-
dung über Struktur und Zugriffspfade in der Pyramide von den in Attributen der Knoten und
Kanten gespeicherten Bildinhalte sauber getrennt werden kann.

Die gewonnene Flexibilität in der Struktur hatte zur Folge, dass die logarithmische Länge
der Zugriffspfade nicht immer gewährleistet werden konnte, manche Pyramiden wuchsen höher
und produzierten zu lange Zugriffspfade. Hier setzt der erste originale Beitrag von Dr. Hax-
himusa an: Das von Meer ursprünglich verwendete Verfahren des ’maximal independent vertex
sets’ (kurz MIS) wurde durch ein erweitertes ’maximal independent edge set’ (MIES) ersetzt.
Für diese Auswahl der ’überlebenden’ Knoten und Kanten konnte gezeigt werden, dass die
logarithmische Pyramidenhöhe nicht überschritten werden konnte. Egal wie die Kanten und
Knoten für die Kontraktion ausgewählt werden, solange die Kanten den Bedingungen eines
MIES entsprechen, wird die Anzahl der Knoten bei jedem Reduktionsschritt auf mindestens
die Hälfte reduziert. Diese theoretische Erkenntnis wurde experimentell verifiziert und in der
Arbeit eindrucksvoll dargestellt. Damit kann die Effizienz der Bildpyramide nun auch auf
grundsätzlich beliebig aufgebauten Graphenpyramiden erreicht werden.

Eine zweite Strategie ’maximal independent directed edge set’ (MIDES) berücksichtigt
ausserdem die Richtung der zu kontrahierenden Kanten durch Einführung einer gerichteten
Nachbarschaft. Diese Strategie erlaubt zusätzlich die Festlegung, welcher der Knoten eines
Kontraktionskernes überleben soll. Der Beweis der Reduktion der Knoten auf die Hälfte stößt

v

hier auf das Problem, dass isolierte Knoten nicht ausgeschlossen werden können. Im Fall von
isolierten Knoten werden jene Konfigurationen charakterisiert, die diese isolierten Knoten her-
vorrufen. Diese Konfigurationen treten in der Praxis äusserst selten auf, was sich in den aus-
gezeichneten experimentellen Ergebnissen ausdrückt.

Der zweite Schwerpunkt der Arbeit wendet die unregelmäßige Pyramide zur Segmenta-
tion von Bildern an. Auch hier folgt Dr. Haxhimusa nicht den ausgetretenen Pfaden, sondern hat
den ersten Algorithmus zur Bestimmung eines Minimal Spanning Trees (MST) von Borůvka
den Erfordernissen der dualen Graphenkontraktion in der Pyramide angepaßt. Kombiniert mit
den Selektionskriterien von Felzenszwalb (interner und externer Kontrast) entstehen Hierar-
chien von Segmentationen, die in den Experimenten zumindest gleich gut abschneiden, wie
die derzeit am häufigsten zitierte Methode des Normalized Cut von Shi und Malik. Dies wird
ausführlich bewertet und mit Segmentationsresultaten von Menschen verglichen. Statistisch
schneiden dabei die verglichenen Methoden etwa gleich gut ab. Qualitativ können die Ergeb-
nisse der neuen Methode als sehr gut eingestuft werden, was durch Vergleich der Variation der
Regionengrössen nachgewiesen wird.

Die Bedeutung der Resultate geht weit über die konkrete Anwendung auf digitale Bilder
hinaus.

• Im Forschungsprojekt TWIST-CV (’Tracking With Structure in Computer Vision’, FWF
P18716-N13) untersuchen wir derzeit die Erweiterungsmöglichkeiten für das Verfolgen
von Objekten (Tracking) auf Bildfolgen.

• In einer Zusammenarbeit mit Prof. Z. Pizlo steht die Plausibilität der Pyramide für die
Erklärung der enormen Effizienz, die Menschen bei der Lösung NP-vollständiger Pro-
bleme wie dem ’Traveling Salesman Problem’ (TSP) erbringen, im Zentrum.

• Die Erweiterung der Pyramide von zwei auf drei Dimensionen unter Einsatz von kombi-
natorischen Karten wurde in der von der Fakultät für Informatik ausgezeichneten Diplo-
marbeit von Herrn Dipl.Ing. Thomas Illetschko begonnen. Die Prinzipien sind dabei
dieselben, allein die Datenmenge erreicht die Grenze der derzeit sinnvoll zu bearbeiten-
den Daten.

• Interessante topologische Eigenschaften der unregelmässigen Pyramiden sind Gegen-
stand einer weiteren Forschungsrichtung. Erste Experimente lassen vermuten, dass die
mit den beschriebenen Prinzipien aufgebauten Pyramiden die Homologiegruppen der
zugrundeliegenden Daten erhalten. Das bedeutet, dass die riesigen Datenmengen auf
eine kleine Menge reduziert werden können, die dieselben topologischen Eigenschaften
hat wie das ursprüngliche Bild. Es ist daher möglich, topologische Eigenschaften mit
hochkomplexen Algorithmen auf einer kleinen Datenmenge zu bestimmen und sie dann
mit Hilfe der logarithmischen Zugriffspfade effizient auf die Originaldaten abzubilden.

Die Arbeit von Herrn Dipl. Ing. Dr. techn. Yll Haxhimusa beinhaltet zwei wichtige
neue Beiträge, die neue theoretische Einsichten herleitet, beweist und an zahlreichen prak-
tischen Beispielen austestet. Die vermittelten Inhalte werden methodisch einwandfrei, klar
und vollständig dargeboten. Der Stand des Wissens ist nicht nur durch die umfangreiche Bib-
liographie eindrucksvoll belegt, jedes Kapitel beinhaltet einen umfangreichen Überblick mit
entsprechend detailierten Zitaten. In vier sehr nützlichen Anhängen hat Dr. Haxhimusa das

vi

für die Arbeit notwendige Grundlagenwissen zusammengefaßt. Dadurch wird die Dissertation
zu einem in sich abgeschlossenen Beitrag mit sehr hohem Innovationsgrad und kann als Aus-
gangspunkt für viele neue Anwendungen dienen.

Wien im März 2007,
Univ. Prof. Dr. techn. Walter G. Kropatsch
Technische Universität Wien,
Fakultät für Informatik
Institut für computergestützte Automation,
Mustererkennung und Bildverarbeitung (PRIP-Labor)

Dedicated to my parents

Acknowledgments

This work would have not seen the light without the full support of many people and without a
stimulating working environment. Special thanks goes to my adviser Prof. Walter G. Kropatsch,
who taught me how to work scientifically. His guide and his critical comments improved essen-
tially the quality of this document. I would like to thank Prof. Luc Brun for his comments and
review of this document. An extra special thanks go to my colleagues Adrian Ion, Georg Langs
and Roland Glantz, with whom I had worked on different topics and problems. I would like to
thank all the PRIPlers for making PRIP Labs such a great place to work. Danke!

This work started to have a form (Gestalt) during the three months stay at Institut National
des Sciences Appliquées de Lyon in France. I would like to express many thanks to Prof. Jean-
Michel Jolion and his collaborators at LIRIS for a pleasant working atmosphere. Merci!

Deep appreciation goes to my parents, my girlfriend and my family for supporting me all
these years of my studies and being always whenever I needed them. Many thanks to my many
dear friends in Austria and Kosova, that have influenced my work on many ways. Falemnderit!

I am deeply in dept to many many other people all around the world for making things like
Emacs, TEX, LATEX, XFig, xv, and many other wonderful gadgets that I used to produce this
document. Thank you!

I would like to thank the Austrian Science Found (Fonds zur Förderung der wissenschaftlichen
Forschung) under grants P1444MAT, P14462INF and P18716-N13 for supporting this work.
Many thanks to Sammuel Peltier for translating the abstract into French. Merci! Also I would
like to thank Institute of Computer Aided Automation of Vienna University of Technology for
their support to print this book. Danke!

Abstract

The goal of computer vision is to make machines see, or at least to perform vision tasks with the
same quality, quantity and speed as humans and animals. Humans and animals are able to delin-
eate, detect and recognize objects in complex scenes ’in no time’. One of the most valuable and
critical resources in human visual processing is time, therefore a highly parallel model is the
biological answer dealing satisfactorily with this resource. Hierarchical representation and hier-
archical processing in computer vision systems are the credible approach to address space and
performance constraints, observed in human and animal visual systems. A widely used hierar-
chical representation in many areas of computer vision and pattern recognition is the (regular)
image pyramid, which employs both coarse to fine and fine to coarse processing strategies. The
main advantage of regular pyramids is rapid computation of global information in a recursive
manner, due to the logarithmic height with respect to the size of the input, making algorithms
running in this data structure having a logarithmic time complexity. However, regular image
pyramids lack shift invariance and do not preserve object connectivity as a result of the fixed
vertical neighborhood. Thus they should be abandoned as general segmentation methods. In
order to cope with shift invariance, among others, new hierarchical structures, the so called ir-
regular pyramids, should be used. However, the logarithmic height of irregular pyramids is lost,
as well as the computational efficiency. The non-logarithmic height is the main drawback of the
irregular structures. Employing graph theoretical formalisms to describe irregular hierarchical
structures allows an easy analysis of irregular graph pyramids. In order to be able to encode
multiple boundaries between regions we use dual graphs, and the build pyramid is called dual
graph pyramid.

In this thesis we mainly deal with dual graph pyramids and their application in image parti-
tioning. We introduce two new graph concepts and show that the presented methods, maximal
independent edge set (MIES) and maximal independent directed edge set (MIDES) used for the
construction of stochastic irregular pyramids, bound logarithmically the height of the pyramid.
We show that the two widely used stochastic decimation strategies, the maximal independent
vertex set (MIS) and data driven decimation process (D3P) do not lead to logarithmic tapering
graph pyramids. After studying different techniques to build the structure of the pyramid, we
are motivated to use these structures in a framework for bottom-up processing. Thus into this
irregular graph pyramid framework, we introduce a time efficient image partitioning method
based on Borůvka’s minimum spanning tree principle (MST)(BorůSeg). Although the goal of
image segmentation is a single partitioning of the image, and not necessarily an image hier-
archy, a hierarchical representation is needed, especially if the image context is not taken into
consideration. Even thought this method makes greedy decisions during the merging process it
is able to capture important perceptually groupings. We evaluate the quality of the segmentation

xiii

results of the MIES, MIS and D3P versions of this MST based method with respect to humans
and to other graph-based methods. The evaluation shows that in image segmentation, the dif-
ferent stochastic decimations used in this MST image partitioning method produce comparable
results. We summarize the major contribution of this thesis and discuss about the computation-
ally hard problem of graph matching and the applicability of hierarchical approaches in dealing
with its complexity.

Keywords: Hierarchical representation, image pyramid, regular pyramid, irregular pyramid, dual graph
representation, irregular graph pyramid, dual graph pyramid, dual graph contraction, graph
decimation strategies, maximal independent vertex set (MIS), maximal independent edge
set (MIES),maximal independent directed edge set (MIDES), data driven decimation process
(D3P), minimum spanning tree (MST), graph-based segmentation, MST based image par-
titioning and segmentation, Borůvka’s MST based image partitioning, segmentation evalu-
ation.

xiv

Zusammenfassung

Das Ziel im Bildverstehen1 ist, Maschinen sehen zu lassen, oder mindestens den Maschinen die
Fähigkeit beizubringen, Sehtätigkeiten mit derselben Qualität, Quantität und Geschwindigkeit
wie von Menschen oder Tieren durchzuführen. Menschen und Tiere sind imstande, Objekte
in komplexen Szenen sofort abzugrenzen, zu detektieren und zu erkennen. Daher ist Zeit eine
sehr kritische Ressource und die biologische Antwort im menschlichen visuellen System ist
ein hoch paralleles Model. Hierarchische Repräsentationen und hierarchische Verarbeitung im
Bildverstehen sind ein guter Ansatz um die Raum- und Leistungsbeschränkungen zu bewälti-
gen, die im menschlichen visuellen System beobachtet worden sind. Eine häufig verwendete
hierarchische Repräsentation in vielen Bereichen des Bildverstehens und der Mustererkennung
ist die (reguläre) Bildpyramide. Diese Repräsentation setzt beide Verarbeitungsstrategien ein,
grob zu fein und fein zu grob. Der Hauptvorteil der regulären Pyramide ist eine schnelle Be-
rechnung der globalen Information in rekursiven Verfahren, aufgrund der logarithmischen Höhe
bezüglich der Eingabegröße. Daher haben die Algorithmen, die auf diese Datenstruktur laufen,
eine logarithmische Zeitkomplexität. Dennoch mangelt die reguläre Bildpyramide an Schiebe-
invarianz und ist nicht in der Lage die Zusammenhänge der Objekte wegen der festgelegten ver-
tikalen Nachbarschaft zu gewährleisten. Daher sollte die reguläre Pyramide nicht als allgemeine
Segmentationsmethode verwendet werden. Zur Bewältigung der Schiebeinvarianz sollten neue
hierarchische Strukturen, die so genanten irreguläre Pyramiden, bevorzugt werden. Allerdings,
sowohl die logarithmische Höhe der irregulären Pyramide als auch die rechnerbetonte Effizienz
gehen verloren. Die Verwendung des Graphentheorieformalismus, um die irregulären Strukt-
uren zu beschreiben, ermöglicht eine einfache Analyse dieser irregulären Pyramide. Um in
der Lage zu sein mehrfache Grenzen zwischen Regionen zu repräsentieren, benutzen wir duale
Graphen und deshalb heißt die konstruierte Pyramide duale Graphenpyramide.

In dieser Doktorarbeit befassen wir uns hauptsächlich mit dualen Graphenpyramiden und
ihrer Anwendung in der Bildpartitionierung. Wir führen zwei neue Graphenkonzepte ein und
zeigen, dass die präsentierte Methoden (maximal unabhängige Kantenmenge (MIES) und maxi-
mal unabhängige gerichtete Kantenmenge (MIDES)), die für Konstruktion der stochastischen
irregulären Pyramide einsetzt, grenzen logarithmisch die Höhe der Pyramide ein. Wir zeigen
auf, dass die zwei häufig verwendete stochastische Dezimierungsstrategien (die maximal un-
abhängige Knotenmenge (MIS) und den datengesteuerte Dezimierungsprozess (D3P)) nicht zur
logarithmischen Höhe der Graphenpyramiden führen. Nach der Analyse der verschiedenen
Techniken für den Aufbau der Bildpyramidenstrukturen möchten wir diese Strukturen in einem

1Computer vision.

xv

Rahmen für bottom-up Verarbeitung einsetzen. Basierend auf den Borůvkas minimalen auf-
spannenden Baum (MST) präsentieren wir eine zeiteffiziente Bildpartitionierungmethode in
dieser irregulären Graphenpyramide (BorůSeg). Wenn der Bildkontext nicht in Betracht ge-
zogen wird, ist die hierarchische Repräsentation erforderlich, obwohl das Ziel der Bildseg-
mentation eine einzige Bildpartitionierung und nicht unbedingt eine Bildhierarchie ist. Selbst
wenn diese Methode nur greedy Entscheidungen während des Prozesses betrifft, ist sie imstande
wichtige Gestaltgruppierungen wahrzunehmen. Wir vergleichen die Qualität der Segment-
ationsergebnisse von MIES, MIS und D3P Versionen dieser MST Methode mit menschlichen
Bildsegmentationen und Segmentationen von anderen graphenbasierten Methoden. Diese Be-
wertung zeigt, dass verschiedene stochastische Dezimierungen in MST basierte Bildsegment-
ation dieselben vergleichbare Ergebnisse liefert. Wir fassen die wichtigsten Beiträge dieser
Doktoratarbeit zusammen, und schließen die Diskussion über das Graph-Matching Problem
und die Anwendbarkeit der hierarchischen Ansätze, um die Komplexität dieses schwerrechen-
baren Problems zu lösen.

Schlagwörter:Hierarchische Repräsentation, Bildpyramide, reguläre Pyramide, irreguläre Pyramide, du-
ale Graphenrepräsentation, irreguläre Graphenpyramide, duale Graphenpyramide, duale
Graphenkontraktion, Graphdezimierungsstrategien, maximal unabhängige Knotenmenge
(MIS), maximal unabhängige Kantenmenge (MIES), maximal unabhängige gerichtete
Kantenmenge (MIDES), datengesteuerter Dezimierungsprozess (D3P), minimaler auf-
spannender Baum (MST), graphbasierte Segmentation, Borůvka MST basierte Bildseg-
mentation, Segmentationevaluation.

xvi

Résumé

Le but de la vision par ordinateur est de faire voir les machines ou au moins de leur faire ac-
complir les tâches de vision avec la même qualité, quantité et rapidité que les hommes ou les
animaux. Les hommes et les animaux sont capables de dépeindre, détecter et reconnaı̂tre des
objets dans des scènes complexes en ’un rien de temp’. Le temps est une ressource cruciale et
la réponse biologique à ce problème dans le système de vision humain est un modèle parallèle
élevé. L’approche crédible qui prend en compte les contraintes d’espace et de performance
observées dans le système de vision humain est la représentation hiérarchique et le processus
hiérarchique pour les systèmes de vision par ordinateur. Les pyramides (régulières) sont une
représentation hiérarchique largement utilisée dans beaucoup de domaines de la vision par or-
dinateur et de la reconnaissance de formes. Cette représentation emploie les deux stratégies de
traitement: de grossier à fin et de fin à grossier. L’avantage principal de la pyramide régulière
est le calcul rapide de l’information globale de façon récursive. En effet elle a une hauteur loga-
rithmique, fonction de la taille de l’entrée, de sorte que l’algorithme exécuté dans cette structure
de données a une complexité temporelle logarithmique. Cependant, la pyramide régulière ne
présente pas d’invariance de déplacement et ne préserve pas la connectivité à cause du voisi-
nage vertical fixe. C’est à dire que si un objet dans une image est soumise à une translation
d’un seul pixel, la description de l’objet dans la pyramide résultante n’est pas la même. Par
conséquent la pyramide régulière devrait être abandonnée comme méthode de segmentation
générale. Parmi d’autres nouvelles structures hiérarchiques, la pyramide irrégulière devrait être
utilisée pour faire face à cette invariance de déplacement. Toutefois la hauteur logarithmique de
cette pyramide irrégulière est perdue, ainsi que l’efficacité de calcul. L’utilisation du formalisme
théorique des graphes pour décrire des structures hiérarchiques irrégulières permet une analyse
facile de cette pyramide graphique irrégulière. Pour être capable d’encoder les frontières mul-
tiples entre les régions, nous employons les graphes duaux, ainsi la pyramide construite est
apelée pyramide de graphes duaux.

Dans cette thèse nous traiterons principalement des pyramides de graphes duaux et de
leurs applications dans la partition d’images. Nous introduirons deux nouveaux concepts de
graphes et montrerons que les méthodes présentées ensemble maximal d’arêtes indépendantes
(maximal independant edge set MIES) et ensemble maximal d’arêtes orientées indépendantes
(MIDES) utilisées pour la construction de pyramides irrégulières stochastiques délimitent de
facon logarithmique la hauteur de la pyramide. Nous montrerons que les deux stratégies de
décimation couramment employées: la méthode de décimation stochastique (MIS) et le proces-
sus de décimation orienté données (D3P) ne conduisent pas à des pyramides graphiques effilées
logarithmiques. Après l’étude de différentes techniques pour construire la structure de la pyra-
mide, nous utiliserons ces structures dans un cadre de calcul de bas en haut dans lequel les

xvii

primitives sont de même type dans toute la hiérarchie. Ensuite, nous introduirons une méthode
de partition d’images dans cette pyramide graphique irrégulière fondée sur le principe d’arbre
couvrant minimal de Borůka (MST) qui est donc efficace dans le temps (peu coûteuse en temps)
(BorůSeg). Bien que le but de la segmentation d’images soit une partition simple de l’image et
pas nécessairement une hiérarchie, on a besoin de la représentation hiérarchique, en particulier
si on ne prend pas en considération le contexte de l’image. Bien que cette méthode prenne
des décisions radicales pendant le processus de fusion, elle est capable de saisir des groupages
importants pour la perception. Nous comparerons la qualité des résultats des segmentations à
l’aide des versions MIES, MIS et D3P de cette méthode avec celle des hommes et avec d’autres
méthodes basées sur les graphes. Cette évaluation montre que différentes décimations stochas-
tiques utilisées dans la méthode MST de partition d’images fournissent des résultats compara-
bles pour la segmentation d’images. Nous résumerons la contribution majeure de cette thèse
et discuterons du problème de l’appariement des graphes et de l’applicabilité des approches
hiérarchiques dans le traitement de la complexité de ces problèmes de calcul difficiles.

Mot Clé:Représentations hiérarchiques, pyramides d’images, pyramides régulières, pyramides irrégulières,
représentations de graphes duaux, pyramides irrégulières de graphes, pyramides de graphes du-
aux, contraction de graphes duaux, décimation de graphes duaux, MIS, MIES, MIDES, D3P,
MST, segmentation d’images basée sur la méthode MST, evaluation des segmentations.

xviii

Përmbledhje

Qëllimi i analizës së imazheve me llogaritës2 është të bëjë makinat të shofin, ose së paku
të bëjë makinat të kryejnë detyra me të njejtin kualitet, kuantitet dhe shpejtësi sikurse si-
stemi vizuel i njeriut apo i shtazëve. Njeriu dhe shtazët janë në gjendje shpejt dhe pa mund
të madh, të kufizojnë, detektojnë edhe njofin objektet në skena shumë komplekse. Kjo nënkup-
ton se koha është njëra prej resurseve më të çmuara në sitemim vizuel të njeriut. Përgjegjja
biologjike e sistemin vizuel të njeriut ndaj përdormit minimal të këtij resursi është modeli ultra
paralel. Reprezentacioni hierarkik dhe procesimi hierarkik janë qasje plauzible në zgjidhen
e problemeve të obeservuara në sistemin vizuel të njeriut për shkak të kufizimeve në perfo-
rmancë dhe në hapsirën për ruajtjen e informatave. Një reprezentacion shumë i popullarizuar
në shumë fusha të analizës së imazhit është piramida (e regullt) e imazhit. Ky reprezenta-
cion ofron të dy mundesitë e procesimit: poshtë-lartë (bottom-up) dhe lartë-poshtë (top-down).
Përparsia kryesore e piramidave të regullta është llogaritja e shpejtë e informatave globale
në menyrë rekursive përshkak të lartësisë logaritmike të saj. Kjo kushtëzon që algoritmet që re-
alizohen në këtë reprezentacion kanë kompleksitet kohorë logaritmikë. Megjithatë, pyramidet
e rregullta nuk kanë invariance në zhvendosje dhe nuk kanë mundesi të ruajnë tërsinë e objek-
teve, përshkak të fqinjësisë vertikale fikse. Prandaj piramidet e rregullta nuk duhen të përdoren
si metoda gjenerale në segmentimin e imazheve. Në mënyre që të zgjidhen problemet e in-
variancës në zhvendosje, në mes tjerash, struktura të reja hierarkike duhet të përdoren, të ashtu
quajturat pyramidat të parregullta. Fatkeqësisht, lartësia logaritmike e piramidave si një veti
e dëshiruar, humbet e me këtë edhe eficienca llogaritëse. Përdorimi i teorisë së grafeve për
të përshkruar këto struktura hierarkike mundësonë një analizë më të thjeshtë të graf pyramidave
të parregullta. Për të mundësuar reprezentimin e më shumë kufinjëve në mes të dy regjioneve,
ne përdorim grafet duale, si rrjedhim piramida e ndërtuar mbi to quhet graf pyramida duale.

Në këtë temë ne kryesisht studjojmë graf piramidat duale dhe aplikimet e saja në particio-
nim e imazhit. Ne paraqesim dy graf koncepte të reja teorike dhe demostrojmë se metodat
e prezentuara, bashkësia maksimale e arqeve të pavarura (maximal independent edge set -
MIES) dhe bashkësia maksimale e arqeve të pavarurt të drejtuara (maximal independent di-
rected edge set - MIDES) që përdoren në konstrukcionin e piramdave të parregullta stohastike,
kufizojnë lartësinë e pyramidës logaritmikisht. Ne po ashtu demostrojmë se të dy strategjitë e
popullarizuara decimuese stohastike, bashkësia maksimale e nyjeve të pavarura (maximal in-
dependent set - MIS) dhe procesi decimues i mbështetur në të dhëna (data driven decima-
tion - D3P) nuk qojnë në graf piramda të zvogluara logaritmikisht. Pas studimit të teknikave
të ndyshme për konstruktimin e strukturës së piramidës, ne jemi të motivuar të përdorim këto

2Computer vision.

xix

struktura në kuadër të një sistemi për bottom-up procesim në të cilin të gjithë primitivët vi-
sual janë të të njejtit tip në gjithë hierarkinë. Ne prezentojmë një metodë për particionim e
imazheve në këtë graf pyramidë të parregullt të bazuar në pemën minimale të bashkruar (min-
imum spanning tree - MST) sipas Borůvka, prandaj metoda është eficiente në kohë (BorůSeg).
Edhe pse qëllimi i segmentimit të imazhit është një particionim i vetëm i imazhit, dhe jo me-
doemos një hierarki e imazheve, reprezentacioni hierarkik është i nevojshëm, sidomos nëse
konteksti i imazhit nuk mirret parasysh. Ideja prapa kësaj është se nëse nuk dimë se cka jemi
duke kërkuar në imazhë, atëhere duhet përdorur një reprezentacion hierakik të imazhit. Me
gjithë që kjo metodë merr vendime lakmiqare gjatë procesit të shkrirjes së regjioneve, prap se
prap është në gjendje të zaptojë grupimet perceptuale të rëndësishme. Në vlerësojmë kualitetin
e rezultateve segmentuese të MIES, MIS dhe D3P versioneve të kësaj metode të bazuar në MST
në varshmëri me rezultatet segmentuese të bëra nga njerzit dhe nga metodat tjera po ashtu
të bazuare në grafe. Evaluacioni dëfton se në segmentimin e imazheve, decimimet e ndyshme
stohastike të përdorura në MST metodën e particionimit të imazheve shfaqin rezultate të kra-
hasueshme. Në të vërtete asnjëra nga metodat e krahasuara nuk është dukshëm më e mirë.
Ne përmbledhim kontributet kryesore të temës dhe përfundojmë diskutim me përshkrimin e
një problemi të rëndë në shkencat kompjuterike, graph matching, dhe përdorim e mundshëm
të hierarkisë në zgjidhjen e kompleksitetit kompjuterik të këtij problemi.

Fjalët kryesore: Reprezentacioni hierarkik, imazh piramida, piramida e regullt, piramida e paregullt, re-
prezentacioni i grafeve duale, strategjitë decimuese të grafit, bashkësia maksimale e ny-
jeve të pavarura (MIS), bashkësia maksimale e arqeve të pavarura (MIES), bashkësia
maksimale e arqeve të pavarur të drejtuara (MIDES), procesi decimues i mbështetur
në të dhëna (D3P), pema minimale e bashkruar (spanning) (MST), metoda e parti-
cionimit të imazhit sipas MST, metoda e particionimit të imazhit sipas MST Borůvkës,
evaluacion i segmentimeve.

xx

Contents

Abstract xiii

Zusammenfassung xv

Résumé xvii

Përmbledhje xix

Contents xxi

1 Introduction 1
1.1 Introduction . 1
1.2 Objectives . 5
1.3 Structure of the Thesis . 7

2 Basics of Graph Theory 9
2.1 Introduction . 9
2.2 Basic Definitions . 10
2.3 Paths and Cycles . 14
2.4 Connectivity and Graph Components . 16
2.5 Trees and Forests . 17
2.6 Operations on Graphs . 18
2.7 Vector Spaces on Graphs . 22

3 Image Pyramid 27
3.1 Introduction . 27
3.2 Discrete 2D Images . 29
3.3 Pyramid Architecture . 30
3.4 Summary . 37

4 Irregular Dual Graph Pyramids 39
4.1 Introduction . 39
4.2 Planar and Dual Graphs . 41
4.3 Dual Image Graphs . 44
4.4 Dual Graph Contraction . 49

xxi

CONTENTS

4.5 Dual Graph Pyramid . 56
4.6 Summary . 61

5 Optimizing the Pyramid Structure 63
5.1 Introduction . 63
5.2 Maximal Independent Vertex Set (MIS) . 65
5.3 Maximal Independent Edge Set (MIES) . 70
5.4 Maximal Independent Directed Edge Set (MIDES) 73
5.5 Data Driven Decimation Process (D3P) . 79
5.6 Comparing the Speed of Reduction . 80
5.7 Comparing the Path Lengths . 93
5.8 Top-down Optimization . 96
5.9 Conclusion . 98

6 Irregular Graph Image Partitioning 99
6.1 Introduction . 99
6.2 Minimum Weight Spanning Tree . 104
6.3 Minimum Spanning Tree with DGC . 111
6.4 Hierarchy of Partitions . 113
6.5 Experiments on Image Graphs . 119
6.6 Conclusion . 125

7 Evaluation of Segmentation Methods 127
7.1 Introduction . 127
7.2 Evaluated Graph-based Segmentation Methods 128
7.3 Evaluating Segmentations . 135
7.4 Segmentation Benchmarking . 137
7.5 Conclusion . 146

8 Epilogue 149
8.1 Conclusion . 149
8.2 Contribution and Evaluations . 150
8.3 Outlook . 151

Appendices 154

A Vector Spaces 155
A.1 Groups and Fields . 155
A.2 Vector Space . 156

B A Procedure for Constructing Dual Graphs 161
B.1 Constructing the Dual Graph of a Plane Graph 161

xxii

C Data Structures Representing Graphs 163
C.1 Representation of Graphs . 163
C.2 Representation of Dual Graphs . 165
C.3 Representation of Dual Graph Pyramids . 166

D Names of Images on Berkley Image Database 167
D.1 Corresponding Numbers of Images . 167

Bibliography 169

List of Symbols and Abbreviations 189

Index 191

xxiii

CHAPTER 1

Introduction

” ’So what’s the point of showing me something I can’t see?’
’So that you understand that just because you see something, it doesn’t mean to say
it’s there. And if you don’t see something, it doesn’t mean to say it’s not there. It’s
only what your senses bring to your attention’ ”

“Mostly Harmless” by Douglas Adams.

1.1 Introduction

Vision in humans is one of the most valuable senses by which the qualities of an object (as
color, luminosity, shape and size) constituting its appearance are perceived and which is me-
diated by the eye [Webster, 1913]. Humans and animals rely heavily on this sense to extract
important information about the surrounding environment. This information is extracted and
processed from vision cues in such quality, quantity and speed necessary for the subject to
perform particular actions. All these tasks driven by vision are performed by humans and an-
imals seemingly without effort. The goal of computer vision1 is to make machines to see,
or at least make machines to perform vision tasks with the same quality, quantity and speed
as humans or animals. This is the ’holy grail’ in computer vision, a goal which is not yet
reached. Even though, computer vision scientists are not limited to mimic biological vision,
there are techniques applied in computer vision inspired by biological vision. On the other
side techniques developed by computer vision are valuable source of computational models for
biological vision [Rosenfeld, 1989].

1Called also image understanding or machine vision.

1

1. Introduction

Humans and animals are able to delineate, detect and recognize objects in complex scenes
’at a blink of an eye’. One of the most valuable and critical resources in human visual process-
ing is time2, therefore a highly parallel model is the biological answer dealing satisfactorily
with this resource, since ’all complex behaviors are carried in less then 100 steps’3 [Feldman
and Ballard, 1982]. That is, since neurons have a computational speed of a few milliseconds
and each perceptual phenomenon occurs in a few hundreds of milliseconds yield that biologi-
cally motivated algorithms must be carried out in less than 100 steps. [Tsotsos, 1988a, Tsotsos,
1990, Tsotsos, 1992] performed complexity analysis to show that hierarchical internal represen-
tation and hierarchical processing are the credible approach to deal with space and performance
constrains, observed in human visual systems. Moreover, [Tsotsos, 1988a, Tsotsos, 1988b]
concludes that in addition to spatial parallelization, other characteristics are necessary in visual
systems, among others:

• hierarchical organization through abstraction of prototypical visual knowledge, such
that search time is minimized, at least logarithmically,

• receptive fields are localized, because the physical world is spatio-temporally localized
and that events and objects, and their physical characteristics, are not arbitrarily spread
over time and space,

• semantic content is maintained by the hierarchical abstraction of the input arrays, such
that the number of retinotopic elements is reduced,

• higher level maps4 can be directly accessed through input abstraction hierarchy computa-
tions,

• prediction for the overall architecture of the visual system in terms of the size and number
of maps,

• a bottom-up ’pre-attentive’ performance similar to humans, and

• a top-down control mechanism.

Hence, hierarchical structure might be the answer to the time and space complexity in
computer vision systems. It is now accepted that the human visual system has a hierarchical
architecture and that the visual mechanisms can be adequately modeled by hierarchical algo-
rithms. Specifically, neuro-physiological and neuro-anatomical data indicate that the visual
systems of cats, monkeys and human beings are hierarchical, with neurons on lower layers hav-
ing smaller receptive fields and neurons on higher layers having larger receptive fields [Zeki,
1993]. Pyramid algorithms are adequate models for the Gestalt rules of perceptual organization
such as proximity, good continuation, etc. [Pizlo et al., 1997, Pizlo, 2001]. In the case of size
processing, modeling visual processes involves both bottom-up (fine to coarse) and top-down
(coarse to fine) analysis. The human visual system takes advantage of the ability to distinguish
between highly valuable and less relevant regions in the field of view, employing speed-accuracy
trade-off, improving its performance. [Stark and Privitera, 1997, Privitera and Stark, 2000] and
[Chernyak and Stark, 2001] simulating human visual system describe two strategies to obtain
and apply information about the importance of different regions of an image: the bottom-up

2Evolution conditioned the usage of this resource sparsely, because of survival necessity.
3Called 100 step rule.
4Called layers in image pyramid framework.

2

1.1 Introduction

methods retrieve features only from the input image, and top-down methods are driven by avail-
able knowledge about the world. More recently, hierarchical (pyramid) algorithms have been
used to model the mental mechanisms involved in solving the visual version of the Traveling
Salesman Problem [Graham et al., 2000], as well as other types of visual problems [Pizlo and
Li, 2003, Pizlo and Li, 2004]. Humans seem to represent states of a problem by clusters (re-
cursively) and determine the sequence of transformations from the start to the goal state by a
top-down sequence of approximations. This approach leads to algorithms whose computational
complexity is as low as that of the mental processes (i.e. linear), and which produce solution
paths that are close to optimal [Pizlo et al., 2006].

Local processing is important in early vision, since operations like convolution, threshold-
ing, mathematical morphology etc. belong to this class of operations. However, this approach
is not efficient for high or intermediate level vision, such as symbolic manipulation, feature ex-
traction etc., because these processes need both local and global information. Therefore a data
structure must allow the transformation of local information (based on sub-images) into global
information (based on the whole image), and be able to handle both locally distributed and glob-
ally centralized information. This data structure is known as hierarchical architecture [Jolion
and Rosenfeld, 1994]. This structure allows distribution of the global information to be used
by local processes. This thesis mainly deals with the hierarchical structure called pyramid.
Pyramids were first formalized in [Tanimoto and Pavlidis, 1975], as solution of contour detec-
tion and delineation in digital images, and in conjunction with the merge and split segmentation
algorithm of [Horowitz and Pavlidis, 1976] are used extensively in image segmentation.

The hierarchical processing paradigm, sometimes also called fine to coarse and coarse to
fine processing strategy are extensively used in many areas of computer vision and pattern
recognition, for an overview see [Rosenfeld, 1984, Jolion and Rosenfeld, 1994, Kropatsch,
1991]. Generally, algorithms that need O(n2) steps5 on a array, need O(log n) on a pyra-
mid [Bischof, 1995]. The main advantage of the hierarchical structures is rapid computation
of a global information in a recursive manner. The change of local over to global informa-
tion, e.g. from pixels arrays to descriptive data structures, is a point of discontinuity in vision
systems [Jolion and Rosenfeld, 1994]. Hierarchical structures offer a way to alleviate this dis-
continuity, where global structures become local in higher levels of this hierarchy. [Rosenfeld,
1984] writes that ”pyramid, in general, are data structures that provide successfully condensed
representation of the information in the input image”; e.g. intensity image can be condensed
thus producing a stack of images of reduced resolution; or more complex descriptive informa-
tion inferred from the (sub-)image itself can be condensed as well, producing a hierarchy of
coarser version of these features.

The notion pyramid is broadly used to characterize the so called regular pyramid: an
ordered stack of images defined on a regular square grid, such that resolution of each image
toward the top is reduced by a factor of at least r = 2. One of the main characteristics of regular
pyramid is that it has fixed height (in fact the height is logarithmic, e.g. for a reduction factor
of r = 2, the height is h = log2 n), making algorithms running in this data structure having
a logarithmic time complexity. However, [Bister et al., 1990] show that regular pyramid lack
shift invariance and do not preserve connectivity because of the fixed vertical neighborhood i.e.
if an image is translated or rotated by a pixel the resulting pyramid is not unique. Moreover,

5n is the image size.

3

1. Introduction

[Bister et al., 1990] concludes that regular pyramids should be rejected as general segmentation
methods. In order to cope with this shift invariance, among others, [Meer, 1989, Montanvert
et al., 1991, Jolion and Montanvert, 1992, Kropatsch and Montanvert, 1991b] presented new
hierarchical structures the so called irregular pyramid. These structures have been success-
fully applied in many image analysis problems. If these hierarchical structures are posed using
graph formalism, then they are called irregular graph pyramids. The logarithmic height of
this pyramid is however lost [Montanvert et al., 1991, Bischof, 1995], as well as the compu-
tational efficiency. This non-logarithmic height happens, because the degree of the cell is not
bounded, and is the main drawback of the irregular structures [Bischof, 1995, page 36]. Thus
there is a need to study this irregular structure, and try to bound their height (Chapter 5).

Graph hierarchies allow to use other spatial orderings of image primitives, not only the
regular spatial structures. Image primitives (e.g. pixels, edges, etc) are represented by vertices
and their relations by edges of the graph. These vertices and edges are attributed. A classical
example of graph representation of a set of primitives is the region adjacency graph, where
each image region is represented by a vertex, and adjacent regions are connected by an edge.
Attributes of vertices can be region area, average gray value, region statistics etc.; and attributes
of edges can be the length of the boundary, the curvature, etc. between pair of adjacent regions.
The graph hierarchy is then build by aggregating these primitives. The main application area of
the region based representation is image segmentation and object recognition. Note that region
adjacency graph representation is capable to encode only the neighborhood relations. In order
to be able to encode multiple boundaries between regions6 we use dual graphs [Kropatsch,
1994], i.e. we use the region adjacency graph and its (geometrical) dual graph7. Note that the
dual graph is always defined for a planar graph. In contrast (simple) graphs are able to encode
only one boundary between regions8. The dual graph representation may be used to characterize
inclusion relationship as well. The hierarchy built on this dual graph representation is called
irregular dual graph pyramid.

Segmentation is an ill-posed problem and up to now there is no standard approach to seg-
mentation. Generally speaking segmentation is partitioning of the image plane into segments
such that they satisfy homogeneity criteria, and such that the union of adjacent segments does
not. A homogeneity criteria will not determine a unique segmentation [Nacken, 1994]. Seg-
mentation methods that do not take the context of the image into consideration cannot produce
a ’good’ segmentation. Moreover, the quality of the segmentation produced by a method is
evaluated with segmentation done by humans (as it is done in Chapter 7). For an overview on
segmentation techniques see [Pal and Pal, 1993]. [Bister et al., 1990] reject the use of irreg-
ular pyramid because ”we do not know how many levels we will have, or how many pixels
are in each level thus e.g. eliminating the use of pyramid architectures for implementation of
this approach”. Anyhow, since irregular pyramid approach does not take the image context
into consideration it has large potential application areas in computer vision. On the other side
bottom-up methods are restricted because they cannot use all types of context knowledge in
the image content during the construction of the hierarchy. Problems arise if we require that
every salient region is reduced to only one cell and that they all are represented in the same
level of the pyramid. For both, irregular and regular segmentation algorithms, one can envision

6This is called by [Brun and Kropatsch, 2006] meets each relation.
7Sometimes called extended region adjacency graph (RAG+).
8This is called by [Brun and Kropatsch, 2006] meets exist relation.

4

1.2 Objectives

counterexamples. This generally occurs since very small and very large regions cannot be at
the same level. Anyway [Nacken, 1994] shows that it is possible to parse the hierarchy in a
top-down manner by using a relinking principle to repair for the ’errors’ that the bottom-up
methods have done. Moreover [Kropatsch and BenYacoub, 1996] shows that any segmentation
can be represented in one single layer, by using equivalent contraction kernels.

There are many reasons for using hierarchical paradigm in image partitioning [Nacken,
1994]:

• the scale at which interesting structure is important is not known in advance, therefore a
hierarchical image representation is needed,

• efficiency of computation; the results obtained from the coarse representation are used
to constrain the costly computation in finer representations, and

• bridging the gap between elementary descriptive elements (e.g. pixels) and more de-
scriptive elements, (e.g. regions).

Although the goal of image segmentation is producing a single partition of the image, and
not necessarily a hierarchy, the hierarchical representation is needed, especially if the image
context is not taken into consideration. The idea behind this is if you do not know what you
are looking for in an image, then use a hierarchical representation of the image, and moreover
a data structure that allows the ability to access the finest partitioning (in our case the bottom
of the pyramid) or in case of ’bad’ partitioning the faculty to repair this ’errors’. Even though
the image partitioning methods (ours as well) that do not take the context of the image into
consideration cannot give ’good’ segmentation, they can be valuable tools in image analysis
in the same sense as the efficient edge detectors are. Note that efficient edge detectors do not
take the context of the image also, and in spite of this, are widely used tools in early vision.
Therefore, the low-level coherence of brightness, color, texture or motion attributes should
be used to come up sequentially with hierarchical partitions. Mid and high level knowledge
can be used to either confirm these groups or select some further attention. A wide range
of computational vision problems could make use of segmented images, just to mention some:
object recognition, image indexing, video representation by regions etc, were such segmentation
rely on efficient computation.

1.2 Objectives

The major goal of this thesis is the in-depth analysis of the irregular graph pyramids. Therefore
we studied in details the structure of graph pyramids, and their application in image segmen-
tation. The overall goal is the development of an efficient framework for hierarchical image
processing. As mentioned earlier, the logarithmic height of the irregular pyramid is lost [Mon-
tanvert et al., 1991, Bischof, 1995], as well as the computational efficiency. Not being able to
bound degree of the cell is the main drawback of the irregular structures [Bischof, 1995, page
36]. Therefore we posed a question:

Whether it is possible to bound the height of the irregular pyramid ?

and thus improve the computational efficiency of irregular pyramids. In fact we were looking
for a possibility to bound the degree of the surviving cells. In the first part of this thesis we will

5

1. Introduction

deal with this question (Chapter 5). The problem is posed in a graph theoretical framework. We
introduce two new graph concepts and show that the presented methods (maximal independent
edge set (MIES), and maximal independent directed edge set (MIDES)) used for the construc-
tion of the stochastic irregular pyramid bounds the height of the pyramid, i.e. the resulting
pyramids are logarithmically tapered. These methods are compared with the two widely used
methods: maximal independent set (MIS) [Meer, 1989] and data driven decimation process
(D3P) [Jolion, 2003] (see Chapter 5). In this comparison only the structure of the irregular
pyramid is taken into consideration.

These new methods can be employed instead of the stochastic decimation algorithm, with
the advantage of producing less levels in the hierarchy, and thus being more efficient, e.g.
in connected component analysis, distance transform, segmentation, efficient data reduction
i.e. efficient memory consumption, enhanced principal component analysis, visual navigation,
monotonic dual graph contraction, and possibly watersheds9. Even though these methods are
developed in the image analysis framework, they can be used in computer graphics as well
especially in mesh simplification with an additional property of preserving the topology.

Humans and animals seem to be very efficient in seeing (segmenting) regions by well de-
fined edges. In Chapter 5 we show how to bound the irregular pyramid structurally. Thus we are
motivated to use these structures into a framework for bottom-up processing in which primitives
are of the same type in the whole hierarchy. Our goal in the second part of the thesis is defining
a method that gathers global information and detects global structures as fast as possible and
without effort which is necessary for real-time perception for example (Chapter 6). Therefore
the framework should be able to:

• capture perceptually important regions (or groupings), and

• be efficient in time, possibly running in linear time with respect to the number of pixels
in the image.

As well as be able to represent images in a hierarchical manner with different levels of granular-
ities. The gap between elementary elements (e.g. pixels) and more abstract representation (e.g.
regions) should be closed. Since we use the graph formalism the method presented is general
enough and can be applied to any tessellation of image plane. A strong connection of hierar-
chical image analysis paradigm to perceptual grouping is established in [Rosenfeld, 1986]. We
have chosen to use the minimum spanning tree (MST) principle, especially Borůvka’s MST al-
gorithm since it is inherently parallel and is naturally integrated into the irregular graph pyramid
framework. Another motivation for using the MST principle is the computational time complex-
ity (nearly linear) and that this algorithm is deterministic. Dual graph contraction [Kropatsch,
1994] is employed to reduce the size of graphs and thus produce naturally a hierarchy of image
graphs. Therefore different decimation strategies (MIES, MIS and D3P) are used in dual graph
contraction to build these hierarchical partitioning of images.

We show that the irregular image partition method based on minimum spanning tree prin-
ciple (Chapter 6) is capable to cope with indoor and real world images in which at least one
region is distinctive, and produce perceptual regions satisfactorily. In fact the method is able to
handle ‘busy regions’ 10 as well as ‘smooth regions’ 11. But as expected, not all possible seg-

9There are some links between monotonic dual graph contraction and the watersheds algorithms.
10Regions with high variability of intensity e.g. bush, hair etc.
11Regions with low intensity variability, e.g. grass, house etc.

6

1.3 Structure of the Thesis

mentations are included in this hierarchy, and the exhausted search of all possible segmentation
is not computationally efficient. The ’errors’ done during the merging process can be overcome
by relinking process like in [Nacken, 1994]. Also one can produce a single segmentation by
finding cells12 representing a wanted region by employing techniques as in [Lallich et al., 2003].
These two last matters are not studied in this thesis. In order to test the quality performance, we
evaluated (Chapter 7) this image partitioning method (all versions: MIES, MIS and D3P) with
segmentation made by humans. Thus, a question is posed

Whether different decimation strategies produce different segmentation results?

It is shown that different decimation strategies (MIS, MIES and D3P) of this method are com-
parable to each other i.e. the experimental data shows that the results of segmentations are not
changed to much by using different decimation strategies. The comparison of other graph-based
segmentation methods (normalized cut [Shi and Malik, 2000] and Kruskal’s minimum spanning
tree method [Felzenszwalb and Huttenlocher, 2004]) with humans shows that the segmentation
results are comparable as well. Moreover all the methods studied show similar segmentation
results.

The segmentation method presented in this document is successfully employed to detect
fixation point in an eye tracking method, see [Bartelma, 2004, Roy et al., 2004], as well as
in segmenting multi-spectral satellite data [Kaiser, 2004]. [Bartelma, 2004, Bartelma and Roy,
2006] use this method for robust object detection. A similar graph based segmentation method is
used in [Keselman and Dickinson, 2005] as the first stage in a generic modeling from examples,
in real-time robot navigation [Sanfeliu et al., 2002], and in hierarchical graph matching of
panoramic images [Glantz et al., 2004]. A different field of application of the result presented
in this thesis might be in the filed of psychology trying to simulate the mental mechanism on
humans that are evoked by solving the traveling salesmen problem or the minimum spanning
tree as shown in [Pizlo and Li, 2003].

1.3 Structure of the Thesis

An effort is done to make this document as self contained as possible, so that it can be read
without to much browse into the literature. Each chapter begins with a short introduction and
ends with a short summary. Throughout this document different aspects of irregular graph
pyramids are presented.

After the introductory Chapter 1, the basic concepts from the graph theory used throughout
this document are presented in Chapter 2. An introduction into the image pyramid concepts are
given in Chapter 3. Dual graph representation, dual graph contraction algorithm and the way
how the dual graph pyramid are build are described in Chapter 4.

A detailed discussion of different graph decimation methods for building irregular graph
pyramids is discussed in Chapter 5. It is shown that stochastic pyramid in some cases is not
logarithmically tapered, i.e. the decimation process does not exponentially reduce the number
of cell successively. The main reason for this behavior is that the cell’s neighborhood is not
bounded, for some cases the degree of the cell increases exponentially. In Chapter 5 we discuss
methods that overcome this drawback.

12A single cell is preferred if it exist, which is not always the case.

7

1. Introduction

A hierarchical image partitioning method based on dual graph representation and minimum
spanning tree is shown in Chapter 6. This method is capable to capture important perceptual
groupings satisfactorily based only on local information. The quality of the segmentation results
of all version of this method are compared with human segmentation in Chapter 7. It is shown
that different flavors (MIS, MIES and D3P) of this method are comparable to each other as well
as to other graph-based segmentation methods.

Finally in the last Chapter 8 future research points are discussed, especially the problem of
graph matching of large graphs.

This document contains some appendices to clarify in more details some concepts and re-
sults mentioned in chapters. Appendix A introduces vector spaces, used to explain the duality
concept of graphs; Appendix B discusses a procedure on how to build a dual graph out of the
given planar one; Appendix C addresses the memory requirement for different data structures
used to represent graphs; and finally in Appendix D names of images used in segmentation
evaluation (Chapter 7) are given.

8

CHAPTER 2

Basics of Graph Theory

” For one has only to look around to see ’real-world graphs’ in abundance, either
in nature (trees, for example) or in the works of man (transportation networks, for
example). Surely someone at some time would have passed from some real-world
object, situation, or problem to the abstraction we call graphs, and graph theory
would have been born.”1

by D. R. Fulkerson.

Summary In this chapter a short introduction of the basic definitions from graph theory will be given.
These definitions will help to follow the discussion given in rest of the document as well as
for easy reference to the nomenclature used afterward.

Keywords: Graph, multi-graph, vertex neighbor, edge adjacency, vertex degree, subgraphs, walk, paths,
cycles, connectivity, forest, tree, vertex removal, edge removal, vertex identifying, edge
contraction.

2.1 Introduction

In 1736, Leonard Euler was puzzled whether it is possible to walk across all the bridges on the
river Pregel in Königsberg2 only once and return to the starting point (see Figure 2.1a). This is
how Euler stated the problem in ”Solutio problematis ad geometriam situs pertinentis.” [Euler,
1736] (an English translation of this paper can be found in [Biggs et al., 1976]):

1From preface to Studies in Graph Theory, Part II, The Mathematical Association of America, 1975.
2Nowadays Pregoyla in Kaliningrad.

9

2. Basics of Graph Theory

A

B

C

D
a

b

c
d

e

f

g

Pregel vA

vB

vC

vD

ea
eb

ec
ed

ee

ef

eg

(a) Seven bridges on the river Pregel (b) Abstracted graph
A, B, C and D – landmasses vA, vB, vC , and vD – vertices

a, b, c, d, e, f , and g – bridges ea, eb, ec, ed, ee, ef , and eg – edges

Figure 2.1: The seven bridges problem and the abstracted graph.

”In Königsberg in Prussia, there is an island A, called Kneiphoff ; the river (Pregel)
which surrounds it is divided into two branches, as can be seen in Figure 2.1a, and
these two branches are crossed by seven bridges, a, b, c, d, e, f and g. Concerning
these bridges, it was asked whether anyone could arrange a route in such a way
that he would cross each bridge once and only once. I was told that some people
asserted that this was impossible, while others were in doubt; but nobody would
actually assert that it could be done. On the basis of the above, I have formulated
the general problem: Given any configuration of the river and the branches into
which it may divide, as well as any number of bridges, to determine whether or not
it is possible to cross each bridge exactly once.”

In order to solve this problem, Euler in an ingenious way abstracted the bridges and the
landmasses. He replaced each landmass by a dot (called vertex) and the each bridge by an arch
(called edge or line) (Figure 2.1b). Euler proved that there is no solution to this problem. The
Königsberg bridge problem was the first problem studied in what is later called graph theory.
This problem was a starting point also for another branch in mathematics, the topology. This
example shows a connection between graph theory and topology.

Unfortunately many books on graph theory have different notions for the same thing, or the
same term has different meanings. The main purpose of this chapter is to collect basic notions
of the graph theory in one place and to be consistent in terminology. This will help to follow the
discussion given in rest of the document as well as for easy reference to the nomenclature used
afterward. The definitions are compiled from the books [Diestel, 1997], [Thulasiraman and
Swamy, 1992], [Harary, 1969], [Christofides, 1975] and [Bondy and Murty, 1976], therefore
the citations are not repeated. Interested reader can find all these definitions and more in the
above mentioned books. The erudite reader in graph theory can skip reading this chapter.

2.2 Basic Definitions

The Webster dictionary [Webster, 1913] defines graphs as having two meanings:

10

2.2 Basic Definitions

Graph, n. (Math.)
1. A curve or surface, the locus of a point whose coordinates are the variables in
the equation of the locus.
2. A diagram symbolizing a system of interrelations by spots, all distinguishable
from one another and some connected by lines of the same kind.

The non-formal definition of the graph given in point 2 is the meaning used in this document.
Formally, one can define graph G on sets V and E as:

Definition 2.1 (Graph) A graph G = (V (G), E(G), ιG(·)) is a pair of sets of V (G) and E(G)
and an incidence relation ιG(·) that maps pairs of elements of V (G) (not necessarily distinct)
to elements of E(G).

The elements vi of the set V (G) are called vertices (or nodes, or points) of the graph G,
and the elements ej of E(G) are its edges (or lines). Let an example be used to clarify the
incidence relations ιG(·). Let the set of vertices of the graph G in Figure 2.1b be given by
V (G) = {vA, vB, vC, vD} and the edge set by E(G) = {ea, eb, ec, ed, ef , eg}. The incidence
relation is defined as :

ιG(ea) = (vA, vB), ιG(eb) = (vA, vB), ιG(ec) = (vA, vC),

ιG(ed) = (vA, vC), ιG(ee) = (vA, vD), ιG(ef) = (vB, vD), (2.1)

ιG(eg) = (vC, vD).

For the sake of simplicity of the notation, the incidence relation will be omitted, therefore one
can write, without the fear of confusion:

ea = (vA, vB), eb = (vA, vB), ec = (vA, vC),

ed = (vA, vC), ee = (vA, vD), ef = (vB, vD), (2.2)

eg = (vC, vD).

i.e. the graph is defined as G = (V,E) without explicit mentioning of the incidence relation,
even though it is always understood. The vertex set V (G) and E(G) are simple written as V and
E. There will be no distinction between a graph and its sets, one may write a vertex v ∈ G or
v ∈ V instead of v ∈ V (G), an edge e ∈ G or e ∈ E, and so on. Vertices and edges are usually
represented with symbols like v1, v2, ... and e1, e2, ..., respectively. Note that in Equation 2.2,
each edge is identified with a pair of vertices. If the edges are represented with ordered pairs
of vertices, than the graph G is called directed or oriented, otherwise it is called undirected or
non-oriented. Two vertices connected by an edge ek = (vi, vj) are called end vertices or ends
of ek. In the directed graph the vertex vi is called the source, and vj the target vertex of edge ek.
Since the elements of edge set E are distinct, more than one edge can join the same vertices.
Edges having the same end vertices are called parallel edges3. If ek = (vi, vi), i.e. the end
vertices are the same, then ek is called self-loop.

Definition 2.2 (Multigraph) A graph G containing parallel edges and/or self-loops is a multi-
graph.

3Also called double edges.

11

2. Basics of Graph Theory

A graph having no parallel edges and self-loops is called simple graph.
The number of vertices in G is called the order, written as |V |; its number of edges is given

as |E|. A graph of order 0 is called an empty graph4, and of order 1 is simply called trivial
graph5. A graph is finite or infinite based on its order. In this document all the graphs used are
finite and not empty, if not otherwise stated.

The usual way to visualize graphs is by drawing a circle (or a dot) for each vertex and a
line connecting these dots (as it was done by Euler), and in oriented graphs an arrow depicts
the order of vertices (Figure 2.2). Just how these dots and lines are visualized is not important,
what is relevant is the information which vertices are paired with which edge. In the graph in
Figure 2.2, edges e4 and e5 are parallel edges; edge e7 is the self loop. Note that in non-oriented
graphs the order of vertices defining the edge does not matter, for example the edge e1 = (v1, v2)
could have been defined also as e2 = (v2, v1) (see Figure 2.2a), whereas in oriented graphs the
order of vertices defines the edge as well, i.e. e2 = (v2, v1); the edge (v1, v2) does not exist in
Figure 2.2b.

Definition 2.3 (Vertex neighbors) Two vertices vi and vj are neighbors or adjacent if they are
the end vertices of the same edge ek = (vi, vj).

Definition 2.4 (Edge adjacency) Two edges ei and ej are adjacent if they have an end vertex
in common, say vk, i.e. ei = (vk, vl) and ej = (vk, vl).

For example, in the graph in Figure 2.2a v1 and v2 are neighbors, since they are connected by
edge e1 = (v1, v2); edge e1 and e2 are adjacent since they have vertex v1 as a common end. If
all vertices of G are pairwise neighbors, then G is complete. A complete graph on m vertices is
written as Km.

An edge is incident on its end vertices. The degree of a vertex v is defined as:

Definition 2.5 (Vertex degree) The degree (or valency) deg(v) of a vertex v is the number of
edges incident on it.

The vertex of degree 0 is called isolated; of degree 1 is called pendant vertex. Note that by
Definition 2.5 a self-loop at a vertex v contributes twice in the deg(v). For example in the graph
of Figure 2.2a deg(v1) = 2; deg(v3) = 4; deg(v5) = 3 and so on.

Let G = (V,E) and G′ = (V ′, E ′) be two graphs:

Definition 2.6 (Subgraph) G′ = (V ′, E ′) is a subgraph of G (G′ ⊆ G) if V ′ ⊆ V and E ′ ⊆ E.

I.e. the graph G contains graph G′, graph G is called also a supergraph of G (G ⊇ G′). If either
V ′ ⊂ V or E ′ ⊂ E, the graph G′ is called a proper subgraph of G. We say sometimes that G
contains G′. For example the graphs G1 and G2 in Figure 2.3 represent some of the subgraphs
of graph G from Figure 2.2a, graph G2 is a proper subgraph of G.

Definition 2.7 (Induced subgraph) If G′ ⊆ G and G′ contains all the edges of e = (vi, vj) ∈
E such that vi, vj ∈ V ′, then G′ is the (vertex) induced subgraph of G and V ′ induces (spans)
G′ in G.

4A graph with no vertices and hence no edges.
5A graph with one vertex and possibly with self-loops.

12

2.2 Basic Definitions

G = (V, E) |V = {v1, v2, v3, v4, v5}, E = {e1, e2, e3, e4, e5, e6, e7}

v1

v2

v3

v4

v5e1

e2

e3

e4 e5

e6

e7

and e1 = (v1, v2), e2 = (v1, v3), e3 = (v2, v4), e4 = (v3, v4),
e5 = (v3, v4), e6 = (v3, v5), e7 = (v5, v5)

(a) Non-oriented multi-graph

v1

v2

v3

v4

v5e1

e2

e3

e4 e5

e6

e7

and e1 = (v2, v1), e2 = (v3, v1), e3 = (v4, v2), e4 = (v3, v4),
e5 = (v4, v3), e6 = (v3, v5), e7 = (v5, v5)

(b) Oriented multi-graph

Figure 2.2: Non-oriented and oriented multi-graph.

The induced subgraph is usually written as G′ = G[V ′], i.e. since V ′ ⊂ G(V), then G[V ′]
denotes the graph on V ′ whose edges are the edges of G with both ends in V ′. If not otherwise
stated by induced subgraph, the vertex-induced subgraph is meant. If there are no isolated
vertices in G′, then G′ is called the induced subgraph of G on the edge set E ′ or simply edge-
induced subgraph of G. An example of vertex-induced subgraph is given in Figure 2.3b. Finally,

Definition 2.8 (Spanning subgraph) If G′ ⊆ G and V ′ spans all of G, i.e V ′ = V then G′ is a
spanning subgraph of G.

The subgraph in Figure 2.3a G1 is a spanning subgraph of G since it contains all the vertices of
G.

Definition 2.9 (Maximal(minimal) subgraph) A subgraph G′ of a graph G is a maximal (min-
imal) subgraph of G with respect to some property Π if G′ has the property Π and G′ is not a
proper subgraph of any other subgraph of G having the property Π.

13

2. Basics of Graph Theory

v1

v2

v3

v4

v5

e2

e3

e4

e6

v1

v2

v3

v4

e1

e2

e3

e4 e5

(a) G1 (b) G2

Figure 2.3: Subgraphs of graph G from Figure 2.2a.

The minimal and maximal subsets with respect to some property are defined analogously. For
example in Figure 2.3b, the edge set E2 of G2, a vertex-induced subgraph of G, is the maximal
subset of E such that the end vertices of all of its edges are in V2 . This definition will be used
later to define a component of G as a maximal connected subgraph of G, and a spanning tree of
a connected G is a minimal connected spanning subgraph of G.

2.3 Paths and Cycles

Let G = (V,E) be a graph with sets V = {v1, v2, · · · } and E = {e1, e2, · · · }, then:

Definition 2.10 (Walk) A walk in a graph G is a finite non-empty alternating sequence v0, e1, v1,
· · · , vk−1, ek, vk of vertices and edges in G such that ei = (vi, vi+1) for all 1 ≤ i ≤ k

This walk is called a v0 − vk walk with v0 and vk as the terminal vertices, all other ver-
tices are internal vertices of this walk. In a walk edges and vertices can appear more than
once. If v0 = vk, the walk is closed, otherwise it is open. For the graph in Figure 2.2a an
open walk could be the sequence v1, e2, v3, e4, v4, e4, v3, e5, v4, e4, e6, v5 and a closed walk is
v1, e1, v2, e3, v4, e5, v3, e4, v4, e5, e2, v1.

Definition 2.11 (Trail) A walk is a trail if all its edges are distinct.

A trail is closed if its end vertices are the same, otherwise it is opened. By the definition the walk
can contain the same vertex many times. For example the walk v2, e1, e2, v3, e4, v4, e5, v3, e6 is
a trail in graph shown in Figure 2.2a, even though the vertex v3 appears twice.

Definition 2.12 (Path) A path P is a trail where all vertices are distinct.

A path defined thus a sequence of vertices together with a sequence of edges which allow to
connect each vertex of the path to its sucessor. A simple path is defined as a sequence of
vertices v0, v1, v2, · · · , vk, each vertex being joint to its successor by some edge. Thus a simple
path does not explicitly encode which edge allows to pass from one vertex to the next one. Note
that using simple graphs two vertices are connected by at most one edge. The notion of path
and simple path are thus equivalent on this graphs. This is obviously not the case with more
general graphs. Note that in a multigraph a path is not uniquely defined by this nomenclature,
because of possible multiple edges between two vertices. Vertices v0 and vk are linked by the
path P , also P is called a path from v0 to vk (as well as between v0 and vk).

14

2.3 Paths and Cycles

v1

v2

v3

v4

v5e1

e2

e4

e7

e8

e9e3e5

e6

G

P C

Figure 2.4: A path P = P 4 and a cycle C = C5 in graph G.

Definition 2.13 (Path length) The number of edges in the path is called the path length.

The path length is denoted with P k, where k is the number of edges in the path. An example
of the path is given in Figure 2.4, and it can be written as P = v4, v1, v2, v5, v3. The length of
this path is 4, i.e. P = P 4. Note that by definition it is not necessary that a path contains all the
vertices of the graph.

Analogously one defines the cycles as:

Definition 2.14 (Cycle) A closed trail is a cycle C if all its vertices except the end vertices are
distinct.

Cycles, like paths, are denoted by the cyclic sequence of vertices C = v0, v1, · · · , vk, v0. The
length of the cycle is the number of edges and it is called k-cycle written as Ck. The minimum
length of a cycle in a graph G is the girth g(G) of G, and the maximum length of a cycle is its
circumference. In Figure 2.4a cycle C5 is shown. Note that the girth of graph G in Figure 2.4 is
g(G) = 3. The distance between two vertices v and w in G denoted by d(u,w), is the length of
the shortest path between these vertices. The diameter of G, diam(G) is the maximum distance
between any two vertices of G.

From the above one can note the following properties of paths and cycles:

• in a path the degree of each vertex is 2, except for the end vertices for which the degree
is 1,

• in a cycle the vertex degree of each vertex is 2, and

• in a path the number of edges is one less than the number of vertices; in a cycle the
number of edges and of vertices are equal.

15

2. Basics of Graph Theory

G1 G2

G3

Figure 2.5: A non-connected graph G and its components G1, G2 and G3.

2.4 Connectivity and Graph Components

The connectivity is an important concept in graph theory and it is one of the basic concept used
in this document. Two vertices vi and vj are connected in a graph G = (V,E) if there is a path
vi − vj in G. A vertex is connected to itself.

Definition 2.15 (Connectivity) A non-empty graph is connected if any two vertices are joint
by a path in G.

In Figure 2.5 graphs G1, G2 and G3 are connected graphs.
Let graph G = (V,E) be a non-connected graph. The set partitioning is defined:

Definition 2.16 (Set partitioning) A set V is partitioned into subsets V1, V2, · · · , Vp if V1 ∪
V2 ∪ · · · ∪Vp = V and for all i and j, i �= j Vi ∩Vj = ∅. {V1, V2, · · · , Vp} is called a partition
of V .

Since the graph G is not connected, the vertex set V can be partitioned into subsets V1, V2, · · · , Vp,
and each vertex induced subgraph G[Vi] is connected, then there exist no path between a vertex
in subset Vi and a vertex in Vj , j �= i.

Definition 2.17 (Component) A maximally connected subgraph of G is called a component of
graph G.

A component of G is not a proper subgraph of any other connected subgraph of G. An isolated
vertex is considered to be a component, since it is connected to itself, by definition. Note that
a component is always non-empty, and that if a graph G is connected then it has only one
component, i.e. itself. Figure 2.5 shows a non-connected graph G, with its components G1, G2

and G3.
The following theorem is used in the Section 4.4 to show that after the edge removal from

the cycle the graph stays connected.

Theorem 2.1 If a graph G = (V,E) is connected, then the graph remains connected after the
removal of an edge e of a cycle C ∈ E, i.e. G′ = (V,E − {e}) is connected.

Proof: Suppose that removing edge e of a cycle C disconnects graph G′ into two graphs6

say G† and G‡. This implies that there is no path between the vertices of G† and of G‡. By

6an edge with this properties is called a bridge

16

2.5 Trees and Forests

definition, a cycle C is a closed trail, therefore there are always two paths joining the vertices
of the cycle. Therefore there must be at least another edge e′′ between vertices of G† and G‡ if
e ∈ C. This contradicts that graph G′ is disconnected. �

From the above theorem one can conclude that edges that disconnect a graph do not lie on any
cycle.

The definition of cut and cut-set are as follows. Let {V1, V2} be partitions of the vertex set
V of a graph G = (V,E).

Definition 2.18 (Cut) The setK(V1, V2) of all edges having one end in one vertex partition (V1)
and the other end on the second vertex partition (V2) is called a cut.

Definition 2.19 (Cut-set) A cut-set KS of a connected graph G is a minimal set of edges such
that its removal from G disconnects G, i.e. G−KS is disconnected.

If the induced subgraphs of G on vertex set V1 and V2 are connected then K = KS . If the
vertex set V1 = {v}, the cut is denoted by K(v). For example the removal of the set of edges
K1 = {e6, e8, e9} from the graph shown in Figure 2.4 is a cut-set as well as a cut, since it is
minimal and disconnects the graph into two connected components (by definition an isolated
vertex is connected). The set of edges K2 = {e3, e5, e6, e8, e9} also disconnects the graph into
two components but it is not minimal since K1 is the a proper subset of K2 .

2.5 Trees and Forests

Trees as simple graph structure, are the most common structure used. Before the definition of
the tree is given, a definition of the acyclic graph is required.

Definition 2.20 (Acyclic graph) A graph G is acyclic if it has no cycles.

A simple example is shown in Figure 2.6a, whereas the graph under (b) in the same figure is a
cyclic graph since it contains a cycle (v3, e7, v4, e9, v5, e8).

Definition 2.21 (Tree) A tree of graph G is a connected acyclic subgraph of G.

The vertices of degree 1 in a tree are called leaves, and all edges are called branches. A non-
trivial tree has at least two leaves and a branch, for example the simplest tree with two vertices
joined by an edge. Note that an isolated vertex is by the definition an acyclic connected graph,
therefore a tree. In Figure 2.6a, (c) and (d) examples of a trees are shown.

Definition 2.22 (Spanning tree) Spanning tree of graph G is a tree of G containing all the
vertices of G.

Edges of the spanning tree are called branches. The subgraph G′ containing all vertices of G
and only those edges not in the spanning tree, is called cospanning tree, these edges are called
cords. Note that a cospanning tree may not be connected. In Figure 2.6a and (c) are depicted two
spanning trees of the graph G from Figure 2.4. An acyclic graph with k connected components
is called a k-tree [Thulasiraman and Swamy, 1992]. Each connected component of a k-tree is a
tree by itself. If the k-tree is a spanning subgraph of G, then it is called a spanning k-tree of G.

17

2. Basics of Graph Theory

v3

v4

v5e7

e8

e9

(a) An acyclic graph (b) A cyclic graph

(c) A spanning tree (d) A tree

(a) and (c) Trees of G (b) and (d) Spanning trees G

Figure 2.6: Trees and spanning trees of the graph G from Figure 2.4.

Definition 2.23 (Forest) A forest F of a graph G is a spanning k-tree of G, where k is the
number of component of F .

In other words a forest is a set of trees. In Figure 2.7, two examples of forest are shown, (a)
with two and in (b) three components, i.e. trees, and span all the vertices of graph G. Note that
the trees shown in Figure 2.6a and (c) are also forest containing only one component, the tree
shown in (d) is not a forest since it does not span all the vertices of G. A forest is simply a set
of trees, spanning all the vertices of G.

A connected subgraph of a tree T is called a subtree of T . If T is a tree then there is exactly
one unique path between any two vertices of T . For a tree T one can also say that it is

• minimally connected, i.e. T is connected but T − e is disconnected for every e ∈ T ; and

• maximally acyclic, i.e. T is acyclic but T + e is cyclic, for any two non-adjacent vertices
vi, vj ∈ T such that e = (vi, vj).

The proof of these assertion is found in [Thulasiraman and Swamy, 1992]. Note that spanning
tree and forest are synonymous if the graph has only one component.

2.6 Operations on Graphs

In this section shortly some basic binary and unary operations on graphs are described. Let
G = (V,E) and G′ = (V ′, E ′) be two graphs. Three basic binary operation on two graphs are:

18

2.6 Operations on Graphs

(a) Two components (b) Three components

Figure 2.7: Examples of forest of G from Figure 2.4.

Union and Intersection

The union of G and G′ is the graph G′′ = G∪G′ = (V ∪V ′, E∪E ′), i.e. the vertex set of G′′ is
the union of V and V ′, and the edge set is the union of E and E ′, respectively. The intersection
of G and G′ is the graph G′′ = G ∩ G′ = (V ∩ V ′, E ∩ E ′), i.e. the vertex set of G′′ has only
those vertices present in both V and V ′, and the edge set contains only those edges present in
both E and E ′′, respectively. An example in Figure 2.8a of union and (b) of intersection of two
graphs is given.

Symmetric Difference

The symmetric difference7 between two graphs G and G′, written as G ⊕ G′, is the induced
graph G′′ on the edge set E �E ′ = (E \E ′)∪ (E ′ \E)8, i.e. this graph has no isolated vertices
and contains edges present either in G or in G′ but not in both. In Figure 2.8 an example of the
ring sum between two graphs is given.

The four unary operations on a graph are:

Vertex Removal

Let vi ∈ G, then G− vi is the induced subgraph of G on the vertex set V − vi; i.e. G− vi is the
graph obtained after removing the vertex vi and all the edges ej = (vi, vj) incident on vi. The
removal of a set of vertices from a graph is done as the removal of single vertex in succession.
An example of vertex removal is shown in Figure 2.9a.

Edge Removal

Let e ∈ G, then G− e is the subgraph of G after removing the edge e from E. The end vertices
of the edge e = (vi, vj) are not removed. The removal of a set of edges from a graph is done as
the removal of single edge in succession. An example of edge removal is shown in Figure 2.9b.

7Called also ring sum.
8Where \ is the set minus operation and is interpreted as removing elements from X that are in Y .

19

2. Basics of Graph Theory

G G′

v1 v2

v3 v4

v1 v2

v3 v4

v5

v1 v2

v3 v4

v5

v1 v2

v3 v4

(a) Union G ∪G′ (b) Intersection G ∩G′

v1 v2

v3 v4

v5

(c) Symmetric difference G⊕G′

Figure 2.8: Binary graphs operations.

Vertex Identifying

Let vi and vj be two distinct vertices of graph G joined by the edge e = (vi, vj). Two vertices
vi and vj are identified if they are replaced by a new vertex v∗ such that all the edges incident
on vi and vj are now incident on the new vertex v∗. An example of vertex identifying is given
in Figure 2.9c.

Edge Contraction

Let e = (vi, vj) ∈ G be the edge with distinct end points vi �= vj to be contracted. The operation
of an edge contraction denotes the removing of the edge e and identifying its end vertices vi and
vj into a new vertex v∗. If the graph G′ results from G after contracting a sequence of edges,
than G is said to be contractible to a graph G′. Note the difference between vertex identifying
and edge contraction, in Figure 2.9c and (d). Vertex identifying preserves the edge ek, whereas
edge contraction first removes this edge. In Chapter 4, Section 4.4 a detailed treatment of edge
contraction and edge removal in the dual graphs context is given.

20

2.6 Operations on Graphs

G

vi

vj

e

vk

vj

vk

vi

vj

vk

(a) Vertex vi removal (b) Edge e removal

vk

ek v∗
vk

v∗

(c) Identifying vi with vj (d) Contracting edge e

Figure 2.9: Operations on graph.

2.6.1 Homeomorphism

Let e = (u, v) and e′ = (v, u′) be the only edges incident on a vertex v. Removal of the vertex
v and replacing e and e′ by the edge (u, u′) is called series merger. Adding a new vertex v on
an edge (u, u′) creating edges (u, v) and (v, u′) is called series insertion.

Definition 2.24 (Isomorphic graphs) Two graphs G = (V,E) and G′ = (V ′, E ′) are isomor-
phic if there exist a bijection β : V → V ′ with (u, u′) ∈ E ⇔ (β(u), β(u′)) ∈ E ′ for all
u, u′ ∈ V , and it is written as G � G′.

The β is called an isomorphism. If the graphs are identical, i.e. G = G′, β is called automor-
phism.

Definition 2.25 (Homeomorphic graphs) Two graphs are homeomorphic if they are isomor-
phic and can be made isomorphic by repeated series of insertion and/or mergers.

21

2. Basics of Graph Theory

Note that if the graph G is planar then any homeomorphic graph to G is also planar.

2.7 Vector Spaces on Graphs

The duality concept of planar graphs is easily defined and explained using the vector spaces on
graphs. The vector space on graphs is used to give a definition of dual graphs in Chapter 4,
Section 4.2, Definition 4.3, which is on the other hand, used to prove an important property of
dual graphs with respect to the edge contraction and removal operation in Chapter 4, Section 4.2,
Theorem 4.1, which states that graphs during the process of dual graph contraction stay planar
and are duals.

In this section the necessary definitions are given for building a vector space over a graph.
Let G = (V,E) be a graph with at least one edge, and let the set of all subsets of E (called also
the power set of E) including ∅ be denoted by EG. We use 2E as nomenclature for the power
set9. Therefore we write EG = 2E ∪ ∅ = {Ei|∀i = 0, . . . , 2|E| Ei ∈ 2E, i �= j ⇒ Ei �= Ej}. It
follows the prove that EG under the operation of addition � and of multiplication � is a vector
space over the field F2 = {0, 1} (see Appendix A for more details on how to build a vector space
in general). Let the operation of addition � be defined as the symmetric difference between two
sets (see Section 2.6), and the scalar multiplication operation as:

1 � Ei = Ei, (2.3)

and

0 � Ei = ∅. (2.4)

for any Ei ∈ EG. The symmetric difference (�) of any two elements Ei and Ej of EG is Ek =
Ei�Ej = (Ei−Ej)∪(Ej−Ei) and it must be an element of the collection of all subsets of E, i.e.
Ek ∈ EG, therefore EG is closed under the addition operation. The associativity also holds for all
Ei, Ej and Ek in EG since (Ei �Ej)�Ek = Ei � (Ej �Ek). Can be easily proved using some
set algebra or Venn diagrams and using (Ei−Ek)∪ (Ek−Ei) = (Ei∪Ek)∩ (ET

i ∪ET
k), where

ET consist of all the edges not in E and it is called the complement of E. The commutative
property Ei � Ej = Ej � Ei is proved in the same manner. For any element in EG there is an
identity element

Ei � ∅ = Ei, (2.5)

and an inverse one

Ei � Ei = ∅. (2.6)

Therefore it is proved that EG is an abelian group under the addition operation �. Let a, b be
elements in the field F2 = {0, 1} with the additive identity element eF2⊕ = 0 and multiplicative
identity element eF2� = 1. Let the addition and multiplication in field F be defined as modulo
2 addition (⊕) and modulo 2 multiplication (�) (see Table A.1 in Appendix A for details). Ei

and Ej are elements in EG, and a and b are scalars from F2. From the definition of the additive
and multiplicative operation one can prove that the other axioms needed for a vector space are
satisfied:

9Sometimes P(E) is used.

22

2.7 Vector Spaces on Graphs

1. (a⊕ b) � Ei = (a � Ei) � (b � Ei) ,

2. a⊕ (Ei � Ej) = (a � Ei) � (a � Ej) ,

3. (a� b) � Ei = a � (b � Ei), and

4. eF2� � Ei = 1 � Ei = Ei

All necessary axioms needed for a vector space are proved, hence EG is a vector space over
the field F2, more precisely it is an edge space. If the set E = {e1, e2, . . . , en} than the vector
set B = {{e1}, {e2}, . . . , {en}} constitutes the basis of EG and this space has the dimension
n = |E|. Every element of EG can be expressed as the linear combination of elements of B
with scalars from F2. The element of the edge space can be interpreted as functions of the form
E → F2. In an analogous way a vertex space VG over the field F2 can be build as a vector space
of all function V → F2, VG can be considered as the power set over V , the sum is defined as
the (vertex) symmetric difference. The zero vector in VG is the empty (vertex) set, and inverse
of Vi ∈ VG is the Vi itself. If the set V = {v1, v2, . . . , vm}, then set {{v1}, {v2}, . . . , {vm}} is
the basis of vertex space VG, hence its dimension is m = |V |. The discussion continues only on
the edge vector space afterward and the terms vector space and edge space are interchanging.

From the definition of the symmetric difference operators in Section 2.6, the symmetric
difference between two edge-induced subgraphs is the same as the symmetric difference of
their edge sets, it follows that the set of all edge-induced subgraphs of G is a vector space over
F2 if the operations of scalar multiplication is defined as:

1 � Gi = Gi, (2.7)

and

0 � Gi = ∅. (2.8)

where ∅ represents the empty graph.
The duals of the plane graph are easily defined using concept of cycle and cut subspaces of

EG. Let the cycle subspace CG represent the set of all cycles (including the empty graph) in G;
and the cut subspaceKG represent the set of all cuts (including the empty graph) in G = (V,E).
We show, that CG and KG are subspaces in EG.

Proposition 2.1 The set of all cycles CG, is a subspace of the vector space EG of G.

Proof: The proof is due to [Thulasiraman and Swamy, 1992]. The idea of the proof is as
follows. CG is subspace of EG, if one prove that for all C,C ′ ∈ C also C � C ′ is in CG. From
the definition of the cycles, every vertex is of degree 2, therefore CG may be considered as the
edge-induced subgraphs of G, in which all vertices are of degree even. Let C and C ′ be in CG,
be edge-induced subgraphs with the degree of all their vertices even. Let C ′′ = C �C ′. In other
words we should prove that every vertex in C ′′ is of even degree. Consider a vertex v ∈ C ′′.
This vertex must be present in at least one of subgraphs C and C ′. Let X, X ′ and X ′′ denote the
set of edges incident to v in C, C ′ and C ′′, respectively, and deg(vX), deg(vX′) and deg(vX′′)
the degree of v in C, C ′ and C ′′. From above deg(vX) and deg(vX′) are even (and one of them
may be zero), and hence deg(vX′′) is nonzero. Since C ′′ = C � C ′′ follows that X ′′ = X � X ′.
Hence deg(vX′′) = deg(vX)+deg(vX′)−2deg(X∩X ′), where deg(X∩X ′) is the contribution

23

2. Basics of Graph Theory

X ∈ C

X ′ ∈ C ′

X ∩X ′

∈ C ∩ C ′

v

K

K ′

V1 V2

V ′
1

V ′
2

Figure 2.10: Cycle vertex in C � C ′ and cut edges in K � K ′.

to the degree of edges in X ∩X ′ (see Figure 2.10a) and note that these edges are counted twice
first in deg(vX) and then deg(vX′)). deg(vX′′) is even since deg(vX) and deg(vX′) are even i.e.
the degree of v in C ′′ is even. Since this is ∀v ∈ C ′′, it follows that C ′′ is in CG. �

Proposition 2.2 The set of all cuts KG, is a subspace of the vector space EG of G.

Proof: The proof is due to [Diestel, 1997]. To prove thatKG is subspace of EG, one must prove
that for all K,K ′ ∈ KG also K �K ′ is in KG. Since K �K = ∅ ∈ C, and K � ∅ = K ∈ C (by
the definition of symmetric difference), it is assumed that K and K ′ are non-empty and distinct.
Let {V1, V2} and {V ′

1 , V
′
2} be the partition of the set V . Note that V1 ∪ V2 = V ′

1 ∪ V ′
2 = V .

Then K � K ′ consists of all the edge that cross one of these partitions but not the other (see
Figure 2.10). These are precisely the edges between (V1∩V ′

1)∪(V2∩V ′
2) and (V1∩V ′

2)∪(V2∩V ′
1),

and by K �= K ′ these two sets form another partition of V . Hence K � K ′ ∈ KG and KG is a
subspace of EG. �

Corollary 2.1 The space KG is created by cuts of form K(v).

Proof: Due to [Diestel, 1997]. Every edge e = (v1, v2) ∈ E lies in two cutsK(v1) andK(v2),
thus every partition {V1, V2} satisfies KG =

∑
v∈V1

K(v), where the sum is over the operator �.
�

Let the concept of (vector) edge space be clarified with a simple example of the graph
G = (V, e) given in Figure 2.11. For the given edge set E, the set power is:

EG ={∅, {e1}, {e2}, {e3}, {e4}, {e5},
{e1, e2}, {e1, e3}, {e1, e4}, {e1, e5}, {e2, e3}, {e2, e4}, {e2, e5}, {e3, e4}, {e3, e5}, {e4, e5},
{e1, e2, e3}, {e1, e2, e4}, {e1, e2, e5}, {e1, e3, e4}, {e1, e3, e5}, {e1, e4, e5}, {e2, e3, e4},
{e2, e3, e5}, {e2, e4, e5}, {e3, e4, e5},
{e1, e2, e3, e4}, {e1, e2, e3, e5}, {e1, e2, e4, e5}, {e1, e3, e4, e5}, {e2, e3, e4, e5},
{e1, e2, e3, e4, e5}}.

24

2.7 Vector Spaces on Graphs

v1

v2

v3

v4

e1

e2

e3

e5
e4

G = (V, E)
V = {v1, v2, v3, v4}
E = {e1, e2, e3, e4, e5}

Figure 2.11: Edge space on G is EG : E → F2 = {0, 1}.

Altogether EG contains 2|E| = 25 = 32 subsets. Let the vector addition � and scalar multipli-
cation �, as well as the identity and inverse elements for the � and � respectively, be defined
as described above in this section. It is easily shown that EG is an edge space over the field
F2. The set B = {{e1}, {e2}, {e3}, {e4}, {e5}} is the basis of the edge space, understood this
vectors are linearly independent. This space has the dimension 5. Every element of the set EG

can be represented as the linear combination of the elements of B, e.g.

{e1, e2, e5} = (1 � {e1}) � (1 � {e2}) � (0 � {e2}) � (0 � {e3}) � (0 � {e4}) � (1 � {e5}) =

based on the definition of the scalar multiplication �, it follows:

= {e1}� {e2}� ∅� ∅� ∅� {e5} = {e1, e2, e3}.

The set of all cycles for the graph G given is

CG ={∅, {e1, e2, e4}, {e3, e4, e5}, {e1, e2, e3, e5}},

with the base BC = {{e1, e2, e4}, {e3, e4, e5}}, and the set of all cuts in G is

KG ={∅, {e3, e5}, {e1, e2}, {e1, e4, e5}, {e1, e3, e4}, {e3, e4, e2}, {e2, e4, e5}, {e1, e2, e3, e5}}.

with the base BK = {{e3, e5}, {e1, e2}, {e1, e4, e5}}. One can easily prove that all elements
of CG can be described as a linear combination of vectors BC with scalar from F2, the same
hold for KG and BK, respectively. E.g. a cycle C1 = {e1, e2, e3, e5} = 1 � {e1, e2, e4} � 1 �
{e3, e5, e4} = {e1, e2}�{e3, e5}, and a cut K1 = {e1, e3, e4} = 1�{e3, e5}�1�{e1, e4, e5} =
{e3, e5}� {e1, e4, e5}. It is shown in Appendix A that the set of n-vectors over F2, where such
that each vector’s element in F2 form also a vector space. For the enumeration of the edges E
as in Figure 2.11, one writes e.g. instead of {e1, e2, e3} an 5-vector of the form (1, 1, 1, 0, 0). 1
is put if the edge is present in the set and 0 otherwise. For example the set of all cycles can be
written as

CG ={(0, 0, 0, 0, 0), (1, 1, 0, 1, 0), (0, 0, 1, 1, 1), (1, 1, 1, 0, 1)},

This form of presentation of graphs is easier to manipulate in computers, even though for hu-
mans it is hard to follow if the number of edges is large, since the vectors of the form (·, ·, . . . , ·)
are cumbersome.

25

CHAPTER 3

Image Pyramid

” We think too small, like the frog at the bottom of the well. He thinks the sky is
only as big as the top of the well. If he surfaced, he would have an entirely different
view. ”

by Mao Tse-Tung.

Summary Pyramids are hierarchical structures that are able to transform local information into global
one. Two processing paradigms are used in pyramids: fine-to-coarse and coarse-to-fine
information processing. The pyramid is a trade off between parallel architecture and the
need for a hierarchical representation of an image at several resolutions. In this chapter an
overview of basic concepts of image pyramid are presented. Their structure, content and
information processing are discussed in more detail.

Keywords: Image pyramids, regular pyramid, irregular pyramid, structure of pyramid.

3.1 Introduction

The visual data are characterized with a large amount of data and high redundancy, relevant
information are clustered in space and time, all this indicates for a need of organization and
aggregation principles, in order to cope with computational complexity and to bridge the gap
between raw data and symbolic description. Local processing is important in early vision, since
operation like convolution, thresholding, mathematical morphology etc. belong to this class of
operations. However, this approach is not efficient for high or intermediate level vision, such
as symbolic manipulation, feature extraction etc., because these processes need both local and
global information. Therefore a data structure must allow the transformation of local informa-
tion (based on sub-images) into global information (based on the whole image), and be able to

27

3. Image Pyramid

handle both local distributed and global centralized information. This data structure is known
as hierarchical architecture [Jolion and Rosenfeld, 1994], and allows distribution of the global
information to be used by local processes.

The earliest uses of hierarchical methods in image analysis are the work of [Rosenfeld and
Thurston, 1971], finding edges by using differences of average gray levels in neighborhoods
of many sizes, and selecting the best size at each pixel. The work of [Kelly, 1970] uses edgel
detection in reduced resolution to guide the search for edges in a full-resolution image. This
approach was one of the first to use a two level (5 × 5/25) multi-resolution hierarchy for edge
detection. First, edges and lines are found in the reduced resolution and then used as a plan to
constrain the search in the higher resolution. The name pyramids were first coined in [Tanimoto
and Pavlidis, 1975] as solution of contour detection and delineation in digital images, and in
conjunction with the merge and split segmentation algorithm of [Horowitz and Pavlidis, 1976]
are used extensively in image segmentation.

The hierarchy is a stack of levels of reduced abstraction. There are two types of hierar-
chies [Jolion and Rosenfeld, 1994]:

• visual hierarchy, and

• conceptual hierarchy.

The conceptual hierarchy represent object relationship, like class inclusion or neighborhood
relations. An example of a possible hierarchy of abstraction is given in Figure 3.1.

Usually, the bottom layer of the pyramid, is the image and the top layer or apex is related
to more abstraction levels. Information flows up, down and laterally in the hierarchy and is
transformed between layers. In hierarchies there are two kind of processes:

• bottom-up, and

• top-down.

In bottom-up or fine to coarse processes, the information is transported from the bottom
to the top of the hierarchy. Information of the local data set is transformed into global one
recursively. Bottom-up or data driven analysis process data in the uniform matter and aggregate
data into more abstract higher level of representation. This allows extraction and detection
of important features in image. During this bottom-up processes the data volume is reduced,
meaning that levels toward the top will contain less data.

In the top-down process or fine to coarse feature values are propagated from the top to
the bottom of the hierarchy. The top-down processed use knowledge (in form of a model) to
search for the image data in an nonuniform manner to find support or against the presence of
particular structure in the image. This process allows to delineate features extracted by bottom-
up processes by propagating the global information to lower levels or in the coarse to fine
strategy the higher (coarse) levels propose hypothesis that are used by lower (finer) levels to
verify these hypothesis.

The pyramid is a trade off between parallel architecture and the need for a hierarchical repre-
sentation of an image at several resolutions [Jolion and Rosenfeld, 1994]. There are other multi-
resolution approaches, just to mention some without trying to be complete. [Witkin, 1986] in-
troduced the continuous scale-space theory and [Lindeberg, 1990] proposed a discrete version
of this theory. [Mallat, 1989] introduced the wavelet theory, another hierarchical processing

28

3.2 Discrete 2D Images

Original image

Density, color

Fist level transformation
Edges and lines

Second level transformation
Curvature

Third level transformation

Object outlines
→ ←

Fourth level transformation
Relations between objects

⇒

Figure 3.1: Conceptual representation of an image as an abstract hierarchy [Granlund, 1999].

paradigm. For an overview and the relation between different hierarchical approaches con-
sult [Kropatsch, 1991].

In this chapter we summarize the concepts and definition developed for building and using
multi-resolution pyramids [Rosenfeld, 1984], [Jolion and Rosenfeld, 1994], [Kropatsch, 1999].
First a definition of the image is presented in Section 3.2. Section 3.3 presents the architecture
consideration of image pyramids. This chapter closes with a short summary in Section 3.4.

3.2 Discrete 2D Images

Almost every image processing technology processes the discrete spatial data by a computer.
The function of mapping continuous space R

2 into a discrete space Z
2 is called spatial quan-

tization or digitisation (in general one can think of a mapping from R
n into Z

n). Seldom the
sampling scheme is adapted to the local variability of the signal. Usually a regular sampling
grid is considered, either a triangular or a square. In practice almost all capturing devices have
a square regular sampling scheme, since the image sensors are arranged in 2D arrays located
in the nodes of the regular grid. So the digital image is the result of sampling the continuous
signal at location of the sampling points. A discrete representation of an image associates a
numerical countable value with each point (x, y) in the digitization grid. Since it is practically
impossible to measure the signal in the infinite small surface area and in an infinite small time
step, each value is in fact an average over a sampling window and over a time. Thus sampling

29

3. Image Pyramid

points can be considered as the centers of convex polygons [Soille, 1994], which tessellate the
signal space. For non-regular grids these polygons are referred as Voronoi polygons, whereas
for triangular grid this polygons have all hexagonal shape. In the case of square grids these
polygons are called meshes. Usually these polygons are called in the digital image processing
pixels (picture elements). The set of all pixels cover the entire image [Sonka et al., 1999].

The most primitive discrete representation assigns to each pixel an average measurement,
which is in general a continuous value, but in image processing this value is quantized. The
number of quantization levels should be high enough to allow humans a satisfactory perception
of the image. Based on how many quantization levels are used to express the values of the pixel
brightness (g), images are said to be binary or gray. In (multi-spectral) color images, vectors of
scalar values are associated for each pixel. Hence a digital image is a finite set of triples:

(x, y, g) ∈ Z
3, (3.1)

where (x, y) is the location of the pixel in the digitization grid and g is the quantized brightness
function. x, y are usually called coordinated and are represented by using integer values. If g
is a scalar of two values (0 and 1) the image is called a binary images; if g is an integer from
the interval [0, 255], the image is called a gray value image; if g is a vector of scalars from the
interval [0, 255] representing red, green and blue color, the image is called a color image and so
on. Detailed definition of the image types are found in [Soille, 1994, Sonka et al., 1999].

To summarize, discretization process maps any object of the continuous image into a dis-
crete version if it is sufficiently large to be captured by the sensors at the sampling points.
Resolution relates the unit distance of the sampling grid with a distance in reality. The proper-
ties of the continuous object, i.e. color, texture, shape, as well as its relations to other (nearby)
objects are mapped into the discrete space, too.

In this document only binary, gray and color images are analyzed, it is supposed that images
are quantized with enough brightness levels such that problem with false contour do not occur. It
is also assumed that during the spatial digitization the proper topology of the image object is also
captured. For techniques of spatial digitization that preserves the topology consult [Stelldinger
and Ullrich, 2005]. Note that the framework presented in this document is general enough and
is not limited in using only images as inputs.

3.3 Pyramid Architecture

Image pyramid have been defined as a stack of images of decreasing resolutions [Burt et al.,
1981], [Rosenfeld, 1982]. This framework is used for efficient data processing in may areas of
computer vision [Rosenfeld, 1984, Jolion and Rosenfeld, 1994]. Usually, higher levels of the
pyramid are computed successively by a filtering operation followed by a re-sampling opera-
tor [Rosenfeld, 1984].

Image pyramid have these advantages [Bister et al., 1990, Kropatsch et al., 1999]:

• details are removed in lower resolutions, thus reducing the influence of noise,

• resolution independent processing of regions of interest,

• transformation of local information to global one,

30

3.3 Pyramid Architecture

Table 3.1: Image qualities at different resolutions [Kropatsch et al., 1999]
Characteristics Resolution

high low
data amount huge smaller
computing times long short
details rich and many very few
overview bad good
precision hight low

• divide-and-conquer principle applied to reduce the computational complexity, and

• finding models at lower resolution, thus ignoring details, and employing these models in
a low cost top-down model based analysis.

In Table 3.3 some qualities of different resolutions are shown (adapted from [Kropatsch et al.,
1999]).

Image pyramids are characterized by these important properties [Jolion and Rosenfeld,
1994, Bischof, 1995]:

• structure1, e.g. vertical and horizontal neighborhood relations

• content of the cell, e.g. pixel, region, edge, curve or more, and

• processing of the cells, e.g. filtering, symbolic processing.

A pyramid (Fig. 3.2a,b) describes the contents of an image at multiple levels of resolution.
High resolution input image is at the base level. Successive levels reduce the size of the data
by reduction factor λ > 1.0. Reduction windows relate one cell at the reduced level with a set
of cells in the level directly below. Thus local independent (and parallel) processes propagate
information up and down and laterally in the pyramid. The contents of a lower resolution cell
is computed by means of a reduction function the input of which are the descriptions of the

1also called communication network.

s
λn

λ2

λ
1

level 0

1

h

reduction window

(a) Pyramid concept (b) Discrete levels

Figure 3.2: Multiresolution pyramid.

31

3. Image Pyramid

(a) 4-neighborhood (b) 8-neighborhood

Figure 3.3: Neighborhood in a square grid graph.

cells in the reduction window. Two successive level of a pyramid are related by the reduction
window and the reduction factor. Higher level description should be related to the original input
data in the base of the pyramid. This is done by the receptive field (RF) of a given pyramidal
cell ci. The RF (ci) aggregates all cells (pixels) in the base level of which ci is the ancestor. In
the sections below these notions are explained in more detail following the work of [Jolion and
Rosenfeld, 1994], [Bischof, 1995] and [Kropatsch et al., 1999].

3.3.1 Structure

The structure of the image pyramid is made of two types of neighborhood: the horizontal, i.e.
intra-level neighborhood, and the vertical, i.e. inter-level neighborhood are defined in the image
pyramid. Each cell of the pyramid is related with its neighbors in the same level and with other
cells in the level above and below, except cells on the base and cell(s) on top of the pyramid.
Cells on the base have only relation with the level above, and the cell(s) on the top has(ve) only
relations with the level below. Let each cell (e.g. pixel, edge, region etc.) of the pyramid be
represented by a vertex of the graph, and each level k of the pyramid by represented by a graph.
Thus the horizontal and vertical network can be defined using graphs.

Horizontal neighborhood

Let level k of the image pyramid be represented by Gk = (Vk, Ek), where Vk represent the set
of cells, and Ek the set of edges joining cells Every vertex v ∈ Vk on level, say k, is related to
its neighbors on the same level by edge(s) e ∈ Ek. Two vertices, v, w ∈ Vk are neighbors if they
are joint by an edge e = (v, w) ∈ Ek (Definition 2.3). This defines the horizontal neighborhood.
If the image plane is regularly tessellated, say by a regular grid mesh, than on the base level one
can define 4 or 8 connectivity of cells, as shown in Figure 3.3, the cell (vertex) in gray in (a)
has 4-neighborhood and under (b) 8-neighborhood. Note that 8-neighborhood grid graph is not
planar. Other neighborhoods are possible, and are discussed in more detail in Chapter 4.

Vertical neighborhood

Every vertex in level k is linked with vertices on level directly below k − 1, its children(s),
and vertices on level directly above k + 1, its parent(s). Vertices on the base level have no
children(s), and those on the top have no parent(s). The number and form of these links define

32

3.3 Pyramid Architecture

the vertical neighborhood, and this neighborhood be defined by an undirected (vertical) graph
GV

k = (Rk, Lk), where Rk = (Vk ∪ Vk+1), and Lk ⊆ (Vk × Vk+1). The children relation of
vertex v ∈ Vk+1 is defined as:

Ch(v, w) = {∃w|e = (v, w) ∈ Lk}; (3.2)

we say vertex w is a children of v. Analogously, the parent relation of a vertex w ∈ Vk as:

P (w, v) = {∃v|e = (w, v) ∈ Lk}; (3.3)

we say vertex v is a parent of w. Note that these relations, are non-reflexive, anti-symmetric,
and non-transitive. A parent has one or more children and in general a child can have many
parents. If a child has many parent, the pyramid is called an overlapping pyramid. Based on
these definition, through the transitive closure of these graphs, the ancestor(s) and descendant(s)
of a given vertex can be defined. Let h be the height of the pyramid. The ancestor of a vertex
v ∈ Vk is vertex w ∈ Vl, h ≥ l > k if and only if:

A(v, w) = {∃zn ∈ Vn |P (zn, zn+1)∀n = k, ..., l − 1}, where v = zk and w = zl (3.4)

Analogously, the descendant of a vertex w ∈ Vl is vertex v ∈ Vk, l > k ≥ 0 if and only if:

D(w, v) = {∃zn ∈ Vn |Ch(zn, zn−1)∀n = l, ..., k − 1}, where w = zl and v = zk (3.5)

These definition can be used to define the receptive field of a vertex, as the set of all its descen-
dants on the base level of the pyramid. Formally, the receptive field is the set of vertices on the
base level G0 = (V0, E0) which influence the cell v ∈ Vk:

RF (v) = { all vertices v′ ∈ V0 |D(v, v′)} (3.6)

One can define also the projective field [Bischof, 1995] of vertex v ∈ Vm on a given level Vn,
(n > m) as:

PF (v) = { all vertices v′ ∈ Vn |A(v, v′)} (3.7)

In Figure 3.4, pictorially the concepts of parent-children, and ancestor-descendant relation are
given with solid line. If we assume that Gk−1 = G0 is the bottom of the pyramid, then in
this figure all the cells w′ at the bottom enclosed in the gray area are the receptive field of
v : RF (v).

Two types of pyramid exist, based on how the vertical neighborhood is defined:

• regular, and

• irregular pyramids.

These concepts are strongly related to ability of the pyramid to represent the regular and irreg-
ular tessellation of the image plane.

33

3. Image Pyramid
v

P (v, w) : v
parent→ w

w
Ch(w, v) : w

child→ v

w′
A(w′, v) : v

ancestor→ w′

D(v, w′) : w′ descendant→ v

Gk+1

Gk

Gk−1

RF (v)

Figure 3.4: Vertical neighborhood.

Regular Pyramids

The constant reduction factor and constant size reduction window completely define the struc-
ture of the regular pyramid. The decrease rate of cells from level to level is determined by
the reduction factor. The number of levels h is limited by the reduction factor λ > 1: h ≤
log(image size)/ log(λ). The main computational advantage of regular image pyramids is
due to this logarithmic complexity. Usually regular pyramids are employed in a regular grid tes-
sellated image plane, therefore the reduction window is usually a square of n×n, i.e. the n×n
cells are associated by a cell on a higher level directly above. Regular pyramid are denoted us-
ing notation n×n/λ. The vertical structure of a classical 2×2/4 is given in Figure 3.5a. In this
regular pyramid 2 × 2 = 4 cells are related to only one cell in the higher level directly above.
Since the children have only one father this class of pyramids is also called non-overlapping
regular pyramids. Therefore the reduction factor is λ = 4. An example of 2 × 2/4 regular
image pyramid is given in Figure 3.5b. The image size is 512 × 512 = 29 × 29 therefore the
image pyramid consist of 1 + 2 · 2 + 4 · 4 + ... + 28 × 28 + 29 × 29 cells, and the height of
this pyramid is 9. The pyramid levels are shown by a white border on the left upper corner of
image. The 2 × 2/4 regular pyramid is called also the quad pyramid, because of the similarity
with the quad tree representation [Samet, 1990]. See [Kropatsch, 1991] for extensive overview
of other pyramid structures with overlapping reduction windows, e.g. 3 × 3/2, 5 × 5/4. It is
possible to define pyramids on other plane tessellation, e.g. triangular tessellation [Jolion and
Rosenfeld, 1994]

Thus, the regular image pyramid are efficient structure for fast grouping and access to im-
age objects across the input image, because of the rigid vertical structure. globally defined
sampling grids and lack shift invariance [Bister et al., 1990]. The regular pyramid representa-
tion of a shifted, rotated and/or scaled image is not unique, and moreover it does not preserve
the connectivity. Thus, [Bister et al., 1990] concludes that regular image pyramids have to be
rejected as general-purpose segmentation algorithms. This major drawback of the regular pyra-
mid motivated a search for a structure that is able to adapt on the image data. It means, that the
regularity of the structure is to be abandon.

34

3.3 Pyramid Architecture

(a) Vertical structure (b) Image pyramid

Figure 3.5: 2× 2/4 regular pyramid.

Irregular Pyramids

Abandoning the regularity of the structure means that the horizontal and vertical neighborhood
have to be explicitly represented, usually by using graph formalism. These not-regular struc-
tures are usually called irregular pyramids. One of the main goals of irregular pyramids is
to achieve the shift invariance, and to overcome this major drawback of regular counterparts.
[Kropatsch et al., 1999] list other motivations why one has to use irregular structures:

• arrangement of biological vision sensors is not completely regular,

• the CCD cameras cannot be produced without failure, resulting into an irregular sensor
geometry,

• perturbation may destroy the regularity of regular pyramid, and

• image processing to arbitrary pixels arrangement (e.g. log-polar geometries [Bederson,
1992])

Two main processing characteristics of the regular pyramids should be preserved by building
irregular ones [Bischof, 1995]:

• operation are local, i.e. the result is computed independently of the order, this allows
parallelization, and

• bottom-up building of the irregular pyramid, with an exponentially decimation of the
number of cells.

The structure of the regular pyramid as well as the reduction process is determined by the
type of the pyramid (e.g. 2 × 2/4). Removing this regularity constraint one has to define a
procedure to derive the structure of the reduced graph Gk+1 from Gk, i.e. a graph contraction

35

3. Image Pyramid

method has to be defined. Irregular pyramid can be build by parallel graph contraction [Rosen-
feld, 1985], or graph decimation [Meer, 1989]. Parallel graph contraction has been developed
only for special graph structures, like trees, and will not be analyzed in this thesis.

[Meer, 1989] introduced an efficient random decimation algorithm for building regular pyra-
mid, called stochastic pyramid. A detailed discussion of this and similar methods is postponed
until Chapter 5. It is shown that stochastic pyramid in some cases is not logarithmically tapered,
i.e. the decimation process does not exponentially reduce the number of cell successively. The
main reason for this behavior is that the cell’s neighborhood is not bounded, for some cases the
degree of the cell increases exponentially. In Chapter 5 we discuss methods that overcome this
drawback.

An overview of properties of regular and irregular pyramid are found in [Kropatsch and
Montanvert, 1991b]. In irregular pyramids the flexibility is paid by less efficient data access.

3.3.2 Contents

The type of information stored into cells defines also the the content of the pyramid. Numeric
and/or symbolic information can be stored into the cells. A cell store the information that it is
gathered (e.g. by a bottom-up process) from its receptive field. [Kropatsch, 1991] defines two
conditions to be fulfilled by the representation of the cell:

• the receptive field of the cell covers the pictorial entity (e.g. primitive object parts, ob-
jects) completely, and

• no smaller cells (in lower levels) fulfill the above property

A unique cell in the pyramid is allocated for each pictorial entity. Usually, a cell stores only
one numeric value, e.g. a gray value. This pyramid is called numeric pyramid. More complex
numeric values can be stored as well, e.g. parameters of a model. Symbolic information can
be stored into cells as well, e.g. curve information [Kropatsch, 1986, Kropatsch and Burge,
1998]. This class of pyramid is called symbolic pyramid. It is also possible to mix numeric and
symbolic information into a cell as well.

3.3.3 Processing

The type of the information stored into cells of the pyramid conditioned also the processing
that can be carried out by the pyramid. Therefore, two types of information processing are
performed:

• numeric, and

• symbolic processing

Note that one of the major properties of the pyramid is the capability of local processing,
i.e. the information in the cells is computed using only other cells in their horizontal and ver-
tical neighborhood, thus these processing can be done in parallel. For an overview of pyramid
hardware implementations see [Jolion and Rosenfeld, 1994].

36

3.4 Summary

Numeric Processing

Filtering is usually used as a reduction function in numerical pyramids. Different types of filters
are used: 1) linear filters, 2) non-linear filters, and 3) morphological filters. Most commonly
used filters are the low-pass ones. Gaussian filter is one of the most used low-pass linear filters in
regular pyramid architecture, since it is the only filter that preserves the zero crossings across the
scales [Yuille and Poggio, 1986]. An example of the Guassian pyramid is given in Figure 3.5b.
The resulted pyramid is called Gaussian pyramid [Burt and Adelson, 1983]. Minimum and the
maximum filter are most commonly used non-liner filters.These filters compute the minimum,
respectively maximum, of the receptive field of the cell. One can also use other non-linear
filters, e.g. median. The morphological operators [Serra, 1982] are introduced into pyramids as
well. A large body of the literature exist of using different filters integrated into a pyramid.

Symbolic Processing

In symbolic pyramid one has to define also symbolic reduction functions. A finite state machine
can be used to compute the symbolic reduction. E.g. [Kropatsch, 1986, Kropatsch and Burge,
1998] introduces a set of rules as reduction function.

3.4 Summary

All pyramids are characterized by three properties: its structure (horizontal and vertical neigh-
borhood), its cell content and the way it processes the information content of the cells. We
distinguish two main types of pyramids based on the structure: if the structure is beforehand
defined the pyramid is called regular; if the structure is adapted on the image data it is called an
irregular pyramid. Numeric or/and symbolic information can be stored into the pyramid, there-
fore one can differentiate between numeric pyramids and symbolic pyramids. Different filters
can be used in the pyramid framework, which allows also symbolic computations. In the rest
of the chapters we will intensify the discussion on irregular graph pyramids. We will discuss
how to optimize the structure of the irregular pyramid, trying to archive a logarithmic height,
and how to apply efficiently these structures in image segmentation.

37

CHAPTER 4

Irregular Dual Graph Pyramids

” Beauty is the first test: there is no permanent place in the world of mathematics
for ugly mathematics. ”

by G.H. Hardy.

Summary The duality concept in planar graphs is presented. It is shown how the dual graphs can
encode a topology properly. The transformation of image plane into a dual graph is de-
scribed. The dual graph contraction, as a topology preserving graph contraction is presented
in depth. This graph contraction method contains basic operations to build a stack of hier-
archical graphs, called dual graph pyramid. The construction of the dual graph pyramid is
shown by an example.

Keywords: Topology, dual graph, planar graph, dual graph contraction, dual graph pyramids, topology
preserving contraction.

4.1 Introduction

Most information in vision today is in the form of array representation. This is advantageous
and easily manageable for situations having the same resolution, size, and other typical proper-
ties equivalent. Various demands are appearing upon more flexibility and performance, which
makes the use of array representation less attractive [Granlund, 1999]. The increasing use of
actively controlled and multiple sensors requires a more flexible processing and representation
structure [Kropatsch et al., 1999, Kropatsch, 2002]. Cheaper CCD sensor could be produced
if defective pixels would be allowed, which yields in the resulting irregular sensor geome-
try [Bederson, 1992], [Wallace et al., 1994]. Image processing functions should be generalized
to arbitrary pixel geometries [Rojer and Schwartz, 1990], [Bederson, 1992]. The conventional

39

4. Irregular Dual Graph Pyramids

array form of image is impractical as it has to be searched and processed every time if some
action is to be performed and that

• features of interest my be very sparse over parts of an array, leaving a large number of
unused positions in the array;

• a description of additional detail can not be easily added to a particular part of an array.

It is desirable to have information in some partly interpreted form to fulfill its purpose to rapidly
evoke actions. Information in interpreted form, implies that it should be represented in terms
of content or semantic information, rather than in terms of array values. Content and semantics
implies relations between units of information or symbols. [Granlund, 1999] calls the relations
between object as linked objects. These object could be represented as a graph [Haralick and
Shapiro, 1993].

In order to express the connectivity or other geometric or topological properties the image
representation must be enhanced by a neighborhood relation. In the regular square grid arrange-
ment of sampling points it is implicitly encoded as 4- or 8-neighborhood with the well known
paradox in conjunction with Jordan’s curve theorem. The neighborhood of sampling points can
be represented explicitly, too: in this case the sampling grid is represented by a graph con-
sisting of vertices corresponding to the sampling points and of edges connecting neighboring
vertices. Although this data structure consumes more memory space it has several advantages,
as follows [Kropatsch et al., 1999]:

• the sampling points need not be arranged in a regular grid,

• the edges can receive additional attributes too, and

• the edges may be determined either automatically or depending on the data.

Planarity and duality of graph are two closely related concepts. Planar graph separates the plane
into regions called faces. This idea of separating the plane into regions is helpful in defining the
dual graphs (Section 4.2). Duality of a graph brings together two important concepts in graph
theory: cycles and cut-sets. Kirkoff’s laws of voltage and current in electrical engineering
are the real wold problem of this duality concept. The law of voltage is in term of cycles
and the law of current is in term of cut-sets. This concept of duality is also encountered in
graph-theoretical approach of image region and edge extraction. The definition of dual graphs
representing the partitioning of the plane, allows one to apply transformation on these graphs,
like edge contraction and/or removal to simplify graphs in the sense of less vertices and edges.
Edge contraction and removal introduces naturally a hierarchy of dual graphs, the so called dual
graph pyramid.

Hence the dual graph representation presented in this chapter addresses primarily the struc-
ture, on which a dual graph hierarchy is built, by reducing the number of descriptive elements
by applying the dual graph contraction successively. In this chapter, the graph-based image
representation and the operation on these graphs are given. In Section 4.3 the transformation of
image plane into a dual graph is shown. The analogy of dual graphs with abstract cellular com-
plexes, and the equivalence with combinatorial maps is given in Section 4.3.1, and Section 4.3.2
respectively. The dual edge contraction algorithm is described in Section 4.4 and the hierarchy
of graphs build by this algorithm in Section 4.5.

40

4.2 Planar and Dual Graphs

4.2 Planar and Dual Graphs

A graph G̃ of finite sets of vertices V and edges E is called a plane graph if it is drawn in a
plane in R

2 such that [Diestel, 1997]:

• all V ⊂ R
2

• every edge is an arc1 between two vertices,

• no two edges are crossed.

Note that R \ G̃ is an open set and its connected regions are faces f of G̃. It is said that the
plane graph divides the plane into regions. Since G̃ is finite, one of its faces in an unbounded
one (infinite area). This face is called the background face2. Other faces enclose finite areas,
and are called interior faces. Edges and vertices incident with the face are called the boundary
elements.

Definition 4.1 An embedding of a graph G on a plane is an isomorphism between G and a
plane graph G̃.

G̃ is called a drawing of G. When G is drawn, we do not care whether its edges intersect on
vertices only or each other. This is in contrast to drawing G̃ where its edges intersect only on
vertices. The graph G can be considered as an abstraction of G̃. An example of a planar graph
and its planar embedding is shown in Figure 4.1. The edge e5 in Figure 4.1b is drawn such that
it does not intersect with other edges, whereas in Figure 4.1b we do not ask strictly for edges
not to intersect. In this figure f represent faces, and a background face is denoted by b. For
example the edges e1, e2 and e5 form the face f1 and they make the cycle Cf1 = {e1, e2, e5},
which enclose the region f1. The cycle that enclose the background face b in this figure is
Cb = {e5, e8, e6}.

Definition 4.2 (Planar graphs) A graph G is planar if it can be embedded on the plane.

The concept of embeddings can be extended to any surface. A graph G is embeddable in
surface S if it can be drawn in S so that its edges intersect only on their end vertices. A
graph embeddable on the plane is embeddable on the sphere too. It can be shown by using the
stereoscopic projection of the sphere onto a plane [Thulasiraman and Swamy, 1992]. Note that
the concept of faces is also applicable to spherical embeddings.

A planar graph G = (V,E) with m vertices, n edges and l faces satisfies the condition:

m− n + l = 2. (4.1)

This is called Euler’s formula3. Another nice property of simple planar graph is that if G has
m ≥ 3 vertices and n edges than n ≤ 3m − 6 edges. The so called Kuratowski graphs K5

1An arc is a finite union of straight line segments, and a straight line segment in the Euclidean plane is a subset
of R

2 of the form {x + λ(y − x)|0 ≤ λ ≤ 1}, ∀x �= y ∈ R
2.

2Called also exterior face.
3Called also Euler characteristic.

41

4. Irregular Dual Graph Pyramids

v1

v2

v3

v4

v5e1

e2

e4

e7

e8

e9e3e5

e6

f3 f5

f1

f2

b

f4

e5

(a) G = (V,E) (b) G̃

Figure 4.1: A planar graph G and its embedding in a plane, the plane graph G̃.

(complete graph on 5 vertices) and K3,3 are not planar. The planar graph can be characterized
also using the Kuratowski graphs [Harary, 1969].

Let G in Figure 4.1a represent a plane graph, in general with parallel edges and self-loops.
Since the graph is embedded onto a plane, it divides the plane into faces. Let each of these
faces be denoted by a new vertex say fs, and let these vertices be put inside the faces, as shown
in Figure 4.1b. From this point on the notion of face vertices and face are synonymous. Let
the faces that are neighbors, i.e. that share the same edge e2 (incident on the same edge), be
connected by the edge, say e2, so that edge e and e are crossed. At the end, for each edge e2 ∈ G
there is an edge e2 of the newly created graph G, which is called the dual graph of G. If the e is
incident only with one face a self-loop edge e2 is attached to the vertex on the face in which the
edge e2 lays, of course e2 and the self-loop edge e2 have to cross each other (see Appendix B
for a procedure for building dual graph out of plane ones). The adjacency of faces is expressed
by the graph G.

More formally one can define dual graphs for a given plane graph G = (V,E) in this
form [Thulasiraman and Swamy, 1992]:

Definition 4.3 (Dual graphs) A graph G = (V ,E) is a dual of G = (V,E) if there is bijection
between the edges of G and G, such that a set of edges in G is a cycle vector of G if and only if
the corresponding set of edges in G is a cut vector.

There is a one-to-one correspondence between the vertex set V of G and the face set F
of G, therefore sometimes graph G = (V ,E) is written as G = (F,E) instead, without
fear of confusion. In order to show that G is a dual of G, one has to prove that vectors
forming a basis of the cycle subspace of G correspond to the vectors forming a basis of the
cut subspace of G. The edges ei of graph G in Figure 4.2 correspond to edges ei in graph
G. The cycles {e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and {e6, e7, e8} form a basis of the cy-
cle subspace of G (see Chapter 2, Section 2.7). These cycles correspond to the set of edges
{e1, e3, e4}, {e2, e3, e6}, {e4, e5, e8}, and {e6, e7, e8}, which form a basis of cut subspace of G.
It follows according to the definition of the duality, that graph G is a dual of G. By convention,
the graph G is called the primal graph and G dual graph. If a planar graph G′ is the dual of G,

42

4.2 Planar and Dual Graphs

G = (V, E)
G = (F, E)

e2 e2

v1

v2

v3

v4

v5e1

e2

e4

e6

e7

e8
e3

e5

v3

v5

v1

v2

v4

e1 e2

e4

e7
e6

e5

e3

e8

Figure 4.2: A plane graph G and it dual G.

then a planar G is a dual of G′ as well, and every planar graph has a dual [Diestel, 1997, Harary,
1969]. Therefore the dual of a dual graph is the primal graph. Dual graphs are denoted by a bar
above the capital letter.

In the following two important properties of dual graphs with respect to the edge contrac-
tion and removal operation are given, the proofs are due to [Thulasiraman and Swamy, 1992].
These properties are used in Section 4.4 to prove that graphs during the process of dual graph
contraction stay planar and are duals. Let G and G be two graphs. Let edge e ∈ G correspond
to edge e ∈ G. Note that a cycle in G corresponds to a cut in G and vice versa [Thulasiraman
and Swamy, 1992]. Let G′ denote the graph G after the contraction of the edge e, and G′ the
graph after the removal of the corresponding edge e from G.

Theorem 4.1 A graph and its dual are duals also after the removal of an edge e in the primal
graph G and the contraction of the corresponding edge e in the dual graph G.

Proof: Let C and C be the corresponding set of edges in G and G, respectively. Assume that
C is a cycle in G′. Since it does not contain e, it is also a cycle in G. Hence C is a cut, say
{V1, V2} in G. Since cut C does not contain e = (v1, v2), the vertices v1 and v2 are both either
in V1 or in V2, implying C is a cut in G′. Therefore every cycle in G′ is a cut in G′.

Suppose that C is a cut in G′. Since C does not contain e, it is also a cut in G. Hence C is a
cycle in G′. Since it does not contain e, it is also a cycle in G. Thus every cut in G′ is a cycle in
G′. �

Corollary 4.1 If a graph G has a dual, then every edge-induced subgraph of G has also a dual.

Proof: Every edge-induced subgraph G′ of G can be obtained by removing from G the edges
not in G′ and using the Theorem 4.1, the proof follows. �

43

4. Irregular Dual Graph Pyramids

This section is concluded by the a topological characterization of graphs that have duals.
The duality property of a graph is as important as planarity, and these properties are symbiotics.

Theorem 4.2 (Whitney 1933) A graph is planar if and only if it has a dual.

Proof: The proof can be found in [Diestel, 1997]. �

A detailed discussion of the data structures for the dual graph are given in Appendix C.

4.3 Dual Image Graphs

An image is transformed into a graph such that, for each pixel a vertex is associated, and pixels
that are neighbors in the sampling grid are joint by an edge . Note that no restriction in the
sampling grid is made, therefore an image of regular as well as non-regular sampling grid can
be transformed into a graph. The gray value or any other feature is simply considered as an
attribute of a vertex (and/or an edge). Since the image is finite and connected, the graph is
finite and connected as well. The graph which represent the pixels is denoted by G = (V,E)
and is called primal graph4. Note that pixels represent finite regions, and the graph G is rep-
resenting in fact a graph with faces as vertices. The dual of a face graph (see Section 4.2) is
the graph representing borders of the faces, which in fact are inter-pixel edges and inter-pixel
vertices [Braquelaire and Brun, 1998, Kropatsch, 1994]. This graph is denoted by G and is
called simply dual graph. This discussion, which is done on purpose here to show the dual-
ity concept, is not in contradiction with the presentation of dual graphs given in Section 4.2,
because of the property of dual graphs to be dual of each other. The above discussion could
have been started by defining the primary graph as the graph denoting borders of faces, and its
dual would have been the graph representing the faces. An example of image with square grid
sampling transformed into a graph is given in Figure 4.3, where square vertices represent faces,
the bold square vertex represents the background face, circle vertices represent meeting points
of at least three boundary segments.

Based on the Theorem 4.2 dual graphs are planar, therefore images with square grid are
transformed into 4− connected square grid graphs, since 8− connected square grid graphs are
in general not planar 5.

The same formalism as is done for the pixels can be used at intermediate levels in image
analysis i.e. for region adjacency graphs (RAGs). RAGs are the results of image segmentation
processes. Region are connected sets of pixels, and are separated by region borders. Its geomet-
ric dual causes problems [Kropatsch, 1995a]. Let a simple example, adapted from [Kropatsch,
1994], clarifies this claim and motivate the usage of pair of graph (duals of each other) to repre-
sent an image or in general adjacency of regions. Note that in this presentation the graph and its
duals are depicted as in Section 4.2, and is different with the above presentation of dual graphs.
In the example of the house in Figure 4.4a the graph G′ representing regions of the house, like
door, windows etc., is depicted by square vertices and dashed edges. To reconstruct the bound-
ary graph G′ out of the face graph G′, circle vertices are put where at least three boundary
segments intersect. The edges of G are drawn between these vertices following the boundary

4Called also neighborhood graph.
5This hold for square grid graphs of grid size ≥ 4× 4.

44

4.3 Dual Image Graphs

Image
Primal graph G

Dual graph G

Figure 4.3: Image to dual graphs.

of the house regions such that these edges cross the edges of the graph G′ (as shown with bold
lines in Figure 4.4b. As can be seen from the Figure 4.4b there are two problems:

• one boundary of the front side of the house is not crossed by any edge in G′, and

• the above described procedure will not produce an edge for the window since there is no
crossing of the border of the window with the surrounding region of the front side, and
therefore no clear answer where to put a vertex of G′.

The problems are encountered due to the fact that the border of the front side consists of two
parts not connected to each other: the inner part of the window, and the outer part which is also
fragmented into pieces separating the front from the roof, from the background and from the
door. A resolution to these problems is given in Figure 4.4c: a self loop is put in G′ surrounding
the window, a circle vertex is put in G′ arbitrarily in the window border and this vertex is
connected by a fictive edge 6 such that it connects the boundary of the window with the front

6Called a bridge in [Kropatsch, 1994].

(a) RAG G′ (b) the dual of G′ : G′ = G′ (c) dual image graphs (G,G)

Figure 4.4: A house example and the dual image graph [Kropatsch, 1994].

45

4. Irregular Dual Graph Pyramids

side of the house, and front side and background are connected by parallel edges in G. The
resulting pair of graph (G,G) are plane, dual of each other, and in general not simple, it contains
self-loops and parallel edges. This section is concluded by a formal definition of the dual image
graphs:

Definition 4.4 (Dual image graphs [Kropatsch, 1994]) The pair of graphs (G,G), where G =
(V,E) and G = (V ,E) are called dual image graphs if both of the graphs are finite, planar,
connected, not simple in general and duals of each other.

Dual graphs can be seen as an extension of the well know region adjacency graphs (RAG).
Note that this representation is capable to encode multiple boundaries between neighboring
regions. See the outside border of the house in Figure 4.4c connected multiple times (roof, left
wall, part of the door and right wall) with the background.

4.3.1 Dual Image Graph and Cellular Complexes

In this section a relation between dual graphs and 2D-abstract cellular cells (ACC) is shown.
[Kovalevsky, 1989] showed that on the abstract cellular cells one can define a topological space.
Topology is formally defined as:

Definition 4.5 (Topology) Let X be a non-empty set, the universe. A topology on X is a family
T of subsets of X such that:

(T1) X and ∅ belong to T ,

(T2) the union of any number of sets of T belongs to T ,

(T3) the intersection of any two sets of T belongs to T .

A set X for which a topology T has been specified is called a topological space. The mem-
bers of T are called open sets. A subset C of X is called closed set if its compliment Cc is
in T . Analogously to the previous definition one can define a topological space using only
closed sets. If the set X contains finite number of elements then it is called finite topol-
ogy. A set X = {1, 2, 3} with T = {{∅}, {1, 2, 3}} is a trivial topology and X a topolog-
ical space. The trivial topology is the smallest topology on the set X . The largest topol-
ogy on X is called discrete topology. For the set example above the discrete topology is
T = {{∅}, {1, 2, 3}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. A detailed treatment of topological
spaces can be found in [Munkres, 1993].

Definition 4.6 (Abstract cell complex [Kovalevsky, 1989]) An abstract cell complex
C = (O,B, dim) is a set O of abstract elements, with a binary relation B ⊂ O × O called
bounding relation, which is antisymmetric, irreflexive and transitive; and with dimension map-
ping dim : O → I, from O into a set of non-negative integers I such that dim(o) < dim(o′) for
all (o, o′) ∈ B.

If the dimension of cell o is d then o is called d-dimensional cell or simply d-cell, and ACC is
n dimensional if one of the cells is n-cell. An example of the 2-dimensional ACC is shown in
Figure 4.5, where 0-cells are vertices, 1-cells are edges, and 2-cells are faces. Formally,

O = V ∪ E ∪ F, (4.2)

46

4.3 Dual Image Graphs

f

f ′

e
v v′

e′

e′′

Figure 4.5: A 2-dimensional cellular model.

and

dim(o) =

⎧⎨⎩
0 if o ∈ V,
1 if o ∈ E,
2 if o ∈ F.

(4.3)

A simple example of a 2D finite topological space is given in Figure 4.5; it consists of three
types of elements: faces (�), edges (−) and vertices (). As can be seen from the figure, an
edge bounds two faces, say f and f ′. An edge e is bounded by two vertices, say v and v′; two
faces f and f ′ are bounded by these two vertices as well. Let any subset O of faces, edges and
vertices be called open set, such that every element o ∈ O of the surface bounded by o is also
in O. From this definition a face is not bounded by any element, therefore it is an open subset;
an edge e with the two faces f and f ′ that it bounds is an open subset; a vertex v with all the
edges (e, e′, e′′) that it bounds and all the couple of faces (f, f ′) bounded by these edges is an
open set. A set of cells containing o and all higher dimensional cells bounded by o is called the
open star of cell o [Ahronovitz et al., 1995]. The open sets defined like this satisfy the axioms
(T1), (T2) and (T3) and define a topological space [Kovalevsky, 1993, Ahronovitz et al., 1995].

Note that abstract cells should not be regarded only as Euclidean point set. For a square grid
image, the pixels could be considered as square faces, inter-pixels boundaries as edges, and the
intersection of two or more inter-pixel boundaries could be represented with vertices. Note that
this is exactly the same representation for the 2D space as the dual image graphs [Kropatsch,
1994]. The cell model is more general and can be used to represent space element of higher
dimension, whereas the dual graph representation for higher dimension is not defined yet. In
2D space a dual graphs representation is able to encode any subdivision of the 2D topological
space. Encoding higher dimension with (dual) graphs is a difficult problem.

4.3.2 Dual Image Graph and Combinatorial Map

The usage of dual graph framework for 3 or higher dimension is cumbersome and not well de-
fined. These problems are alleviated by using the combinatorial maps or generalized maps. N-

47

4. Irregular Dual Graph Pyramids

dimensional combinatorial maps [Lienhardt, 1989] may be seen as a graph with an embedding
in an N -dimensional space i.e in the case of 2D [Brun and Kropatsch, 2001b], combinatorial
maps are planar graphs encoding the orientation of edges around vertices. The base elements of
a N-dimensional combinatorial map are the darts, also called half edges, which are connected
together (sewed) by the orbits of 1 permutation and N − 1 involutions. In the case of 2D [Brun
and Kropatsch, 2001b] the permutation is called σ and forms vertices, and the involution is
called α and specifies edges. One of the advantages of combinatorial maps is that in the 2D
case, unlike dual-graphs, they explicitly encode the orientation of the plane, correctly handling
all the complicated cases with self-loops and parallel edges.

Like combinatorial maps, n-dimensional Generalized maps [Lienhardt, 1991] are defined
in any dimension and correctly represent all topological configurations of the n-dimensional
space (including 2D). Their base elements are darts and use only involutions to represent the
connections between them, that describe cells in any dimension.

Combinatorial maps and generalized combinatorial maps define a general framework which
allows to encode any subdivision on nD topological spaces orientable or non-orientable with
or without boundaries. Using 2D images, combinatorial maps my be understood as a particular
encoding of a planar graph, where each edge is split into two half-edges called darts. Since each
edge connects two vertices, each dart belongs to only one vertex. A 2D combinatorial map is
formally defined by the triplet G = (D, σ, α) [Brun and Kropatsch, 2001b] where D represent
the set of darts and σ(d) is a permutation on D encountered when turning clockwise around
each vertex. Finally α(d) is an involution onD which maps each of the two darts of one edge to
the other one. Given a combinatorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α),
with ϕ = σ ◦ α. The cycles of permutation ϕ encode the faces of the combinatorial map. In
what it follows, the cycles of α, σ(d) and ϕ containing a dart d will be respectively denoted by
α∗(d), σ∗(d) and ϕ∗(d). An example of the combinatorial map is given in Figure 4.6a and (b).

Thus all graph definitions used in irregular graph pyramids [Kropatsch, 1994] are analo-
gously defined with combinatorial maps [Brun and Kropatsch, 2003b].

4.3.3 Dual Graphs versus Combinatorial Maps

Advantages of combinatorial maps over dual graphs come form the embedding, that is inher-
ently present at the former ones. Let us analyze the ’flower’ example given in Figure 4.6b,
and (c) with respect to uniqueness of topological representation. The combinatorial map of this
’flower’ is shown and defined in Figure 4.6b by G = (D, σ, α)7. If the leafs of the ’flower’
exchange position for e.g. leafs 1 and 3, a different σ = (3,−3, 2,−2, 1,−1, 4,−4) will be de-
fined, hence uniquely encoding the topology. The dual graphs are encoded by a pair of graphs,
the (planar) primal graph vertices) and its dual. For each edge in the primal graph there is a
corresponding one in the dual, that crosses it (Figure 4.6c). Since there is no ordering of the
edges around the vertices, the dual graph representation does not uniquely encode the topology
of the ’flower’, as can be easily seen if we exchange the position, for e.g. of leafs 1 and 3,
the dual graph describing this configuration is identical to the previous one (the one without
exchanging the position of leafs.) The presence of similar cases happens very rare in 2D, thus
the dual graph representation is used as the representation in the rest of discussion.

7σ is encoded clockwise, shown with the arrow in Figure 4.6b.

48

4.4 Dual Graph Contraction

Combinatorial maps (c) Dual graphs
(a) D = (1,−1, 2,−2, 3,−3, 4,−4, (b) D = (1,−1, 2,−2, 3,−3, 4,−4)
5,−5, 6,−6, 7,−7, 8,−8, 9,−9)

5 -7

-4
4

-3-2

2

1

3

-19
-9

6

-5

-6

7-8
8

α(4) = −4

ϕ = σ ◦ α
-11

-33

2

-2

-4

4 *

0 1

3

4 2

σ = (1,2,9) (−1, 8, 3)(−2,−3, 4) σ = (1,−1, 2,−2, 3,−3, 4,−4) primal: © vertices, – edges

(−4,−7, 5)(6,−9,−5)(−6, 7,−8) dual: � vertices, - - edges

Figure 4.6: Combinatorial map and correctly handling topology.

4.4 Dual Graph Contraction

The irregular (dual graph) pyramids are constructed in bottom-up way such that subsequent
level (say k + 1) results by (dually) contracting precedent level (say k). In this section a short
exposition of dual graph contraction algorithm is given, following the work of [Kropatsch,
1995a], and building the dual graph pyramid using this algorithm is presented in the next sec-
tion. Dual graph contraction (DGC) [Kropatsch, 1994], [Kropatsch, 1995a] proceeds in two
steps:

I. primal-edge contraction and removal of its dual, and

II. dual-edge contraction and removal of its primal.

In Figure 4.7 examples of these two steps are shown in three possible cases. Note that these two
steps correspond in [Kropatsch, 1995a] to the steps (I) dual edge contraction, and (II) dual face
contraction.

The base of the pyramid consists of the pair of dual image graphs (G0, G0). In order to
proceed with the dual graph contraction a set of so called contraction kernels (decimation pa-
rameters) must be defined. The formal definition is postponed until the Section 4.4.1. Let the
set of contraction kernels be 〈Sk, Nk,k+1〉. This set consists of a subset of surviving vertices
Sk = Vk+1 ⊂ Vk, and a subset of non-surviving primal-edges Nk,k+1 ⊂ Ek (where index
k, k + 1 refer to contraction from level k to k + 1). Surviving vertices in v ∈ Sk are vertices
not to be touched by the contraction, i.e. after contraction these vertices make up the set Vk+1

of the graph Gk+1; and every non-surviving vertex v ∈ Vk\Sk must be paired to one surviving
vertex in a unique way, by non-surviving primal-edges (Figure 4.8). In this figure, the shadowed
vertex s is the survivor and this vertex is connected with arrow edges (ns) with non-surviving

49

4. Irregular Dual Graph Pyramids

Pair of dual graphs (Gk, Gk) at level k of the pyramid
↙ ↘

primal graph dual graph

Gk = (Vk, Ek)
duals↔ Gk = (V k, Ek)

⇓
I. Primal-edge contraction and removal of its dual

↙ ↘
primal-edge contraction in Gk and corresponding dual-edge removal in Gk

↓ ↓
G′ = (Sk, Ek \Nk,k+1)

duals↔ G′ = (V k, Ek \Nk,k+1)

⇓
II. Dual-edge contraction and removal of its primal

↙ ↘ Remove all v with deg(v) ≤ 2
primal-edge removal in G′ and corresponding dual-edge contraction in G′

↓ ↓
Gk+1 = (Vk+1, Ek+1)

duals↔ Gk+1 = (V k+1, Ek+1)

⇓
Pair of dual graphs (Gk+1, Gk+1) at level k + 1 of the pyramid

Figure 4.7: Dual graph contraction procedure (DGC).

vertices. Note that a contraction kernel is a tree of depth one, i.e. there is only one edge between
a survivor and a non-survivor, or analogously one can say that the diameter of this tree is two.

The contraction of a non-surviving primal-edge consists in the identification of its endpoints
(vertices) and the removal of both the contracted primal-edge and its dual edge (see Chapter 2,
Section 2.6 for more details on these operations). Figure 4.9a shows the normal situation, Fig-
ure 4.9b the situation where the primal-edge contraction creates multiple edges, Figure 4.9c
and self-loops. Redundancies (lower part) in case Figure 4.9c are decided through the corre-
sponding dual graphs and removed by dual graph contraction. In Figure 4.9, the primal graph
is shown with square (�) vertices and broken lines (- -) and its dual with circle vertices () and
full lines (-).

[Kropatsch, 1995a] shows that 〈Sk, Nk,k+1〉 determine the structure of an irregular pyramid.
The relation between two pairs of dual graphs,(Gk, Gk) and (Gk+1, Gk+1), is established by
dual graph contraction with the set of contraction kernels 〈Sk, Nk,k+1〉 as:

(Gk+1, Gk+1) = C[(Gk, Gk), 〈Sk, Nk,k+1〉]. (4.4)

Dual-edge contraction and removal of its primal (second step) has a role of cleaning the
primal graph by simplifying most of the multiple edges and self-loops8, but not those enclosing

8Called also redundant edges.

50

4.4 Dual Graph Contraction

s

n1n3

n4

n2

tree of depth one

s ∈ Sk and n1, n2, n3, n4 ∈ Nk,k+1

Figure 4.8: Contraction kernel with s as a survivor and arrow edges (n-s) to be contracted.

any surviving parts of the graph. They are necessary to preserve correct structure [Kropatsch,
1995a]. So, the dual graph contraction reduces the number of vertices and edges of a pair
of dual graphs, while preserving the topological relations among surviving parts of the graph.
In [Kropatsch, 1994, Willersinn, 1995, Kropatsch, 1995b], a detailed presentation of dual graph
contraction with some computational aspects (time and space complexity) are given. Moreover,
in [Willersinn, 1995] different implementation details are presented.

4.4.1 Contraction Kernels

Let S be the set of surviving vertices, and N the set of non-surviving primal-edges. The con-
nected components 9 CC(s), s ∈ S, of subgraph (S,N) form a set of tree structures T (s) that
if contracted would collapse into vertex s of the contracted graph. The number of this trees is
|S|. The union of trees T (s) contain the non-surviving primal-edges N . T (s) is a spanning
tree of the connected component CC(s), or equivalently, (V,N) is a spanning forest of graph
G = (V,E).

In order to decimate the graph G = (V,E) a set of surviving vertices S ⊂ V and a set of
non-surviving primal-edges N ⊂ E must be selected, such that the following conditions are
satisfied:

• graph (V,N) is a spanning forest of graph G = (V,E), and

• the surviving vertices s ∈ S ⊂ V are the roots of the forest (V,N).

Definition 4.7 (Contraction kernels) The set of disjoint rooted trees with length two of path
going through the root is called a set of contraction kernels.

Analogously, the trees T (v) of the forest (V,N) with root v ∈ V are contraction kernels.

9Neglected level index refer to contraction from level k to level k + 1.

51

4. Irregular Dual Graph Pyramids

(a) Normal case (b) Multiple edges (c) Self loops

⇓ ⇓ ⇓
I. Primal-edge contraction and removal of its dual

⇓ ⇓ ⇓

deg(v) > 2, ∀v

vi
vi

deg(vi) ≤ 2⇓ ⇓
II. Dual-edge contraction and removal of its primal

⇓ ⇓

Figure 4.9: Dual graph contraction of a part of a graph.

52

4.4 Dual Graph Contraction

e
s s′

CP (s, s′)T (s) T (s′)

middle partfirst part second part
Gk = (Vk, Ek)

↓
DGC
↓

e′ = (v, v′)

Gk+1 = (Vk+1, Ek+1)

Figure 4.10: Connecting path CP (v, v′), e is the bridge of this path.

After deploying the dual graph contraction algorithm on a graph one has to establish a path
connecting between two surviving vertices on the resulted new graph. Let G = (V,E) be a
graph with decimation parameters (S,N).

Definition 4.8 (Connecting path [Kropatsch, 1994]) A path in G = (V,E) is called a con-
necting path between two surviving vertices s, s′ ∈ S if it consists of three subsets of edges:

• the first part is a possibly empty branch of contraction kernel T (s).

• the middle part is an edge e ∈ E \ N that bridges the gap between the two contraction
kernels T (s) and T (s′).

• the third part is a possibly empty branch of contraction kernel T (s′).

See Figure 4.10 for explanation. Connecting path is denoted by CP (s, s′). Edge e is called the
bridge of the connecting path CP (s, s′). Each edge e′ = (v, v′) ∈ Ek+1 has a corresponding
connecting path CPk(s, s

′), where s, s′ ∈ S ⊂ Vk are survivors in graph Gk = (Vk, Ek). This
means that two surviving vertices s, and s′, s �= s′ that can be connected by a path10 CPk(s, s

′)
in Gk are connected by an edge in Ek+1. If the graph Gk is connected, than after the dual graph
contraction the connectivity of the graph Gk+1 is preserved [Kropatsch, 1994].

Dual edge contraction can be implemented by (1) simply renaming all the non-surviving
vertices to their surviving parent vertex (e.g. by using a find union set algorithm [Cormen et al.,
2001]), (2) deleting all non-surviving edges N and (3) their duals N . The question on how to
build contraction kernels is given in Chapter 5, where different methods are presented and their
properties are analyzed.

4.4.2 Equivalent contraction kernels

[Burt and Adelson, 1983] combines two or more successive reductions in one equivalent weight-
ing function in order to compute any level of any regular pyramid directly from the base level.

10By definition of connectivity of graph, there exist always a path between any two vertices of graph, see
Chapter 2.

53

4. Irregular Dual Graph Pyramids

(Gk, Gk)

DGC ↓

(Gk+1, Gk+1)

DGC ↓

(Gk+2, Gk+2)

→

←

〈Sk+1, Nk,k+2〉
DGC

〈Sk+1, Nk+1,k+2〉

〈Sk, Nk,k+1〉

Figure 4.11: Equivalent contraction kernel.

Similarly, [Kropatsch, 1995b] combines two (or more) dual graph contractions (as shown in Fig-
ure 4.11) of graph Gk = (Vk, Ek) with decimation parameters 〈Sk, Nk,k+1〉 and 〈Sk+1, Nk+1,k+2〉
into one single equivalent contraction kernel (ECK) Nk,k+2 = Nk,k+1 ◦Nk+1,k+2

11:

C[C[Gk, 〈Sk, Nk,k+1〉], 〈Sk+1, Nk+1,k+2〉] = C[Gk, 〈Sk+1, Nk,k+2〉]
= Gk+2 (4.5)

The structure of Gk+1 is determined by Gk and the decimation parameters 〈Sk, Nk,k+1〉. Simple
overlaying the two sets of contraction kernels, 〈Sk, Nk,k+1〉 (the one from level k to k + 1)
and 〈Sk+1, Nk+1,k+2〉 (the one from level k + 1 to k + 2) will not yield a proper equivalent
contraction kernel 〈Sk+1, Nk,k+2〉. The surviving vertices from Gk to Gk+2 are Sk+1 = Vk+2.
The edges of the searched contraction kernels must be formed by edges Nk,k+2 ⊂ Ek. An edge
ek+1 = (vk+1, v

′
k+1) ∈ Nk+1,k+2 corresponds to a connecting path CPk(vk+1, v

′
k+1) in Gk

12.
By Definition 4.8, CPk(vk+1, v

′
k+1) consists of one branch of Tk(vk+1), one branch of Tk(v

′
k+1),

and one surviving edge ek ∈ Ek connecting the two contraction kernels Tk(vk+1), and Tk(v
′
k+1).

Definition 4.9 (Bridge [Kropatsch, 1994]) Function bridge: Ek+1 �→ Ek assigns to each edge
ek+1 = (vk+1, wk+1) ∈ Ek+1 one of the bridges ek ∈ Ek of the connecting paths CPk(vk+1, wk+1):

bridge(ek+1) = ek. (4.6)

Connecting two disjoint tree structures by a single edge results in a new tree structure. Now,
Nk,k+2 can be defined as the result of connecting all contraction kernels Tk by bridges as:

Nk,k+2 = Nk,k+1 ∪
⋃

ek+1∈Nk+1,k+2

bridge(ek+1) (4.7)

This definition satisfies the requirements of a contraction kernel [Kropatsch, 1994]. Analo-
gously, the above process can be repeated for any pair of levels k and k′ such that k < k′. If
k = 0 and k′ = h, where h is the level index of the top of the pyramid, than with the resulted
equivalent contraction kernel (N0,h), the base level (0) is contracted in one step into an apex
Vh = {vh}. ECKs are able to compute any level of the pyramid directly from the base.

11Only for Gk is shown instead of (Gk, Gk)) for simplicity.
12If there are more than one connecting paths, one is selected.

54

4.4 Dual Graph Contraction

4.4.3 Homotopy Preserving Transformations

As already discussed in Section 4.2, the plane graph partitions the plane into faces. Faces can
have holes which are represented by connected components, and have to be connected by the
fictive edges with the connected component which surrounds it (see the Figure 4.4c where the
window is connected by a fictive edge with the front of the house). The notion of homotopy on
(dual) graphs, i.e. for the 2D case, is derived from [Serra, 1982, page 187]. Let G be the set of
all graphs.

Definition 4.10 (Homotopy graphs) A mapping Ψ from G into itself is said to be homotopic
(or preserves the homotopy) if it transforms a graph G into a graph Ψ(G) such that there is
a one-to-one and onto correspondence between connected components and the holes of G and
Ψ(G).

Two finite graphs G and G′ are said to be homotopic when there exist a homotopic transforma-
tion Ψ such that G′ = Ψ(G). [Marchadier et al., 2003] proved that the set of transformation
that preserves the homotopy of (dual) graphs are:

• contraction of an edge, which is not a self loop,

• removal of a pendant edge, and

• contraction of redundant edges.

All these transformation do not change the number of connected components and holes of the
dual graphs, therefore they preserve the graph homotopy. In the case of the 2D, the homotopy
can be defined also using the homotopy tree (or adjacency tree) [Soille, 1994, page 56]. Two
set are homotopic if their homotopy trees are identical.

4.4.4 Graph Minors with Dual Graph Contraction

Two containment relations between graphs: the subgraph relation and the induced subgraph
relation are exposed in Chapter 2, Section 2.2. The graph contraction operation is described
in details in this section and in Chapter 2, Section 2.6. In this section the minor relation is
presented. Minor relation is closely related with the graph contraction operation, as will be
shown.

Let G′ = (V ′, E ′) be a graph and {Vv | v ∈ V ′} a set partition of V ′ into connected subset
such that for any two vertices v, v′ ∈ V ′ there is an edge between two connected subsets Vv and
Vv′ in G if and only if (v, v′) ∈ E ′. Then G is called a μG′ and it is written13 as G = μG′.
The sets Vv are the contraction kernels (called also branch sets [Diestel, 1997]) of μG′. One can
think of obtaining G′ from G by contracting every contraction kernel to a single vertex.

Proposition 4.1 ([Diestel, 1997]) G is an μG′ if and only if G is contractible to G′, i.e. if there
exist graphs G0, G1, ..., Gh and edges ei ∈ Gi such that G0 = G, Gh � G′ and Gi+1 = Gi/ei

for all i < h.

Intuitively, G is created by repeated contraction and deletion (or vice versa) of edges in the
graph G′. If G = μG′ is a subgraph of another graph G′′, then G′′ is a minor of G′ and it is

13μG′ denotes a whole class of graphs and G = μG′ means that G belongs to this class.

55

4. Irregular Dual Graph Pyramids

G′
G

Vv Vv′

G′′
v

v′

Figure 4.12: G = μG′ and G ⊆ G′, then G′′ is minor of G′.

written as G′′ � G′. Every subgraph of a graph is its minor, moreover every graph is its own
minor. In general any graph derived from another by repeated deletion and contraction (in any
order) is its minor [Diestel, 1997]. The Figure 4.12 clarifies the minor relation.

Proposition 4.2 (Partial orderings of minors [Diestel, 1997]) The minor relation � is a par-
tial orderings on the class of finite graphs, i.e. they are reflexive, antisymmetric and transitive.

Proof: Can be found in [Diestel, 1997] �

Note that the minor relation in Proposition 4.1 is defined only for an edge contraction.
Moreover this relation is defined for many edge contractions as well, because of the transitivity
of the minor relation (Proposition 4.2).

In the previous section it is shown that dual graph contraction consists in repeated contrac-
tion and removal operations. The graph, say Gk+1 at level k + 1 is obtained by contracting and
removing edges in Gk at level k, thus based on Proposition 4.1 and 4.2 graph Gk+1 is a minor
of Gk, i.e. Gk+1 � Gk for all 0 ≤ k ≤ h, all higher levels Gk are minors of the base graph G0.

4.5 Dual Graph Pyramid

A graph pyramid is a pyramid where each level is a graph G = (V,E) consisting of vertices V
and of edges E relating two vertices. In order to correctly represent the embedding of the graph
in the image plane [Glantz and Kropatsch, 2000b] additionally store the dual graph G = (V ,E)
at each level.

In irregular pyramids, each level represents a partition of the pixel set into cells, i.e. con-
nected subsets of pixels. The construction of an irregular image pyramid is iteratively lo-
cal [Meer, 1989], [Bischof and Kropatsch, 1993], [Jolion, 2003], [Haxhimusa et al., 2002]:

• the cells have no information about their global position,

• the cells are connected only to (direct) neighbors, and

• the cells cannot distinguish the spatial positions of the neighbors.

56

4.5 Dual Graph Pyramid

This means that we use only local properties to build the hierarchy of the pyramid. Usually,
on the base level (level 0) of an irregular image pyramid the cells represent single pixels and
the neighborhood of the cells is defined by the 4 -connectivity of the pixels. A cell on level
k + 1 (parent) is a union of neighboring cells on level k (children). As shown in Section 4.4
this union is controlled by contraction kernels (decimation parameters). Every parent computes
its values independently of other cells on the same level. This implies that an image pyramid
is built in O[log(image diameter)] parallel steps. Neighborhoods on level k + 1 are derived
from neighborhoods on level k. Two cells c1 and c2 are neighbors if there exist pixels p1 in c1

and p2 in c2 such that p1 and p2 are 4-neighbors.

The levels are represented as dual pairs (Gk, Gk) of plane graphs Gk and Gk. See Sec-
tion 4.3 for more details on this representation. The sequence (Gk, Gk), 0 ≤ k ≤ h is called
dual graph pyramid, where 0 is the base level index and h is the top level index, also called
the height of the pyramid. Moreover the graph is attributed, G = (V,E, attrv, attre), where
attrv : V → R

+ and attre : E → R
+ are functions, i.e. content of the graph is stored in

attributes attached to both vertices and edges. In general a graph pyramid can be generated
bottom-up as follows:

Algorithm 1 – Constructing Dual Graph Pyramid

Input: Graphs (G0, G0)

1: while further abstraction is possible do
2: select contraction kernels
3: perform dual graph contraction and simplification of dual graph
4: apply reduction functions to compute content of new reduced level
5: end while

Output: Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h.

In the previous section it is shown that Gk+1 is minor of Gk, i.e. Gk+1 � Gk for all 0 ≤ k ≤
h, therefore graphs in a pyramid belong to a class of graphs related by a minor relation. One
can say that a dual graph pyramid is a set of partial order graphs.

Let the building of the dual graph pyramid be explained by using the simple 5 × 5 gray
value image in Figure 4.3. For the sake of simplicity of the presentation in the figures after-
ward the dual graphs as well as inter-level relations are not shown explicitly. An example of
this inter-level relation is shown in Figure 4.13 with solid lines. In this figure a contraction
kernel (shadowed) on level k is shown, with its surviving vertex s (dark shadowed) and its
non-surviving vertices (white). After the dual graph contraction a new vertex v on the level
k is created as well as the child-parent relations. In this example initially the attributes of the
vertices receive the gray values of the pixels, and the cell in the new level (the parents) becomes
the gray value of its children.

The first step determines what information in the current top level is important and what
can be dropped. A contraction kernel is a (small) sub-tree of the top level the root of which
is chosen to survive (black circles in Figure 4.14b. Figure 4.14a shows the window and the
selected contraction kernels each shown with gray. Selection criteria in this case contract only

57

4. Irregular Dual Graph Pyramids

k

k + 1

s

v

contraction kernel

s ∈ Vk and v ∈ Vk+1

Creation of a new vertex v in the level k + 1 of the pyramid.

Figure 4.13: Parent-child relation.

edges inside connected components having the same gray value.

All the edges of the contraction trees are dually contracted during step 3. Dual contraction
of an edge e (formally denoted by G/{e}) consists of contracting e and removing the corre-
sponding dual edge e from the dual graph (formally denoted by G\{e}). This preserves duality
and the dual graph needs not be constructed from the contracted primal graph G′ at the next
level.

Since the contraction of an edge may yield multi-edges (an example shown with arrow in
Figure 4.14c and self-loops there is a second simplification phase of step 3 which removes all
redundant multi-edges and self-loops. Note that not all such edges can be removed without
destroying the topology of the graph: if the cycle formed by the multi-edge or the self-loop
surrounds another part of the data its removal would corrupt the connectivity! Fortunately this

(a) Image to graph G0 (b) Contraction kernel N01

double edges

(c) G′ after dual-edge contraction of G0 (d) G1 after the removal of redundant edges in G′

Figure 4.14: Dual graph contraction in G0 and the creation of the G1 of the pyramid.

58

4.5 Dual Graph Pyramid

(a) Dually contracted graph G1 (b) Contraction kernel N12

redundant edges

(c) Edge contraction of graph G1 (d) Removal of the shown redundant edges

Figure 4.15: Dual graph contraction in G1 and the resulting G2.

can be decided locally by the dual graph since faces of degree two (having the double-edge
as boundary) and faces of degree one (boundary = self-loop) cannot contain any connected
elements in its interior. Since removal and contraction are dual operations, the removal of a
self-loop or of one of the double edges can be done by contracting the corresponding dual
edges in the dual graph, which are not depicted in our example for the sake of the simplicity.
The dual contraction of our example remains a simple graph G1 without self-loops and multi-
edges (Figure 4.15a).

Step 3 generates a reduced pair of dual graphs. Their contents is derived in step 4 from the
level below using the reduction function. In our example reduction is very simple: the surviving
vertex inherits the color of its son.

The resulted graph G2 of another dual contraction step is shown in Figure 4.16. The se-
lection rules and the reduction function are the same as in the first iteration. The result shows
that the regions with the same color are brought together. This fact could be used in a top-
down verification step which checks the reliability of merging criterion in the more general
context. Figure 4.17 depicts an overview of the results produced by the algorithm, by using a
simple merging criterion, in which vertices having the same attributes (gray value) are merged.
Moreover in this figure, contraction kernels and the equivalent contraction kernel are shown.
By contracting the edges of the equivalent contraction kernel N0,2 one can reach the top of the
pyramid G2 directly from the base G0. A more complex merge criterion is shown in Chapter 6.
The following Table 4.1 summarizes dual graph contraction in terms of the control parameters
used for abstraction and the conditions to preserve topology (from [Kropatsch, 1994]).

Figure 4.16: Graph G2 after two steps of dual graph contraction.

59

4. Irregular Dual Graph Pyramids

(a) Dual graph pyramid (b) Contraction kernels (c) Equivalent contraction
kernels

G0
N01

from level 0 to 1
N02

G1
N12

from level 0 to 2

from level 1 to 2

G2

Figure 4.17: Dual graph pyramid with three levels: G0, G1, and G2.

Table 4.1: Graph contraction parameters [Kropatsch, 1994]
Level representation contract / remove conditions

0 (G0, G0)
↓ contraction kernel N0,1 forest, depth 1

(G0/N0,1, G0 \N0,1)
↓ redundant multi-edges, self-loops deg v ≤ 2

1 (G1, G1)
↓ contraction kernel N1,2 forest, depth 1
· · · · · · · · ·

In this section every level of the dual irregular pyramid is presented explicitly. An implicit
representation can be done if vertices and edges of ECK of the apex (V0, N0,h) are labeled, such
that vertices and edges are labeled with the highest level in which they survive. This labeled
spanning tree uniquely defines the structure of the dual irregular pyramid [Kropatsch, 1995b].
If the plane graph is transformed into a combinatorial map the transcribed operations form
the combinatorial pyramid [Brun and Kropatsch, 2001a, Brun and Kropatsch, 2001b]. This
framework allows to link dual graph pyramids with topological maps (especially combinatorial
maps) which enable to extend the scope to three (or more) dimensions.

60

4.6 Summary

4.6 Summary

In order to express the connectivity or other geometric or topological properties the image rep-
resentation must be enhanced by a neighborhood relation. The neighborhood relation can be
represented explicitly by a graph consisting of vertices corresponding to the sampling points
and of edges connecting neighboring vertices. To represent not only neighborhood relations
but also the inclusion relations, the planarity and the duality concepts come very good in hand.
Since every planar graph has a dual, one can use dual graphs to represent the partitioning of
the (image) plane, encoding the neighborhood and inclusion relations. One can define trans-
formation of these graphs, like the dual graph contraction to simplify graphs in the sense of
less vertices and edges. Edge contraction and removal introduces naturally a hierarchy of dual
graphs, the dual graph pyramid.

61

CHAPTER 5

Optimizing the Pyramid Structure

” Entia non sunt multiplicande praeter necessitatem. ” 1

by William of Occam.

Summary We present two new methods to determine contraction kernels for the construction of graph
pyramids MIES and MIDES. The first method is restricted to undirected graphs and yields
a reduction factor of at least 2.0. This means with our method the number of vertices in the
subgraph induced by any set of contractible edges reduces to half or less by a single parallel
contraction. Our second method also works for directed graphs. Our methods yield better
reduction factors than stochastic decimation algorithm, in all tests. The lower bound of the
reduction factor becomes crucial with large images. We also give a method to compare the
structure of the image pyramid.

Keywords: Graph based image analysis, image graph pyramids, logarithmic complexity maximal in-
dependent vertex set (MIS), maximal independent edge set (MIES), maximal independent
directed edge set (MIDES), vertical path lengths.

5.1 Introduction

In a regular image pyramid (for an overview see [Kropatsch et al., 1999]) the number of pixels
at any level k, is λ times higher than the number of pixels at the next reduced level k + 1. The
so called reduction factor λ is greater than one and it is the same for all levels k. If s denotes the
number of pixels in an image I , the number of new levels on top of I amounts to logλ(s). Thus,
the regular image pyramid may be an efficient structure to access image objects in a top-down
process.

1Entities are not to be multiplied without necessity.

63

5. Optimizing the Pyramid Structure

However, regular image pyramids are confined to globally defined sampling grids and lack
shift invariance [Bister et al., 1990]. In [Montanvert et al., 1991], [Jolion and Montanvert,
1992] it was shown how these drawbacks can be avoided by irregular image pyramids, the so
called adaptive pyramids. Irregular pyramids can perform most of the operations their regular
counterparts are employed for [Rosenfeld, 1987]. Each level represents a partition of the pixel
set into cells, i.e. connected subsets of pixels. The construction of an irregular image pyramid
is iteratively local [Meer, 1989], [Bischof and Kropatsch, 1993], [Jolion, 2003]. Although
adaptive pyramids overcome the drawbacks of their regular ancestors and although they grow
to a reasonable height as long as the base is small, they grow higher than the base diameter with
a larger input size because the progressive deviation from the regular base favors configurations
that slow down the contraction process. As a consequence of the greater height the efficiency
of pyramids degrades. [Montanvert et al., 1991],[Kropatsch, 1995] and [Bertin et al., 1996]
encountered the problem that the height of irregular pyramid is not bounded. In this chapter
we show that this problem can be resolved by a new selection mechanism which guarantees
logarithmic heights.

Each level of the irregular pyramid consists of dual pair (Gk, Gk) of plane graphs Gk and
Gk (see Chapter 4 for more details). The sequence (Gk, Gk), 0 ≤ k ≤ h is called (dual) graph
pyramid. The building of dual graph pyramid is presented previously in Chapter 4, Section 4.5,
but without going into details on how to determine contraction kernels. Here we repeat this
algorithm by expanding the second step with the iterative local methods presented in the rest of
the chapter.

Algorithm 2 – Constructing Dual Graph Pyramid

Input: Graphs (G0, G0)

1: while further abstraction is possible do
2: select contraction kernels by an iterative local method

{use one of the algorithms presented in Sections 5.2.2, 5.3.1, 5.4.1 or 5.5.1
to determine contraction kernels}

3: perform dual graph contraction and simplification of dual graph (DGC)
4: apply reduction functions to compute content of new reduced level
5: end while

Output: Graph pyramid – (Gk, Gk), 0 ≤ k ≤ h.

Definition 5.1 (Reduction factor) The reduction factor λ is the ratio of the number of vertices
of graphs Gk+1 = (Vk+1, Ek+1) and Gk = (Vk, Ek), ∀k = 0, ..., h such that:

|Vk+1| ≤
|Vk|
λ

. (5.1)

The aim of this chapter is to combine the advantage of regular pyramids (logarithmic ta-
pering) with the advantages of irregular pyramids (their purely local construction, universal
segmentation, topology preservation, preservation of face degree etc.). The aim is reached by
replacing the selection method for contraction kernels proposed in [Meer, 1989] by two new

64

5.2 Maximal Independent Vertex Set (MIS)

iteratively local methods. The method in Section 5.3 that now guarantees a reduction factor of
2.0 and the method in Section 5.4. Experiments with selection methods show that:

• the stochastic decimation method ([Meer, 1989]) does not lead to logarithmic tapering
graph pyramids, as opposed to our methods, i.e. the reduction factors of graph pyramids
build by the old method can get arbitrarily close to 1.0 This problem was encountered
also in [Montanvert et al., 1991].

• the sizes of the cells from the new method are much more uniform, i.e. the cell degree is
not exponentially rising.

Not only stochastic decimation [Meer, 1989] but also connected component analysis [Kropatsch
and Macho, 1995] gains from the new methods. The method in Section 5.4 turned out to produce
logarithmic tapering graph pyramids also in case of monotonic dual graph contraction [Glantz
and Kropatsch, 2000b].

Irregular pyramids can be used to enhance appearance based object recognition. Their struc-
ture gives the opportunity to apply top-down processing on data and introduce additional a pri-
ori knowledge similar to visual attention guidance. Thereby efficiency of succeeding algorithms
can be improved considerably [Langs and Bischof, 2002, Langs et al., 2002, Langs et al., 2001].

The plan of the chapter is as follows. These hierarchies must be ’shallow’ to be efficient in
both bottom-up information aggregation and in top-down processes for verification and focus of
attention. In Section 5.2 we recall the main selection algorithm used in the stochastic pyramid
construction and demostrate in Section 5.6.1 graph pyramids from maximal independent vertex
sets may have a very poor reduction factor. Moreover, experiments show that small reduction
factors are likely, especially when the images are large. We propose two modifications. The one
in Section 5.3 guarantees a reduction factor of 2.0, but is applicable only if the edges may be
contracted in both directions. The modification proposed in Section 5.4 also works in case of
constraints on the directions. This modification yields the highest reduction factors in the case
of stochastic graph pyramids, as our experiments in Section 5.6 confirms. In Section 5.5 we give
a short introduction of an idea proposed by Jolion in [Jolion, 2003]. A detailed experimental
comparison of all introduced methos is given in Section 5.6. In Section 5.7 we give a method
to compare the structure of the graph pyramids build by different strategies.

5.2 Maximal Independent Vertex Set (MIS)

In the following the iterated local construction of the (stochastic) irregular image pyramid
in [Meer, 1989] is described in the language of graph pyramids. The main idea is to first
calculate a so called maximal independent vertex set [Christofides, 1975], [Thulasiraman and
Swamy, 1992]. Let the vertex set and edge set of G be denoted by V and E, respectively. The
incidence relation of V , denoted by ι(·) maps each edge from E to its set of end vertices.

The neighborhoodN (v) of a vertex v ∈ V is defined by

N (v) = {{v} ∪ {w} ∈ V | ∃e ∈ E such that v, w ∈ ι(e)}. (5.2)

Definition 5.2 (Independent set) A set I of vertices V (I ⊆ V) is called independent if no two
vertices u, v ∈ I are neighbors, i.e. u /∈ N (v) and v /∈ N (u) .

65

5. Optimizing the Pyramid Structure

(a) W : with 9 vertices (b) W ′: with 10 vertices

Figure 5.1: Maximal independent vertex set.

Definition 5.3 (Maximal independent set) A subset Imax of V is called maximal independent
vertex set if there is no independent set properly containing Imax.

For each vertices u, v (called members) of Imax this means that:

1. u /∈ N (v) for all u, v ∈ Imax,

2. for all v ∈ Vk there exists a vertex u ∈ Imax such that v ∈ N (u).

The 1st condition requires that two surviving vertices cannot be in the neighborhood of each
other (black vertices in Figure 5.2d). The 2nd condition says that every non-surviving vertex
has in its neighborhood a surviving vertex (white vertices in Figure 5.2d). An example of a
maximal independent vertex set is shown with black vertices in Figure 5.2d, the arrows indicate
a corresponding collection of contraction kernels. A maximal independent vertex set W is
not necessarily maximum, there may be another set W ′ that contains more vertices than W
(Figure 5.1).

5.2.1 Related Works

In general finding maximum cardinality independent (vertex) set is an NP hard problem. The
maximum independent set problem is among the first problems proved NP-hard, and can not
be solved in polynomial time unless NP=P [Garey and Johnson, 1979]. Note that, a maximum
independent set of a graph G is equivalent to the maximum clique on the graph complement
G′ [Skiena, 1990]. However, here we will not mention works done in this area.

In this chapter the algorithms presented solve the maximal independent vertex set2, and NOT
the maximum independent set. There is a O(|E|) time complexity sequential algorithm for
solving the MIS, by just simple putting any vertex in the maximal independent set, and deleting
its neighbors, repeat these steps until there are no vertices left in the graph. The most common
technique for generation a maximal independent vertex set uses a greedy approach [Gavril,
1972]. This technique selects a set of vertices for the MIS with probability reciprocal to the
degree of the vertex.

2Also called maximal stable set; we distinguish maximal from maximum independent set.

66

5.2 Maximal Independent Vertex Set (MIS)

The maximal independent vertex set has a trivial sequential algorithm, but appears much
harder to find a parallel version. There is a large body of literature on parallel algorithms find-
ing MIS [Alon et al., 1986, Goldberg and Spencer, 1989, Luby, 1986, Karp and Wigderson,
1985]. The problem arises since there are interdependences between vertices to be added in
the set. Because of adjacency relations not all of these vertices can be added at the same time.
The symmetry-breaking techniques enable the algorithms to choose subset of independent op-
erations. The MIS problem is very well suited for applying symmetry breaking techniques.
A symmetry breaking technique is necessary to find large sets of vertices to add as it is done
in [Goldberg et al., 1988, Karp and Wigderson, 1985, Luby, 1986]. [Karp and Wigderson, 1985]
proved that MIS is in NC3. In [Luby, 1986] and [Alon et al., 1986] probabilistic algorithms are
shown running in O(log2(|V |) time with a linear number of processor on a PRAM4. These al-
gorithms have a local property: each vertex is randomly chosen to be put in the independent set
based only on information about the adjacent vertices in the graph (the valency of the vertex).
[Luby, 1986] showed also how to convert a probabilistic algorithm into a deterministic one.
This technique preserves the running time but needs a larger number of processorsO(|V |2|E|).
In [Goldberg and Spencer, 1989] a deterministic algorithm is presented that runs inO(log3(|V |)
time withO((|V |+|E|)/ log |V |) number of processors. Problems like the maximal set packing
problem or the matching problem are NC thought the reductions to maximal independent set
problem [Karp and Wigderson, 1985].

A natural symmetry breaking technique is randomization. Since in our application of MIS,
one cannot say whether the vertex with a large neighborhood is more important than the others,
the degree of the vertex is not taken into consideration in the decision whether this vertex should
be part of MIS or not. Therefore, in [Meer, 1989] a probabilistic symmetry breaking iterative
parallel technique similar to that in [Luby, 1986], which does not explicitly take into account
the degree of the vertices is shown. This technique is the base of the presentation in the rest of
the chapter.

5.2.2 Algorithm MIS

Maximal independent vertex set (MIS) problem was solved using the heuristic in [Meer, 1989].
The number of iterations to complete MIS converges in most of the cases very fast, so called
iterations for correction [Meer, 1989]. MIS [Meer, 1989], [Jolion, 2003] may be generated as
in Algorithm 3.We assume that no two random numbers are equal.

The 2nd step of the algorithm (the iteration for correction) is shown in more detail in a
simple graph in Figure 5.2a, (b), and (c). The random numbers assigned to the vertices of
graph are shown in Figure 5.2a. In Figure 5.2b is shown the parallel process of finding the
local maximum vertices and marking them as members (depicted with black) and as non-
candidates, also marking as non-candidate all the vertices that are neighbors of the members,
vertices shown with white. Since after this step there are some candidates (5, 6, 15, 10 and 12)
status of which is undefined, we repeat the 2nd step in order to find a status for these candidates.

3A problem is NC (Nick Class) if for constants k and c the problem can be solved in timeO((log |V |)c) using
O(nk) parallel processors. In other words a problem is solvable in poly-logarithmic time on a parallel computer
needing polynomial number of processors. See [JáJá, 1992] for more details.

4Parallel random access machines, an abstract machine used to study parallel algorithms.

67

5. Optimizing the Pyramid Structure

Algorithm 3 – MIS Algorithm
Input: graph G = (V,E)

1: mark every element of V as candidate
2: while there are candidates do
3: assign random numbers to the candidates of V
4: determine the candidates whose random numbers are greater than the random numbers

of all neighboring candidates and mark them as member (of the maximal independent
set) and as non-candidate

5: mark every neighbor of every new member as non-candidate
6: end while
7: in each neighborhood of a vertex that is not a member there will now be a member. Let

each non-member choose the edge to be contracted to its neighboring member, say the one
with the maximal random number.

Output: set C of contraction kernels based on MIS.

The complete maximal independent set of vertices for this simple example is found in two
iterations, Figure 5.2c.

Definition 5.4 (Contraction Kernel) A contraction kernel is a vertex disjoint rooted tree. The
depth of a kernel is the longest distance of a leaf from the root.

With this definition we can redefine the reduction factor as follows:

Proposition 5.1 The reduction factor can be determined from the sizes of vertices and the num-
ber of contraction kernels |C|:

λ ≥ |Vk|
|C| . (5.3)

Proof: The roots of each contraction kernel from C are the survivors in the next level of the
pyramid. Hence the number of vertices in the next level is the same as the number of contraction
kernels, i.e. |Vk+1| = |C|. �

The assignment of the non-members to their members determine a collection of contraction
kernels C: each non-member is contracted toward its member and all contractions can be done
in a single parallel step, 3rd step of the algorithm. In Figure 5.2d the contractions are indicated
by arrows. A graph pyramid from maximal independent vertex sets can be seen in Figure 5.2e,
where Gi are graphs in levels i = 0, ..., 3. Note that we remove parallel edges and self-loops
that emerge from the contractions, if they are not needed to encode inclusion of regions by
other regions. In the example of Figure 5.2e we do not need loops nor parallel edges. This can
be done by the dual graph contraction algorithm [Kropatsch, 1995a] (See Chapter 4). Trivial
contraction kernels do occur very often in MIS as can be seen in Figure 5.2d, isolated black
vertices. In Section 5.3 we introduce a method that finds contraction kernels that are non trivial
in this sense.

68

5.2 Maximal Independent Vertex Set (MIS)

18 8 25 3 6

9 5 7 19 13

20 16 10 11 12

24 1 15 21 17

14 23 22 2 4

18 8 25 3 6

9 5 7 19 13

20 16 10 11 12

24 1 15 21 17

14 23 22 2 4

18 8 25 3 6

9 5 7 19 13

20 16 10 11 12

24 1 15 21 17

14 23 22 2 4

(a) (b) (c)
(a), (b), (c) Second step of MIS

(d) The black vertices form a MIS.
The frames indicate a corresponding collection of contraction kernels

G0

G1

G2

G3

(e) A graph pyramid from MIS.

Figure 5.2: A graph pyramid from maximal independent vertex sets.

69

5. Optimizing the Pyramid Structure

5.3 Maximal Independent Edge Set (MIES)

In the following we aim at a collection C of contraction kernels in a plane graph G such that

• each vertex of G is contained in exactly one kernel of C, and

• each kernel C contains at least two vertices.

Definition 5.5 (Maximal Matching) A set M of independent edges in a graph G = (V,E) is
a maximal matching if every vertex in U ⊂ V incidents with an edge in M , and M cannot be
enlarged by an edge without loosing independence. The vertices in U are then called matched
vertices (by M); all other vertices are called unmatched vertices.

Two edges are independent if they do not incident in the same vertex. We assume that G is
connected and planar, and that the data do not impose constraint on the selection, i.e. in large
homogeneous regions. Clearly, the contraction of all kernels in C will reduce the number of
vertices to half or less. Note that M is only required to be maximal, i.e. the edge set M cannot
be enlarged by another edge from G without loosing independence. A maximal matching M is
not necessarily maximum: there may be a matching M ′ (Figure 5.3b) that contains more edges
than M (Figure 5.3a).

5.3.1 Algorithm MIES

We start with independent edge sets or matchings, i.e. edge sets in which no pair of edges has
a common end vertex. The maximal independent edge set (MIES), C is done in three steps
(Algorithm 4).

Algorithm 4 – MIES Algorithm
Input: graph G = (V,E)

1: find a maximal matching M of edges from G (e.g. using MIS algorithm on the edge graph
of G)

2: M is enlarged to a set M+ that edge-induces a spanning subgraph of G
3: M+ is reduced to a subset C such that each vertex of G is contained in exactly one contrac-

tion kernel and each contraction kernel contains at least two vertices.

Output: set C of contraction kernels based on MIES

A maximal matching of G is equivalent to a maximal independent vertex set on the edge
graph of G [Diestel, 1997], [Christofides, 1975]. Thus, a maximal matching may be determined
by the iterated process as used in MIS algorithm (Section 5.2). Note that M is only required
to be maximal, i.e. the edge set M cannot be enlarged by another edge from E \ M without
loosing independence.

The collection of contraction kernels defined by a maximal matching M may include kernels
with a single vertex. Let v denote such an isolated vertex, isolated from M , and choose a non-
self-loop e that has v as an end vertex. Since M is maximal, the other end vertex w �= v of e

70

5.3 Maximal Independent Edge Set (MIES)

(a) M : a maximal matching with 9 edges (b) M ′: a matching with 12 edges

(c) M+: the matching from a) enlarged by (d) (c) after breaking up trees of depth two
connecting formerly isolated vertices into trees of depth one

to the maximal matching

Figure 5.3: Maximal independent edge set.

belongs to an edge that is contained in the matching. Let M+ denote the set of edges that are in
M or that are chosen to connect isolated vertices to M , 2nd step of MIES.

The subgraph of G that is induced by M+ spans G and its connected components are trees
of depth one, two or three, Figure 5.3c. A tree of depth three can be separated into two trees
of depth one each by removing the unique edge, both end vertices of which belong to other

...

...
1

2

3

i

n

(a) Without restriction (b) Only the center vertex (depicted with black)
can be chosen as the root of the tree

Figure 5.4: Restriction in choosing the surviving vertex.

71

5. Optimizing the Pyramid Structure

edges of the tree (indicated by the crosses in Figure 5.3c); 3rd step of MIES. Still, each vertex
of G belongs to a tree (of depth one). The arrows in Figure 5.3d indicate possible directions of
contractions. Since each vertex of G is now contained in a non-trivial contraction kernel, we
prove the following proposition:

Proposition 5.2 (Reduction factor of MIES at least 2.0) The number of contraction kernels
produced by algorithm MIES is at most |V |/2.0.

Proof: Let G = (V,E) be a planar connected graph with |V | vertices. Let M ⊂ E be a
maximal matching of G and let U = {i(e)|e ∈ M} be the set of vertices matched by M and
U ′ = V \ U be the set of unmatched vertices (isolated vertices). A vertex v ∈ U is called
matched by M if it is incident with an edge in M . Since the matching is maximal, no two
adjacent vertices v, w may be unmatched. i.e. in the neighborhood of the unmatched vertex all
vertices must be matched. This means that in the neighborhood of an unmatched vertex w ∈ U ′

there is at least one edge connecting w to a matched vertex v ∈ U . If there are more than one
connecting edge, we select arbitrarily only one of them.

The edge set M is enlarged to M+ by adding all edges connecting unmatched vertices.
Thus all vertices of V are incident to edges in M+. The subgraph of G that is induced by
M+ spans G and its connected components are trees of diameter one (the matched edge), two
(isolated vertices connected to one endpoint of a matched edge only) or three (isolated vertices
connected to both ends of the matched edge). Trees of diameter three are split into two trees of
diameter one by removing the unique central edge ue ∈ U . The two endpoints of the matched
edge of a tree of diameter three have a degree of at least two (they cannot be leaves). Splitting
of the tree removes this matched edge which reduces the degree of both end vertices by one, but
they are still greater than zero. Hence this edge deletion does not create a new isolated vertex.
This ensures that all vertices Vk are also incident edges of the new set M++ = M+ \ {ue} and
there are no isolated vertices left.

We conclude that the subgraph of G that is induced by M++ spans G and its connected com-
ponents are trees of diameter one or two i.e. with more than one vertex. If all the components
are trees of diameter one, the number of contraction kernels C is |V |/2.0. If there is at least one
tree of diameter two then |C| < |V |/2.0. We proved that in general case |C| ≤ |V |/2.0.

�

The surviving vertices can be in the neighborhood of each other, relaxing the 1st condition of
the MIS, which were proposed in [Kropatsch and Montanvert, 1991a]. Non-surviving vertices
are in the neighborhood of at least one surviving vertex, fulfilling the 2nd condition of MIS
(Section 5.2). Note that in case of kernels with more than one edge, Figure 5.4b and Figure 5.5a,
the roots (surviving vertex) within the kernel cannot be chosen arbitrarily. In Figure 5.4a any of
the vertices can be chosen to be the root of the tree. But for the case in Figure 5.4b the black
vertex can only be chosen as root of the tree, otherwise the (rooted) trees have depth greater
than one. This would contradict our requirement about the depth of the contraction kernel.
This is why the proposed method cannot be extended to applications in which there are a priori
constraints on the directions of the contractions. However, the proposed method works for
the stochastic case (no preconditions on edges to be contracted) and for connected component
analysis [Kropatsch and Macho, 1995], where the attributes of the end vertices are required to
be identical. In the case of Figure 5.5 the MIES algorithm chooses the only possible vertex v

72

5.4 Maximal Independent Directed Edge Set (MIDES)

v

u

(a) Input (b) M : maximal matching (c) M+: enlarged M (d) Possible contraction kernel

Figure 5.5: Restriction in choosing the surviving vertex.

for the root of tree (Figure 5.5d) i.e. as a survivor and there is only one possible contraction
kernel, implying also the direction of contraction. For other cases the survivor can be chosen
arbitrarily. The arrows in Figure 5.3d indicate possible directions of contractions, i.e. possible
choice of the survivors. But some applications [Burge and Kropatsch, 1999], [Kropatsch and
Burge, 1998], [Glantz et al., 1999], [Kammerer and Glantz, 2001], [Glantz and Kropatsch,
2000b] could restrict the way of choosing the surviving vertices, i.e. choosing vertex u as a
survivor, or could constrain the direction of contraction. This is why the proposed method
cannot be extended to applications in which there are a priori constraints on the directions of
the contractions. However, the proposed method works for the stochastic case (no preconditions
on the direction of edges to be contracted) and for connected component analysis [Kropatsch
and Macho, 1995], where the attributes of the end vertices are required to be identical.

5.4 Maximal Independent Directed Edge Set (MIDES)

In the previous section the direction of edge contraction is not of importance, i.e. edge e =
(u, v) = (v, u) can be contracted in arbitrary direction, from u to v or vice versa. In many graph
pyramid applications such as line image analysis [Burge and Kropatsch, 1999], [Kropatsch
and Burge, 1998] and the description of image structure [Glantz et al., 1999], [Kammerer and
Glantz, 2001], [Glantz and Kropatsch, 2000b] a directed edge e with source u and target v �= u
must be contracted (from u to v), only if the attributes of e, u, and v fulfill a certain condition, i.e.
the edge e = (u, v) is to be contracted but not e′ = (v, u) �= (u, v). In particular, the condition
depends on u being the source and v being the target, making the direction of contraction
an important issue (Figure 5.6a). In line drawings, end point of lines or intersections must
be preserved for geometric accuracy reasons. The edges that fulfill the condition are called
preselected edges.

From now on, the plane graphs in the pyramid have (bi)directed edges. Typically, the edges
in the base level of the pyramid form pairs of reverse edges, i.e. for each edge e with source
u and target v there exists an edge e′ with source v and target u. Undirected graphs can be
converted into directed graphs by substituting the edges into pairs of reverse edges, i.e. for each
edge e with source u and target v there exists an edge e′ with source v and target u. However,
the set of preselected edges may contain e without containing e′. The goal is to build contraction
kernels with a high reduction factor from the set of preselected edges. The reduction will always
be determined according to the directed graph induced by the preselected edges. For example,
if the number of vertices in the induced subgraph is reduced to half, the reduction factor will
be 2.0. From the example in Figure 5.6b it is clear that, in general, the reduction factor can be

73

5. Optimizing the Pyramid Structure

u v

e

center

(a) direction of contraction (b) reduction factor of a star

Figure 5.6: Direction of contraction.

e

u v

Figure 5.7: The neighborhoodN (e).

arbitrarily close to 1.0. To perform the contractions in parallel, we need a vertex disjoint union
of contraction kernels. The plan is to define such a union in terms of independent directed edges,
where independent means that no pair of directed edges belongs to the same neighborhoodN (e)
(see Definition 5.6). Then, dealing with edges instead of vertices, we may find the contraction
kernels as in MIS.

Definition 5.6 Let e = (u, v) be a directed edge of G and u �= v. Then the directed neigh-
borhood N (e) is given by all directed edges with the same source u, targeting the source u or
emanating from target v:

N (e) = N ((u, v))
= {(u, v′) ∈ E} ∪ {(u′, u) ∈ E}

∪ {(v, u′) ∈ E}.

The neighborhood N (e) of e is given by all edges which point toward the source of e, edges
with the same source u as e and the edges the source of which is the target of e. Note that edges
pointing toward the target of e are not part of the directed neighborhood. Figure 5.7 depicts
N (e) in case of u and v both having 4 neighbors.

Definition 5.7 A contraction kernel is a vertex disjoint rooted tree of depth one or zero (single
vertex), each edge of which is directed toward the root (survivor).

74

5.4 Maximal Independent Directed Edge Set (MIDES)

Note that the direction of edges uniquely determines which vertex survives on the next level of
the pyramid, i.e determines the contraction kernel (decimation parameter [Kropatsch, 1995a]).
A set C of directed edges forms such a collection of contraction kernels if and only if C contains
none of the edge pairs depicted in Figure 5.8a. Seen from a directed edge e with source u and
target v �= u that one wants to contract (from u to v), no edge e′ �= e with end vertex (source or
target) equal to u or source equal to v may be contracted. An edge e to be contracted together
with those edges that one may not contract form a directed edge neighborhoodN (e) of e.

Definition 5.8 Let v be a vertex of directed graph G. We define the out-degree, the source s as

s(v) := #{e ∈ G |v is source of e},

and in-degree, the target t as

t(v) := #{e ∈ G |v is target of e}.

In Figure 5.8b the number of edges with target in root is t(root) = 5; and for the center vertex
with n edges pointing away s(center) = n, Figure 5.6b.

Proposition 5.3 Let D denote a set of directed edges from a graph G and GD denote the sub-
graph induced by D with out-degrees sD(·) and in-degrees tD(·). Then the following statements
are equivalent:

(a) sD(v) < 2 ∧ sD(v) · tD(v) = 0, ∀v ∈ GD.

(b) GD is a vertex disjoint union of contraction kernels.

Proof:

i) (a) ⇒ (b): Let R := {r| r is target of some e ∈ D ∧ s(r) = 0} be the set of roots.
Furthermore, each set Er := {e ∈ D| r is target of e} is a tree with root r ∈ R, hence
Er is a contraction kernel Cr. Let us suppose that Er contains a cycle. Then it exists a
vertex u and two edges e and e′ in D such that e = (u, r) and e′ = (u, r). But in this case
sD(u) = 2 contradicting sD(u) < 2.

Let us suppose that it exists u ∈ Cr ∩ Cr′ , r �= r′ ∈ R. There are two cases:

1. if sD(u) = 0 then either u = r or ∃e = (r, u) ∈ D but it contradicts sD(r) · tD(r) =
0, and

2. sD(u) �= 0 then tD(u) = 0 ⇒ ∃(u, r) ∈ Er and (u, r′) ∈ Er′ but it contradicts
sD(u) < 2.

ii) (b) ⇒ (a): Let T be the set of roots of the vertex disjoint contraction kernels and let Ct

denote the unique contraction kernel with root t ∈ T . Furthermore, let v ∈ GD. Since
Ct , ∀t ∈ T are vertex disjoint, exactly one of the following holds:

1. v ∈ T and sD(v) = 0.

2. v /∈ T and sD(v) = 1, tD(v) = 0.

75

5. Optimizing the Pyramid Structure

v

v(a1)

(a2)

root

(a) Forbidden contraction kernels (b) Legal contraction kernel

Figure 5.8: Forbidden and legal configuration of directed edges.

MIDES with respect toN (e)

Figure 5.9: Maximal independent edge set.

�

Examples of kernels which do not fulfill the Definition 5.7 are shown in Figure 5.8a1 where
s(v) = 1 and t(v) = 1; and a2) where s(v) = 0 and t(v) = 2. From the example in Figure 5.6b
it is clear that only one edge can be contracted (otherwise one ends with forbidden contraction
kernels), which means in general, vertex reduction factor can get arbitrarily close to 1.0.

Note that, in contrast to MIS, the roots of two contraction kernels may be neighbors. Con-
dition (a) in Proposition 5.3 is fulfilled if and only if no pair of directed edges from D belongs
to the same N (e), e ∈ D, where N (e) is defined in Definition 5.6. Hence, a maximal vertex
disjoint union of contraction kernels may be found via a maximal set of directed edges that are
independent with respect to N (e). A parallel algorithm to find a maximal independent set with
respect to N (e) is specified in the next section.

5.4.1 Algorithm MIDES

To find a maximal independent set of directed edges (MIDES) forming vertex disjoint rooted
trees of depth zero or one, we proceed analogously to the generation of maximal independent
vertex sets (MIS), as explained in the Section 5.2. Let E denote the set of directed edges in the
graph G of the graph pyramid. We proceed as shown in Algorithm 5. Since the direction of
edges uniquely determines the roots of the contraction kernels (the survivors), all the vertices

76

5.4 Maximal Independent Directed Edge Set (MIDES)

Algorithm 5 – MIDES Algorithm
Input: graph G = (V,E)

1: mark every directed edge of E as candidate
2: while there are candidates do
3: assign random numbers to the candidates of E
4: determine the edge candidates e whose random numbers are higher (larger) than the

random numbers in N(e) \ {e} and mark them as member (of a contraction kernel), also
mark every e′ ∈ N(e) of every new member e as non-candidate

5: end while
6: the targets of the directed edge candidates are marked as survivors, all the vertices which

are the sources of directed edges are marked as non-survivor and the remaining unmarked
vertices are marked to be survivors as well

Output: set C of contraction kernels based on MIDES

g e c a

f d b 0

ij
g

f

e

d

c

b

a

0

bidirected vertex chain

corresponding edge-graph:
c a

d 0

contraction kernels

selected edge-members

i

(a) Labeled edge-graph (b) Case c, d > b

g e c a

d 0

contraction kernels

selected edge-members

(c) Case c < b

Figure 5.10: The edge-graph of a sequence of vertices (from [Kropatsch et al., 2005]).

which are the sources of directed edges are marked as non-survivor. Remaining isolated vertices
are marked to be survivors. An example of a set of contraction kernels C found by MIDES is
given in Figure 5.9 (the survivors are depicted with black and non-survivors with white).

In order to show why MIDES method shows good reduction we follow the work in [Kropatsch
et al., 2005]. Isolated vertices i can occur after MIDES, too. Because all contraction kernels are
disjoint and because each edge covers two vertices it is clear that following proposition holds:

Proposition 5.4 If there are no isolated vertices left after algorithm MIDES the number of
contraction kernels is at most |V |/2 (allowing a reduction factor of at least 2.0).

77

5. Optimizing the Pyramid Structure

In order to understand the difference to MIES let us study what happens in the while-loop af-
ter the first iteration. After local maxima are marked as members and all neighbors are removed
as candidates, all remaining edge candidates are non-maxima.

The particular neighborhoodN (e) used in the (bi-)directed graph creates the edge adjacen-
cies shown in the edge-graph (Figure 5.10a). Each directed edge corresponds to a vertex (�) in
the edge-graph and the attributes (random numbers) are denoted by the letters a, b, c, d, e, f and
g. All edges in the neighborhood N (e) create edges in the edge-graph. Two edges pointing to
the same vertex are NOT connected in the edge-graph.

Isolated vertices i appear at the end of the correction phase when the neighborhood of edge-
members cover all edges incident to i. Furthermore all edges incident to i are edge-neighbors of
a member whose orientation points away from i. OtherwiseN (e) would allow the reverse edge
to be a member. In Figure 5.10a edges a, 0 are incident to the isolated vertex i, both neighbors
of edge b,N(b) = {0, a, c, d}. If c would be the member instead of b, then 0 would become a
member, too, since 0 �∈ N(c) = {e, d, b, a} and i would not be isolated.

From each isolated vertex i emanate paths with monotonically increasing random numbers
leading to a local maximum. We therefore study such a path which is a linear sequence of
vertices (Figure 5.10a).

Assume g is the only local maximum, all the other edges have at least one edge-neighbor
which has a higher value. In this case g would become a member and e, f would be removed
as candidates. The next highest edges could be c or d. If c is higher then it would be selected
next and a, b, d removed leaving 0 which would be the last edge selected. In this case no
isolated vertex would appear. Assume d is selected instead of c. Then b, c would be removed
as neighbors, a would be selected next and 0 removed as neighbor of a. We see that many
possibilities lead to solutions without an isolated vertex.

Let us reason backwards: In order for vertex i to be an isolated vertex, both edges 0 and a
must be neighbors of a member. The only choice is b!

Case c, d > b: If both c and d are higher than b then e is the last member before b was chosen.
Since b and e share the same root vertex they are part of the same contraction kernel
covering 3 vertices, thus compensating for the isolated vertex i.

Case c < b: If c is less than b then f could be the last edge-member before b (see Figure 5.10c).
We note that the selected edges for contraction point in the same direction.

We can continue the construction until either the orientation of the selected edge changes or
we reach the local maximum (vertex j in Figure 5.10a) In the first case the two reversed edges
form a contraction kernel covering three vertices and, hence compensating the isolated vertex.
If the input graph has 5 vertices then the vertex j is isolated too and is not compensated, thus
the reduction factor is less then 2. This is the only example where the reduction factor is less
then 2, for input graph with 6 or more vertices in a sequence, it is equal or larger than 2. In
the second case the search for a larger contraction kernel covering more than just two vertices
would continue for all other paths emanating from the same isolated vertex. If the input graph
has 3 vertices in a sequence, the isolated vertex i is not compensated, thus the reduction factor
is less then 2, only in this example. In general, the only case where the isolated vertex i is not
compensated by a larger contraction kernel consists of a set of edge-members filling the region
of the correction phase and ALL pointing away from i and toward the local maximum. As we

78

5.5 Data Driven Decimation Process (D3P)

(a) MIS (b) MIES (c) MIDES

Figure 5.11: Examples of contraction kernels for a 12× 12 grid graph.

will see in our experiments this is extremely unlikely and could, in addition, be compensated
by any other larger contraction kernel.

MIDES has another feature different from MIES. It can create star-like kernels due to the
special neighborhood chosen. Edges (x1, r), (x2, r), . . . having the same target r can ALL
be local maxima and selected as members in the first iteration of algorithm MIDES since
N((x1, r)) ∩ N((x2, r)) = ∅. Therefore the resulting set of edge-members is not necessar-
ily a matching and may well contain larger kernels with one root and several edges attached to
it.

We conjecture that larger kernels occur more frequently than isolated vertices. Each isolated
vertex needs only one kernel of more edges to keep the balance for a reduction factor of two.
This may explain the experimental results with MIDES.

In Figure 5.11 examples of contraction kernels for a grid graph of size 12 × 12 for MIS,
MIES, and MIDES. Note that MIS algorithm has isolated surviving vertices (encircled isolated
vertices in light gray), whereas MIES has none (as shown theoretically previously), and MIDES
in this example has none as well. Even thought theoretically MIDES can have isolated vertices,
it is unlikely as shown in this section. In this figure, the non-surviving vertices are shown with
white, and together with arrowed edges compose the contraction kernels (some of which are
shown by dark gray surroundings).

5.5 Data Driven Decimation Process (D3P)

In this section we recall an idea proposed in [Jolion, 2003, Jolion, 2001] on how to build sto-
chastic irregular image pyramid, the data driven decimation process (D3P). The main difference
from the MIS algorithm presented in Section 5.2 is that the 2nd step of MIS is relaxed, i.e. no
iteration will be performed. Skipping the iteration is motivated by the fact that the iteration is
used only for completing the maximal independent set. It is assumed that being a local maxi-
mum is of importance [Jolion, 2003], [Jolion, 2001].

79

5. Optimizing the Pyramid Structure

5.5.1 Data Driven Decimation Process Algorithm (D3P)

Let the vertex set of G be denoted by V . To determine contraction kernels [Jolion, 2003],
[Jolion, 2001] proceed as shown in Algorithm 6.

Algorithm 6 – D3P Algorithm
Input: graph G = (V,E)

1: mark every element of V as candidate
2: assign random numbers to the candidates of V
3: determine the candidates whose random numbers are greater than the random numbers of

all neighboring candidates and mark them as member (of the maximal independent set),
also mark every neighbor of every new member as non-candidate

4: mark as member all the remaining candidates that do not have a member in the neighbor-
hood

5: in each neighborhood of a vertex that is not a member there will now be a member. Let each
non-member choose one of its neighboring members (say the one with the maximal random
number; we assume that no two random numbers are equal) and add the corresponding edge
to the contraction kernel of the member

Output: set C of contraction kernels based on D3P.

Note that the output of the algorithm is not a maximal independent vertex set. We will use
again the example shown in Figure 5.2 to explain the difference between MIS and D3P. All the
candidates that have an undefined status in the 2rd step of the MIS algorithm are simply marked
as members. Note the differences shown in Figure 5.2c and Figure 5.12b. The candidates that
have non-defined status (6, 5, 16, 10, 12, and 4) after the step 3, are marked as members in step
4, shown with black in Figure 5.12b. In Figure 5.12c is given a set of contraction kernels build
by the 3rd step of the algorithm.

5.6 Comparing the Speed of Reduction

The experiment in this section compares the height of the pyramid (the solution quality), i.e.
the reduction factors of vertices, edges and faces of stochastic graph pyramids using algorithms
MIS, MIES, MIDES, and D3P. These experiments were done using guides in [Johnson, 2002],
[McGeoch, 1992], [Hooker, 1995] to study the average-case behavior.

Uniformly distributed random numbers are assigned as attributes to the vertices or edges in
the base level grid graphs. We do not change the structure of the base graph by these randomiza-
tion. Then the pyramids are built using the stochastic strategy. Finally we calculate statistics of
all pyramids built by each specific selection (MIS, MIES, MIDES, D3P) to compare the proper-
ties of different strategies. The same observation resulted from the two different random number
generators [Matsumoto and Nishimura, 1998], [Mehlhorn and Näher, 1999]. By changing the
seed of the uniformly distributed random generator we generated 1000 attributed grid graphs,
on top of which we built stochastic graph pyramids by each selection MIS, MIES, MIDES, and

80

5.6 Comparing the Speed of Reduction

18 8 25 3 6

9 5 7 19 13

20 16 10 11 12

24 1 15 21 17

14 23 22 2 4

18 8 25 3 6

9 5 7 19 13

20 16 10 11 12

24 1 15 21 17

14 23 22 2 4

(a) and (b) Third and fourth step of D3P

(c) Contraction kernels

Figure 5.12: Data driven decimation process.

D3P. We reduce these graphs until we reach the top of the pyramid, the apex, which consist of
one vertex and one face and no self loops.

In our experiments, Section 5.6.1, Section 5.6.2, Section 5.6.4, and Section 5.6.3 we used
bi-directed grid graphs of size 10000, 22500 and 40000 vertices respectively, which correspond
to image sizes of 100 × 100, 150 × 150 and 200 × 200 pixels, respectively. Even thought
the input grid graphs in which vertices have bounded degree are used as inputs, the results are
general since the graphs in the second level are non-grid graphs with vertices of different degree.
Therefore it is not necessary to test graphs with of large neighborhoods, i.e. large vertex degree.

The properties of different strategies are compared by using these following parameters:

• the height of the pyramid - height,

• the degree of vertices - vertex degree,

• the reduction factor for vertices - |Vk|
|Vk+1| ,

• the reduction factor for edges |Ek|
|Ek+1| , and

• the number of iteration for correction [Meer, 1989] - correction,

The number of levels needed to reduce the graph at the base level (level 0) to an apex (top of the
pyramid) consisting of one vertex is the height of the pyramid. The number of edges incident to
a vertex, i.e the number of non-survivors identified to the survivor represent the vertex degree

81

5. Optimizing the Pyramid Structure

0 5 10 15
10

0

10
1

10
2

10
3

0 5 10 15
10

0

10
1

10
2

10
3

0 5 10 15
10

0

10
1

10
2

10
3

(a) MIS (b) MIES (c) MIDES
Legend: Number of vertices v (y-axis) in levels (x-axis) of the first 100 pyramids.

Figure 5.13: Reduction factor of graph pyramids for 26× 26 input grid graphs.

complexity. The number of iterations to complete maximal independent set for any graph in
the contraction process is the iteration for correction. The ratio of the number of vertices of
two consecutive levels is the vertex reduction ratio (|Vk|/|Vk+1|). We average these parameters
(sample mean μ̂pyr and sample standard deviation σ̂pyr) for every experiment (i.e pyramid) as
shown in the Table 5.1 and 5.2 over all experimental sets (μ̂data, σ̂data). Figures 5.15, 5.16,
5.17, and 5.18 summarize the results of the first 100 of 1000 tests for images of sizes 100×100,
150×150 and 200×200 pixels; solid lines connect the observed number of vertices/edges/faces
of one particular pyramid, where the number of levels of the graph pyramid constitute the
horizontal axis and the vertical axis shows the number of vertices v, edges e and faces f in
logarithmic scale at the respective pyramid level. In this choice of coordinate axes a constant
reduction factor becomes a straight line. Since we reduce the pyramid to a single vertex in the
apex all the solid lines in all v− and f− diagrams end at the 100(= 1). The solid lines of the
e-diagrams end at the last but one level since the top does not contain any edge.

Statistical results using 1000 grid graphs are discussed in Subsection 5.6.5, Tables 5.1, and
5.2 The statistics of vertex degree5 is given in Table 5.1 and 5.2. These parameters are of impor-
tance because they are directly related to the memory costs of the representation of graph [Jo-
lion, 2003, Jolion, 2001]. In Table 5.1 and 5.2 the mean and standard deviation for height of the
pyramid, and for the number of iteration for corrections are given. The mean and standard devi-
ation of the decimation ratio for vertices and edges is given in Table 5.1 and 5.2. The software
tool dgc tool 6 [Saib et al., 2002] was used to make these results.

5.6.1 Experiments with MIS

The graph size 26 × 26 is used in MIS of [Meer, 1989] to test the method. This graph size is
too small to recognize the inefficiency of MIS with respect to the height of the pyramid. The

5The number of edges incident to a vertex.
6Can be found at ftp://ftp.prip.tuwien.ac.at/pub/dgc tool/.

82

5.6 Comparing the Speed of Reduction

Figure 5.14: Evolution of vertices with large neighborhood using MIS.

reduction factor of different methods is shown in Figure 5.13. There is not a ’big’ difference
in the height of the pyramid between MIS and MIES (or MIDES, respectively) in this figure.
The height of pyramid is not an issue when graphs are of small sizes and therefore is not stud-
ied in [Meer, 1989], but it is encountered as a major drawback of irregular graph pyramids
in [Montanvert et al., 1991, Bischof, 1995].

The number of levels needed to reduce the graph at the base level (level 0) to a graph
consisting of a single vertex, with no self loops and a single face (top of the pyramid) are
given in Figure 5.15, (v) for vertices, (e) for edges and (f) for faces. From Figure 5.15 we see
that the height of the pyramid cannot be guaranteed to be logarithmic, except for some good
cases. In the worst case the pyramid had 22 levels for 100 × 100 vertices and 41 levels for the
graph with 200 × 200 vertices, respectively. Poor reduction factors are likely, as can be seen
in Figure 5.15, especially when the images are large. This is due to the evolution of larger and
larger variations between the vertex degrees in the contracted graphs (Table 5.2, μ̂data(max) =
70.69 and Figure 5.14). The absolute maximum in-degree was 148. The a priori probability
of a vertex being the local maximum depends on the size of its neighborhood. The larger
the neighborhood the smaller is the probability that a vertex will survive [Jolion, 2003]. MIS
tends to have vertices with a large neighborhood (stars), as shown exemplary in Figure 5.14.
This causes the reduction factor to be very poor at highest levels, also noted in [Montanvert
et al., 1991], which is mainly due to the good performance of the decimation at the first few
levels where the graphs have large sizes and a small neighborhood size (e.g. each vertex has
4 neighbors in the base level). The mean reduction factor of vertices is 1.94 (Table 5.2).The
collapse of the hight-order-star-like configuration into the apex causes the sudden break of the
solid lines (‘star-contraction’) in the v and f -diagrams. The number of iterations necessary to
complete the maximum independent set per level (iterations for correction) are 3 as reported
by [Meer, 1989]. The mean value of the height of the pyramid is 20.78 (Table 5.2).

To summarize, a constant reduction factor higher then 1.0 cannot be guaranteed and bad
cases have a high probability (almost horizontal solid lines in Figure 5.15).

83

5. Optimizing the Pyramid Structure

5.6.2 Experiments with MIES

The number of levels needed to reduce the graph at the base level by the MIES strategy to an
apex are shown in Figure 5.16. The experiments show that the reduction factor, even in the
worst case, is always higher than the theoretical bound 2.0, as indicated by the dashed line in
Figure 5.16v). The MIES is more stable than MIS, as can be seen in Figure 5.16, where the
slope of the solid lines have smaller variations. The mean and the variance of reduction factor
for MIES is smaller than in case of MIS or D3P, which implies that the height of the pyramid
(μ̂data(height) = 14.01) is also smaller than that for MIS (μ̂data(height) = 20.78) or D3P
(μ̂data(height) = 88.25).

The mean numbers of iteration for correction per level was higher for MIES (Table 5.1 and
5.2). To summarize the reduction factor was always below the theoretical upper bound of 2.0.

5.6.3 Experiments with MIDES

The Figure 5.17 depicts the number of levels required to get on top of the pyramid. We
see that the reduction factor is higher than 2.0 (dashed line) even in the worst case. Also
the maximum indegree of the vertices is much smaller (μ̂data(max) = 13.29) than for MIS
(μ̂data(max) = 70.69, Table 5.2). For MIES and MIDES we have not encountered nodes with
large neighborhood as for MIS. For the case of the graph with size 200× 200 vertices, MIDES
needed 13 levels in comparison to 15 levels in the worst case of MIES. The number of itera-
tions needed to complete the maximum independent set was comparable with the one of MIS
(Table 5.1 and 5.2). The MIDES algorithm shows a better reduction factor than MIES, as can
be seen in Figure 5.17 and Table 5.2 (μ̂data(μ̂pyr(

|Vk|
|Vk+1|)) = 2.63).

To summarize the reduction factor was always better than the theoretical upper bound of 2.0
in all our tests. Bounded reduction factor cannot be guaranteed.

5.6.4 Experiments with D3P

The Figure 5.18 gives the reduction factors (v) for vertices, (e) for edges and (f) for faces. The
experiments show that poor reduction factors are likely, because of the large degree of vertices
(μ̂data(max) = 433.92, Table 5.2). Also the height of the pyramid is related to the complexity
of the vertices, which is why the D3P gives the highest pyramids (μ̂data(height) = 88.25).
The number of iterations for correction is 1 because we do not iterate at all. As expected we
have large neighborhoods for D3P. The high variation of the height of pyramid produced by
D3P shows that this method fit to the distribution of values associated with the vertices [Jolion,
2003].

To summarize, a constant reduction factor, like for the MIS, cannot be guaranteed and bad
cases have a high probability, as can be seen in Figure 5.18. Note that this method is developed
having in mind importance of the data itself, therefore the results of only the structural simplifi-
cation taken into account imply that the method should be used always in conjunction with the
data.

84

5.6 Comparing the Speed of Reduction

100× 100 150× 150 200× 200

v :

0 10 20
10

0

10
1

10
2

10
3

10
4

10
5

0 10 20 30 40
10

0

10
1

10
2

10
3

10
4

10
5

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

10
5

star contraction

e :

0 10 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 10 20 30 40
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

10
5

10
6

f :

0 10 20
10

0

10
1

10
2

10
3

10
4

10
5

0 10 20 30 40
10

0

10
1

10
2

10
3

10
4

10
5

0 10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

10
5

Legend: Number of vertices v, edges e, and faces f (y-axis) in levels (x-axis) of the first 100 MIS
pyramids. The base levels are rectangular grid containing 100× 100, 150× 150 and 200× 200 vertices.
Dashed lines represent the theoretical reduction factor of 2.0.

Figure 5.15: MIS Algorithm.

85

5. Optimizing the Pyramid Structure

100× 100 150× 150 200× 200

v :

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

e :

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

f :

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

Legend: Number of vertices v, edges e, and faces f (y-axis) in levels (x-axis) of the first 100 MIES
pyramids. The base levels are rectangular grid containing 100× 100, 150× 150 and 200× 200 vertices.
Dashed lines represent the theoretical reduction factor of 2.0.

Figure 5.16: MIES Algorithm.

86

5.6 Comparing the Speed of Reduction

100× 100 150× 150 200× 200

v :

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

e :

0 10 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

f :

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

10
5

Legend: Number of vertices v, edges e, and faces f (y-axis) in levels (x-axis) of the first 100 MIDES
pyramids. The base levels are rectangular grid containing 100× 100, 150× 150 and 200× 200 vertices.
Dashed lines represent the theoretical reduction factor of 2.0.

Figure 5.17: MIDES Algorithm.

87

5. Optimizing the Pyramid Structure

100× 100 150× 150 200× 200

v :

0 50 100
10

0

10
1

10
2

10
3

10
4

10
5

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

star contraction

e :

0 50 100
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

f :

0 50 100
10

0

10
1

10
2

10
3

10
4

10
5

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

0 50 100 150 200
10

0

10
1

10
2

10
3

10
4

10
5

Legend: Number of vertices v, edges e, and faces f (y-axis) in levels (x-axis) of the first 100 D3P
pyramids. The base levels are rectangular grid containing 100× 100, 150× 150 and 200× 200 vertices.
Dashed lines represent the theoretical reduction factor of 2.0.

Figure 5.18: D3P Algorithm.

88

5.6 Comparing the Speed of Reduction

MIS D3P

0 10 50 100 170
10

0

10
1

10
2

10
3

10
4

10
5

0 10 50 100 170
10

0

10
1

10
2

10
3

10
4

10
5

0 10 50 100 170
10

0

10
1

10
2

10
3

10
4

10
5

0 10 50 100 170
10

0

10
1

10
2

10
3

10
4

10
5

MIES MIDES

The base levels are rectangular grid containing 200× 200 vertices. Dashed lines represent the
theoretical reduction factor of 2.0.

Figure 5.19: Direct comparison of vertex reduction ratio.

5.6.5 Discussion of Results

In Figure 5.19 the vertex reduction ratio of MIS, MIES, MIDES and D3P methods for 200×200
grid graphs is given for a direct comparison and easy following the presentation in this section.
In Table 5.2 a more extensive comparison is made using 1000 graphs of size 200 × 200. We
extract three parameters, the maximum (max), the mean (μ) and the standard deviation (σ) of
the vertex degree for any graph in the contraction process. We average these parameters (sample
mean μ̂pyr and sample standard deviation σ̂pyr) for every experiment (i.e pyramid) as shown in
the Table 5.1 and 5.2 over all experimental sets (μ̂data, σ̂data). We made experiments using small
grid graphs 26×26 ([Meer, 1989, Jolion, 2003]) and encountered no differences in the reduction
factor between MIS, D3P, MIES and MIDES. The reason for this behavior is the small size of
input instances. By using graphs of larger size (100× 100 and 200× 200) different properties
of these selection methods did occur.

The maximum degree was encountered using D3P and MIS which is why this method have
problems during contractions. Thus memory costs for D3P and MIS will be higher than for

89

5. Optimizing the Pyramid Structure

MIES and MIDES. Notice however that the mean degrees are similar for all algorithms. The
height stability (in the sense of smaller variation) in the first case shows that MIS, MIES and
MIDES do not depend on the data. The degrees for D3P exhibits more variations. This means
that D3P better fit to the distribution of values associated with the vertices [Jolion, 2003], [Jo-
lion, 2001].

Table 5.1: Summary statistics for 100× 100 graphs.
vertex degree |Vk/Vk+1| |Ek/Ek+1| correction

Algorithm height max μ̂pyr σ̂pyr μ̂pyr σ̂pyr μ̂pyr σ̂pyr μ̂pyr σ̂pyr

max 22.00 73.00
μ̂data 14.39 32.24 4.39 2.13 2.18 0.86 2.17 0.75 3.01 0.81MIS
σ̂data 2.44 8.12 0.23 0.62 0.25 0.46 0.41 0.83 0.15 0.09
max 13.00 13.00
μ̂data 12.26 10.91 4.73 0.48 2.28 0.23 2.54 0.85 3.80 1.13MIES
σ̂data 0.44 0.74 0.11 0.03 0.07 0.10 0.14 0.41 0.14 0.11
max 13.00 15.00
μ̂data 10.73 12.03 4.58 0.57 2.62 0.36 3.11 1.21 2.60 1.01MIDES
σ̂data 0.62 0.82 0.20 0.03 0.15 0.13 0.24 0.62 0.17 0.13
max 86.00 303.00
μ̂data 34.72 148.76 4.68 5.84 1.90 2.92 1.33 0.45 1.00 0.00D3P
σ̂data 15.00 47.67 0.20 1.23 0.61 2.28 0.16 0.21 0.00 0.00

Table 5.2: Summary statistics for 200× 200 graphs.
vertex degree |Vk/Vk+1| |Ek/Ek+1| correction

Algorithm height max μ̂pyr σ̂pyr μ̂pyr σ̂pyr μ̂pyr σ̂pyr μ̂pyr σ̂pyr

max 41.00 148.00
μ̂data 20.80 70.69 4.72 3.67 2.01 1.30 1.82 0.69 3.01 0.82MIS
σ̂data 5.24 23.89 0.22 1.16 0.35 1.08 0.26 0.34 0.17 0.11
max 15.00 13.00
μ̂data 14.02 11.78 4.90 0.47 2.27 0.22 2.55 1.03 4.04 1.20MIES
σ̂data 0.14 0.68 0.05 0.03 0.01 0.05 0.27 0.72 0.11 0.12
max 13.00 18.00
μ̂data 12.05 13.29 4.78 0.58 2.63 0.32 3.13 1.31 2.83 1.10MIDES
σ̂data 0.40 1.07 0.13 0.04 0.10 0.16 0.31 0.83 0.15 0.10
max 164.00 689.00
μ̂data 89.25 433.92 5.10 9.18 1.63 4.16 1.15 0.37 1.00 0.00D3P
σ̂data 31.72 123.41 0.15 1.89 0.58 3.96 0.17 0.55 0.00 0.00

90

5.6 Comparing the Speed of Reduction

eu v

Figure 5.20: Vertex u is favored by MIS and D3P.

Table 5.1, and 5.2 gives statistics on height of the image pyramid, vertex degree, decimation
ratios, and iteration for corrections to complete the maximal independent set. Results in both
tables are computed using 1000 graphs of size 100× 100, and 200× 200, respectively. Number
of iterations for correction was almost the same for all methods except for the D3P, where it was
1 because we do not iterate at all. MIDES gave the best reduction factors (μ̂data(v) = 2.63) for
all tests (Table 5.2). MIS, MIDES and D3P have the same algorithmic complexity for the worst
case. The worst case happens when the neighboring vertices have increasing random numbers.
We have not encountered the worst case in our test, since it is highly unlikely. The a priori
probability that a vertex survives depends on the size of its neighborhood. In Figure 5.20 vertex
u will be favored by MIS and D3P. Vertex u survives with the probability of 1/2, since it has
only the vertex v in the neighborhood. Vertex v survives with the probability of 1/n, where n is
the size of its neighborhood. The center of the star will have smaller probability to survive than
its leafs, which causes the poor reduction factor, since only one edge will be contracted. Since
two surviving vertices cannot be neighbors, the center of the star will be pulled toward one of
it leafs. But still there will be a vertex with large neighborhood. There are cases where the
center of the star is the largest in its neighborhood. In these cases all its leafs will be contracted
toward the star, yielding a very good reduction factor. The contraction of stars can be seen in
Figures 5.15, and 5.18, where the solid lines descent rapidly. An arrow in Figure 5.15(v) and
Figure 5.18(v) depict an example of star contraction. The probability that edge e in Figure 5.20
will be contracted i.e. one of the end vertices will survive, is the same for all neighboring
edges of e using MIES or MIDES. The existence of vertices with large neighborhood was not
encountered in MIES and MIDES, which can be seen also in Figures 5.16, and 5.17, where
there are no cases of rapidly descent lines.

In Table 5.3 statistics of edge neighborhood for MIES and MIDES for 100 × 100 graphs
are given. The edge neighborhood for both of the methods are of the same order as their ver-
tex neighborhood i.e. compare in MIES edge neighborhood: μ̂data(μ̂pyr) = 7.89 with vertex
neighborhood: μ̂data(μ̂pyr) = 4.73; and in MIDES edge neighborhood: μ̂data(μ̂pyr) = 3.41 with
vertex neighborhood: μ̂data(μ̂pyr) = 4.58 respectively).

Since no vertex is favored the size of receptive fields using MIES or MIDES will be better
distributed, in the intermediate levels of the pyramid. There is no occurrence of very small or
very big receptive fields as for MIS or D3P, where there are receptive fields as small as one pixel
in higher levels of the image pyramid. Figure 5.21 shows receptive fields of comparable pyramid

91

5. Optimizing the Pyramid Structure

Table 5.3: Statistics of edge degree for 100× 100.
Edge degree

Algorithm max μ̂pyr σ̂pyr

MIES μ̂data 17.27 7.89 0.71
σ̂data 0.91 0.24 0.06

MIDES μ̂data 9.01 3.41 0.41
σ̂data 0.01 0.12 0.08

(a) MIS (b) D3P

(c) MIES (d) MIDES

Figure 5.21: Receptive fields.

levels of MIS, D3P, MIES and MIDES. Each vertex of the same level received arbitrary but
distinguishable gray values which was propagated down to the base of the pyramid. Hence the
regions with the same gray value in Figure 5.21 correspond to the receptive field of one vertex
of the high level. Without any constraint from the data there is no need to require big variations
in the sizes of receptive fields. This kind of behavior was encountered also in Section 5.7.1.

92

5.7 Comparing the Path Lengths

5.7 Comparing the Path Lengths

Path length are computed as steps to bring an attribute from every vertex in the base (bottom-up)
to the top of the pyramid, and from a top to a vertex in the base (top-down). We call this vertical
path lengths. The experiments in this section compare vertical path lengths (costs) in stochastic
graph pyramids. This will allow to measure the structure of the irregular pyramids built with
different algorithms. In some applications some parts of image are of special interest, so we
need to access data in a top-down process very often [Glantz and Kropatsch, 2000a]. We are
interested not only in comparing the complexity of vertex degree and the height of the pyramid,
as done in Section 5.6, but also to be able to compare the internal structure of image pyramids
of the same height. Our goal is to build stochastic pyramids locally that are optimal in the sense
of bottom-up and top-down processes.

First we built a graph pyramid in a bottom-up process using one of the algorithms MIS,
MIES, MIDES or D3P to find contraction kernels (decimation parameters) as presented pre-
viously. Graphs are reduced using the dual graph contraction [Kropatsch, 1995a]. Since we
build stochastic graph pyramids we end having always a single vertex at the top of a pyramid.
Figure 5.22a shows a rooted tree on level Gk (the children) and their relation (dashed lines)
with the vertex on Gk+1 (the parent); white vertices on Gk are the non-surviving children ns,
and they are contracted (arrows) toward the surviving children ss, depicted with black. Note
that, the costs for inheritance from parents to surviving child is kept zero since it is a simple
copy of the attributes. Costs for contracting an edge are set to 1 since reduction involves the
merging operation for the attributes of the two end vertices. This means that the surviving child
will have the path length of the parent and non-surviving children the incremented path length
of the parent by one.

Vertical paths connect the apex with the base of the pyramid following parent-children re-
lations from level to level. Path lengths p ∈ N of vertices at G0 (level 0) can be found in a
top-down process as in Algorithm 7. An example of vertical path is shown in Figure 5.22b. We

Algorithm 7 – Path Length Algorithm
Input: A graph pyramid Gk = (Vk, Ek), ∀k = 0, ..., h

1: Let the vertices v ∈ Gh at a top level of the pyramid have path length 0, p(v) ← 0
2: for k = k − 1, k − 2, ..., 0 do
3: ∀v ∈ Gk+1: down propagate the path length p(v) of the vertex v at level k + 1 to its

surviving child ss at level k below, so the path length of ss is p(ss) ← p(v)
4: all non-surviving children ns ∈ Vk of v at level k have path length p(ns) ← p(v) + 1
5: end for

Output: path lengths of the vertices.

start at the top of the pyramid. For a stochastic image pyramid there is only one vertex at the
top of the pyramid, vertex h at the top has path length 0 and the surviving child p(ss) = 0. An
one-to-one relationship between children (vertices at k) and parents (vertices at k+1) is created
during construction of the image pyramid [Kropatsch, 1995a]. The number of vertices |Vk+1| in
level k + 1 is the same as the number of surviving vertices in |Vk| (surviving children) in level

93

5. Optimizing the Pyramid Structure

p(v) parent
non-surviving child ns

p(ns) = p(ss) + 1

surviving child ss
p(v) = p(ss)

Gk

Gk+1

G0

G1

G2

G3

1
2

2
2

1 2

2
1

0
1 1

12
12 2

2

3

3
2

3
2

21

1 0

1

1

1

1
1

2 2

1 2

0
1 1

1

0

(a) Parent-child relations (b) Path lengths

Figure 5.22: Graph pyramid built using DGC.

k. In Figure 5.22b at G2 a vertex has the same length as its parent (black vertex with path length
0), and all non-surviving children (white vertices) have the path length 0 + 1 = 1. To arrive to
the top of the pyramid from the edge with path length 3, three edges must be contracted.

The path length shows costs to arrive to the top of the pyramid (vertical path lengths) from
every vertex in the base. This is closely related to the height of the pyramid, since higher
pyramid would imply longer paths.

5.7.1 Experimental Results and Discussion

We use one of the algorithms MIS, MIES, MIDES or D3P to build stochastic pyramids i.e to
compute the path lengths on the same setup as in the Section 5.6 In these experiments we used
grid graphs of size 10000 and 40000 vertices respectively, which correspond to image sizes of
100× 100 and 200× 200 pixels.

The result of the mean value of number of vertices per path length over 100 pyramids are
given in Figure 5.23, (a) for 100 × 100 and (b) 200 × 200 image size. The two diagrams of
Figure 5.23 show on the x-axis in a logarithmic scale the length of the vertical paths and on the
y-axis the number of vertices of the base level. Each base vertex has a certain ’vertical distance’
to the apex, the number of vertices having the same vertical distance can be accumulated in
the histogram of vertical path lengths. Every pyramid generates such a histogram using the
path length algorithm. Histograms generated by a particular selection strategy can be averaged
and are shown for the MIS, MIES, MIDES and D3P strategies in Figure 5.23.

Path lengths i.e. costs for MIES and MIDES are smaller, even when the image size were
4 times larger. MIS and D3P have tendency to have longer path lengths. Table 5.4 shows the

94

5.7 Comparing the Path Lengths

100× 100

3000

2500

2000

1500

1000

500

0
1 5 7 10 15 20 27 84

200× 200

10000

8000

6000

4000

2000

0
1 5 8 10 13 20 109 162

Legend: ! MIS,© MIES, � MIDES, and − D3P.
x axis the path lengths, and y-axis number of vertices.

Figure 5.23: μ̂ of path lengths.

maximal path length (max) and in brackets the most frequent path length (μ̂). For MIES and
MIDES almost 50% of vertices have path length of 6, 7, and 8 for 100 × 100, and 7, 8, and
9 for 200 × 200 image, respectively. These values are comparable with the log(diameter),
which would be the height of the regular pyramid, a property we are trying to achieve. The
MIS, and D3P path lengths are longer in both cases. Also the maximum height found by using
different decimation strategies is of the same order as the maximum path length used for the
same strategy (compare maximum height of Table 5.1, and 5.2 with maximal path length of
Table 5.4 respectively, e.g. for 100 × 100 using MIS:max height= 22 and max path length
= 20; MIES:max height= 13 and max path length = 12, MIDES:max height= 13 and max
path length = 11; and D3P:max height= 86 and max path length = 84.). This is valid also for
the mean value of the height and the path length.

Vertical path lengths cannot be explained as the path lengths of equivalent contraction ker-

95

5. Optimizing the Pyramid Structure

Table 5.4: The maximum path length.
Image size

Algorithm 100× 100 200× 200

max μ̂ max μ̂
MIS 20 10 39 13
MIES 12 7 13 8
MIDES 11 7 12 8
D3P 84 27 160 109

diameter 200 400
log(diameter) 8 9

nels (ECK) toward the root (the apex) of the pyramid. Figure 5.24 shows the vertical path
lengths (numbers inside the vertices) and the ECK at the top of the pyramid (the tree). As can
be seen vertical path length is not the same as the number of steps (edges) needed to arrive from
a vertex (any of them) to the apex (shown with black). In Figure 5.24 the corner vertex (2)
shown in gray will need 59 steps to arrive to the apex, which is quite large in comparison with
2 which is the vertical path length. So using ECK will imply larger costs to access the pixel at
the base level. To compare or compute all pixel pairs of an image of size |s| in an array the time
complexity isO(s2). For the pyramid of height h is twice the sum of path lengths p i.e. O(s ·p)
and if the cost of vertical neighborhood are taken into account then it is O(s · p · log s). Note
that p in experiments with MIS, MIES and MIDES is a constant (slowly changing function) and
thus O(s · p · log s) = O(s · log s).

To summarize, MIS and MIDES tend to find shorter paths. Longer path lengths imply bigger
costs to access a vertex in the base from the apex of the pyramid.

5.8 Top-down Optimization

In images often large homogeneous regions need to be shrinked into a single vertex of the region
adjacency graph. In this case it is important to summarize the properties of the large region in
a small number of steps [Kropatsch et al., 2006]. The methods presented above in this chapter
build contraction kernels stochastically, i.e. they summarize data of regions in local bottom-up
stochastic way. However other approaches are also possible. In this section briefly, one such
method is presented due to [Kropatsch et al., 2006]. In this method, first a spanning tree of
the regions (e.g by using a minimum spanning tree) is build, afterward this tree is decomposed
recursively into small subtrees (contraction kernels) of depth one that if contracted would pro-
duce the optimal height of the pyramid. The method is global [Kropatsch et al., 2006] since in
a top-down manner decomposes the spanning tree. Moreover this method is deterministic. In
the Table 5.5 the comparison of the bottom-up methods (MIS, MIES and MIDES) with the top-
down method (recursive decomposition of a tree (RDT)) are shown. Random graphs of 4000
vertices and 27700 edges are used as the basis of pyramid, and simple statistic is done on 100
pyramids, by finding the minimal and maximal value of the height of pyramid (h), as well as

96

5.8 Top-down Optimization

5 4 5 3 3 2 4 3 4 3 2 3 3 2 5 4 5 3 3 1

3 4 3 4 4 3 2 3 4 3 2 1 3 4 5 4 3 4 2 2

2 2 4 4 5 3 4 3 2 3 3 2 4 5 4 3 2 3 3 3

3 1 2 5 4 4 2 3 4 3 4 2 3 3 5 4 3 3 2 2

3 2 4 3 4 4 3 4 4 4 4 5 3 4 3 5 0 1 3 1

2 3 4 4 4 5 4 5 3 3 5 4 2 3 2 3 1 1 4 3
3 4 3 5 3 5 4 4 2 3 4 3 3 2 1 2 1 3 2 3

4 4 4 4 2 3 4 4 3 3 2 4 4 5 2 2 2 1 2 2

4 4 3 4 3 4 3 4 2 3 3 3 4 6 3 2 4 3 3 2

6 5 5 4 5 6 5 2 2 1 2 4 5 5 4 3 3 2 4 1

5 5 4 5 6 5 4 5 4 3 3 5 6 5 5 5 6 3 3 2

5 6 5 5 5 3 5 4 3 2 3 4 5 4 3 4 4 3 2 6

3 4 5 4 4 4 3 3 4 4 3 3 2 3 4 5 5 5 4 5

4 3 4 5 5 4 4 2 3 4 4 3 3 3 2 4 4 4 3 6

4 3 2 4 3 5 5 4 4 3 4 2 4 3 3 3 5 4 4 4

3 2 3 3 4 6 5 5 5 4 2 1 2 4 4 3 4 5 4 5

4 2 3 5 4 4 3 4 4 4 3 5 5 3 2 3 3 5 5 6

2 1 4 5 5 6 6 5 5 5 6 5 4 5 3 4 4 6 6 5

2 2 5 5 6 6 7 6 4 4 6 5 4 3 4 5 6 5 5 4

2 3 5 5 4 5 6 7 4 3 4 6 5 4 5 4 5 6 5 6

Figure 5.24: Path length and ECK.

Table 5.5: Comparison of the height of the pyramid h (adapted from [Kropatsch et al., 2006]).
Algorithm min(h) max(h) μ̂h σ̂h Approach

Stochastic with MIS 9 20 12.39 2.43 bottom-up, local
Stochastic with MIES 10 11 10.26 0.44 bottom-up, local
Stochastic with MIDES 8 11 8.73 0.61 bottom-up, local
Deterministic with RDT 7 8 9.94 0.01 top-down, global

the mean (μ̂h) and standard deviation (σ̂h). As can be seen the deterministic top-down method
build a shallower pyramid than the other method, which is expected. Note that the deterministic
method in order to decompose the tree needs a tree as input. This tree can be also produced by
using one of the methods: MIS, MIES or MIDES.

This idea of top-down tree decomposition is used in [Kropatsch et al., 2004, Kropatsch
et al., 2004] to compute a boundary distance of a binary shape, the depth of all subtrees, and the
diameter of all outer subtrees. These features capture the properties of complete substructures.

97

5. Optimizing the Pyramid Structure

5.9 Conclusion

The efficiency of pyramids is tightly coupled with their ability to propagate information from
any cell to any other cell in at most twice the height’s steps. The gained freedom in choosing
structures adapting the data may affect the height if the reduction proceeds too slowly.

Experiments with stochastic decimation using maximal independent vertex sets (MIS) showed
a problematic behavior on large images. After an initial phase of strong reduction, the reduc-
tion decreases dramatically. This is due to the evolution of larger and larger variations between
the vertex degrees in the contracted graphs. To overcome this problem we proposed a method,
MIES, based on matchings which guarantees a reduction factor of 2.0. As in the case of inde-
pendent vertex sets, the method based on matchings does not allow the control of the directions
of the contractions. The second method, MIDES, that we proposed and tested is based on
directed edges and allows the control of the directions of the contractions. The experiments
showed a non-decreasing reduction that was even stronger than the one obtained MIES. We
have shown that 2.0 is also a bound for the reduction with MIDES if no isolated vertices are
encountered. Furthermore we were able to characterize the configuration creating such isolated
vertices which explains the good experimental results. The properties of these configurations
are important when the random sampling is replaced by data-adaptive importance values where
no prediction about statistical distribution can be made.

98

CHAPTER 6

Irregular Graph Image Partitioning

” Ich stehe vor einen Fenster und sehe ein Haus, Bäume, Himmel. Theoretisch
koennte ich sagen, daß es 327 Farbnuancen und Helligkeiten gibt. Habe ich 327?
Nein. Ich habe Himmel, Haus und Bäume. ” 1

by Max Wertheimer.

Summary We present a hierarchical partitioning of images using a pairwise similarity function on a
graph-based representation of an image. This function measures the difference along the
boundary of two components relative to a measure of differences of the components’ in-
ternal differences. This definition tries to encapsulate the intuitive notion of contrast. Two
components are merged if there is a low-cost connection between them. Each component’s
internal difference is represented by the maximum edge weight of its minimum spanning
tree. External differences are the smallest weight of edges connecting components. We use
this idea for building a minimum spanning tree to find region borders quickly and effortlessly
in a bottom-up way, based on local differences in a specific feature.

Keywords: Hierarchical graph-based image partitioning, irregular graph pyramids, minimum weight
spanning tree, topology preserving contraction.

6.1 Introduction

The authors in [Keselman and Dickinson, 2001] asked: ”How do we bridge the representational
gap between image features and coarse model features?” They identify the 1-to-1 correspon-
dence between salient image features (pixels, edges, corners,...) and salient model features (gen-
eralized cylinders, polyhedrons,...) as limiting assumption that makes prototypical or generic

1I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and
nuances of colour. Do I have 327? No. I have sky, house, and trees.

99

6. Irregular Graph Image Partitioning

object recognition impossible. They suggested to bridge and not to eliminate the representa-
tional gap, and to focus efforts on:

• region segmentation,

• perceptual grouping, and

• image abstraction.

In this chapter a method is given that focuses on image partitioning and perceptual grouping.
The multi-resolution is considered under viewpoint of the abstraction in [Kropatsch, 2002].

Wertheimer [Wertheimer, 1925] has formulated the importance of wholes (Ganzen) and
not of its individual elements as: “Es gibt Zusammenhänge, bei denen nicht, was im Ganzen
geschieht, sich daraus herleitet, wie die einzelnen Stücke sind und sich zusammensetzen, son-
dern umgekehrt, wo - im prägnanten Fall - sich das, was an einem Teil dieses Ganzen geschieht,
bestimmt von inneren Strukturgesetzen dieses seines Ganzen” 2, and introduced the importance
of perceptual grouping and organization in visual perception.

The union of regions forming the group is again a region with both internal and external
properties and relations. Low-level cue image segmentation cannot and should not produce a
complete final ’good’ segmentation, because there is an intrinsic ambiguity in the exact location
of region boundaries in digital images [Chen and Pavlidis, 1980] as well as the problems in
defining the context of an image. Problems emerge because:

• homogeneity of low-level cues will not map to the semantics [Keselman and Dickinson,
2001], and

• the degree of homogeneity of a region is in general quantified by threshold(s) for a given
measure [Fuh et al., 2000]

Even though the segmentation methods (ours as well) that do not take the context of the image
into consideration cannot produce a ’good’ segmentation, they can be valuable tools in image
analysis in the same sense as efficient edge detectors are. Note that efficient edge detectors do
not consider the larger context of the image, too. Therefore, the low-level coherence of bright-
ness, color, texture or motion attributes should be used to come up sequentially with hierarchical
partitions [Shi and Malik, 1997]. Mid and high level knowledge can be used to either confirm
these groups or select some further attention. A wide range of computational vision problems
could make use of segmented images, were such segmentation rely on efficient computation.
For instance motion estimation requires an appropriate region of support for finding correspon-
dence. Higher-level problems such as recognition and image indexing can also make use of
segmentation results in the problem of matching.

It is important that a grouping method has following properties [Felzenszwalb and Hutten-
locher, 2004]; it should

• capture perceptually important groupings or regions, which reflect global aspects of
the image,

2“There are wholes (Ganzen), the behaviour of which is not determined by that of their individual elements,
but where the part-processes are themselves determined by the intrisinic nature of the whole” [Willis, 1997]

100

6.1 Introduction

• be highly efficient, running in time linear in the number of image pixels,

• create hierarchical partitions [Shi and Malik, 1997].

It is already shown that in regular image pyramids the number of pixels at any level, is λ
times higher than the number of pixels at the next reduced level. This is called the reduction
factor λ and it is greater than one and constant for all levels. Let s denote the number of pixels
in an image I , the number of new levels on top of I amounts to logλ(s). Thus, the regular image
pyramid may be an efficient structure for fast grouping and access to image objects in top-down
and bottom-up processes.

However, it is shown that regular image pyramids are confined to globally defined sampling
grids and lack shift invariance [Bister et al., 1990]. [Bister et al., 1990] conclude that regular
image pyramids have to be rejected as general-purpose segmentation algorithms. [Montanvert
et al., 1991] and [Jolion and Montanvert, 1992] describe how these drawbacks can be avoided
by irregular image pyramids, the so called adaptive pyramids, where the hierarchical structure
(the vertical network) of the pyramid is not a priori known but recursively built based on the
data. Moreover, [Cho and Meer, 1997], [Guigues et al., 2003], [Nacken, 1995], [Shen et al.,
1998], [Mathieu et al., 1992], [Borowy and Jolion, 1995], [Meer et al., 1990] show that irregular
pyramids can be used for segmentation and feature detection. All these pyramids use only local
information to build the hierarchy. Usually on the base level the cells represent single pixels
and the neighborhood of the cells is defined by the connectivity of the pixels. Every parent
computes its values independently of other cells on the same level. This implies that an image
pyramid is built in O[log(image diameter)] time [Jolion and Rosenfeld, 1994].

In this chapter we represent the levels of the pyramid as the dual pair of graphs (Gl, Gl)
of plane graphs Gl and its dual (plane) graph Gl. In graph-theoretical terms image region
extraction and border extraction are dual problems and as an immediate consequence of this
is that the region boundaries extracted are always closed curves [Sanfeliu et al., 2002]. The
sequence (Gl, Gl), 0 ≤ l ≤ h is called (dual) graph pyramid. Moreover the graph is attributed,
G = (V,E, attrv, attre), where attrv : V → R

+ is a weighted function defined on vertices and
attre : E → R

+ is a weighted function defined on edges. We use a weight for attre measuring
the difference between the two end points.

The aim of this chapter is to build a minimum weight spanning tree (MST) of an image
by combining the advantage of regular pyramids (logarithmic tapering) with the advantages
of irregular graph pyramids (their purely local construction and shift invariance). The aim is
reached by using the selection method (MIES) for contraction kernels proposed in [Haxhimusa
et al., 2002] to achieve logarithmic tapering, local construction and shift invariance. Borůvka’s
algorithm [Borůvka, 1926a], [Borůvka, 1926b], [Neštřil et al., 2001] is combined with dual
graph contraction [Kropatsch, 1995a] for building in a hierarchical way a minimum weight
spanning tree (of the region) and preserving topology at the same time. The topological relation
seems to play an even more important role for vision tasks in natural systems than precise
geometrical position. We use the idea of building a minimum weight spanning tree to find region
borders quickly and effortlessly in a bottom-up ’stimulus-driven’ based on local differences in
a specific feature like in an pre-attentive vision.

The plan of the chapter is as follows. In order to make the reading of this chapter easy
we recall some of the basic notion as follows. In Section 6.2 we recall the main idea of the
minimum weight spanning tree and in Subsection 6.2.1 we recall Borůvka’s MST algorithm,

101

6. Irregular Graph Image Partitioning

as well as Kruskal’s Algorithm and Prim-Jarniks’s Algorithm (Section 6.2.2 and Section 6.2.3,
respectively) . Using the dual graph contraction algorithm of Section 4.4, Borůvka’s algorithm
is re-defined in Section 6.3, so that we can construct an image graph pyramid, and, at the same
time the minimum spanning tree. In Section 6.4 we give the definition of internal and external
contrast and the merge decision criteria based on these definitions. The algorithm for building
the hierarchy of partitions is introduced in this section. Section 6.5 reports on experimental
results.

6.1.1 Related Work

A graph-theoretical clustering algorithm consists in searching for a certain combinatorial struc-
ture in the edge weighted graph, such as a minimum spanning tree [Felzenszwalb and Hut-
tenlocher, 2004], [Fischer and Buhmann, 2002], [Guigues et al., 2003], a minimum cut [Wu
and Leahy, 1993], [Shi and Malik, 1997], [Gdalyahu et al., 2001] and, among these methods a
classic approach to clustering (the complete linkage clustering algorithm [Lance and Williams,
1967]) reduces to a search for a complete subgraph i.e. the maximal clique [Pavan and Pelillo,
2003], [Pavan and Pelillo, 2003].

Hierarchical structures for description of the data for clustering purposes have been studied
very early in [Lance and Williams, 1967], or for image segmentation in [Horowitz and Pavlidis,
1976]. Image pyramids are a powerful tool for early vision. See [Jolion and Rosenfeld, 1994]
and [Rosenfeld, 1984] for an extensive overview of the topic. [Hird and Willson, 1989] demon-
strates that hierarchical segmentation on a pyramid yields better results than conventional 2D
techniques. However, the regular image pyramids are confined to globally defined sampling
grids and lack shift invariance. [Bister et al., 1990] concludes that regular image pyramids have
to be rejected as general-purpose segmentation algorithms. In [Montanvert et al., 1991], [Jolion
and Montanvert, 1992] it was shown how these drawbacks can be avoided by irregular image
pyramids, the so called adaptive pyramids, where the hierarchical structure (vertical network) of
the pyramid was not ’a priori’ known but recursively built based on the data. [Meer et al., 1990]
in his ‘consensus vision’ used the concept of irregular pyramid to produce an image segmenta-
tion. Moreover in [Cho and Meer, 1997], [Guigues et al., 2003], [Marfil et al., 2004], [Nacken,
1995], [Shen et al., 1998], [Borowy and Jolion, 1995], [Mathieu et al., 1992] was shown that
irregular pyramid can be used for segmentation and feature detection.

The clustering community [Jain and Dubes, 1988] has produced agglomerative and divi-
sive algorithms; in image segmentation the region-based merging and splitting algorithms exist.
Early graph-based methods [Zahn, 1971] use fixed thresholds and local measures in computing
a segmentation, i.e the minimum spanning tree (MST) is computed. The segmentation criterion
is to break the MST edges with the largest weight. The idea behind is that edges in the MST
reflect the low-cost connection between two elements. The work of Urquhart [Urquhart, 1982]
attempts to overcome the problem of fixed threshold by normalizing the weight of an edge using
the smallest weight incident on the vertices touching that edge. The methods in [Felzenszwalb
and Huttenlocher, 2004], [Fischer and Buhmann, 2002], [Guigues et al., 2003] uses an adaptive
criterion that depend on local properties rather than global ones. Recently the works [Felzen-
szwalb and Huttenlocher, 2004], [Guigues et al., 2003], [Sanfeliu et al., 2002], [Vergés-Llahi
et al., 2000], [Fischer and Buhmann, 2002], [Meyer, 1999] have the minimum spanning tree
as the base algorithm. It is shown in [Chowdhury and Murhty, 1997] that minimum spanning

102

6.1 Introduction

tree clustering technique, although unsupervised one, approaches the performance of ’Bayes
classifier’, as the number of sample points from each class increases.

Gestalt grouping factors, such as proximity, similarly, continuity and symmetry, are encoded
and combined in pairwise feature similarity measures [Wu and Leahy, 1993], [Shi and Malik,
1997], [Hofmann et al., 1998], [Perona and Freeman, 1998], [Gdalyahu et al., 1998], [Weiss,
1999], [Sharon et al., 2000], [Yu and Shi, 2001], [Fischer and Buhmann, 2002]. Other method
of segmentation is that of splitting and merging region based on how well the regions fulfill
some criterion. Such methods [Cooper, 1998], [Pavlidis, 1977] uses a measure of uniformity
of a region. Authors in [Felzenszwalb and Huttenlocher, 1998], [Fischer and Buhmann, 2002],
[Guigues et al., 2003] use, in contrast, in a graph-based method a pairwise region compari-
son rather than applying a uniformity criterion to each individual region. It has been demon-
strated that complex grouping phenomena can emerge from simple computation on these local
cues [Guy and Medioni, 1996], [Malik et al., 2001].

The use of Markov Random Field (MRF) has been used for image restoration and segmenta-
tion [Geman and Geman, 1984]. However the use of MRF to image segmentation usually leads
to NP-hard problems. The graph-based approximation method for MRF problems [Boykov
et al., 1998] yields practical solution, if the number of labels for the pixel is small, which limits
these methods for use in segmentation.

The methods based on minimum cuts in graph are designed to minimize the similarity be-
tween pixels that are being split [Wu and Leahy, 1993], [Shi and Malik, 1997], [Gdalyahu et al.,
2001]. [Wu and Leahy, 1993] define a cut criterion, but it was biased toward finding small
components. [Shi and Malik, 1997] developed the normalized cut criterion to address this bias,
which takes into consideration self-similarity of regions. These cut-criterion methods capture
the non-local properties of the image, in contrast with the simple graph-based methods such as
breaking edges in the MST. It also produce divisive hierarchical tree, the dendogram. However
they provide only a characterization of such cut rather than of final segmentation as is provided
by [Felzenszwalb and Huttenlocher, 2004]. [Shi and Malik, 1997] developed an approximation
method for computing the minimum normalized cut, the error in these approximation in not
well understood (it is closely related to spectral graph methods, e.g [Fiedler, 1975]) and this
method is computational expensive.

The minimal spanning tree and the minimum cut are explicitly defined on edge weighted
graph, whereas the concept of a maximal clique is defined on unweighted edge graphs. As a
consequence, maximal clique based clustering algorithms work on unweighted graphs derived
from the edge weighted graphs by means of some thresholding [Jain and Dubes, 1988]. [Pavan
and Pelillo, 2003] and [Pavan and Pelillo, 2003] generalized the concept of maximal clique to
weighted graphs. The maximal cliques are found using the discrete replicator dynamics, which
turns out to be an instance of relaxation labeling algorithm [Rosenfeld et al., 1976].

A disadvantage of graph-theoretical approaches to image segmentation, as can be seen
in [Wu and Leahy, 1993], [Vlachos and Constantinides, 1993], [Xu and Uberbacher, 1997],
[Shi and Malik, 1997], is that these algorithms are very time consuming, which prohibits their
implementation for real-time applications.

Our method is related to the work in [Felzenszwalb and Huttenlocher, 2004], [Vergés-Llahi
et al., 2000], [Guigues et al., 2003] in the sense of pairwise comparison of region similarity.
It also similar to [Mathieu et al., 1992] in the sense that the MST is built. Our method differs
from this method, because it builds the MST during the process, and not as the first step of the

103

6. Irregular Graph Image Partitioning

algorithm as it is done in [Mathieu et al., 1992]. We create a hierarchy of attributed graphs. At
each level of the pyramid a region adjacency graph (RAG) is created, in an agglomerative way
(by contraction) with the proper topology. A vertex of the RAG is a representative of the region
in the base level (receptive field), and it is created by taking into consideration the self-similarity
of the region.

6.2 Minimum Weight Spanning Tree

The minimum spanning tree, called afterward MST, is the simplest and best-studied optimiza-
tion problem in computer science. According to [Neštřil, 1997] the

Minimum spanning tree is a cornerstone problem of combinatorial optimization
and in a sense its cradle.

The problem is defined as follows. Let G = (V,E) be the undirected connected plane graph
consisting of the finite set of vertices V and the finite set of edges E. Each edge e ∈ E is
identified with a pair of vertices vi, vj ∈ V such that vi �= vj . Let each edge e ∈ E be
associated with unique weight w(e) = w(vi, vj), from the totally ordered universe (assumed
that weight are distinct, if not, ties can be broken arbitrarily). Note that parallel edges, for
e.g. e1 = (v1, v2) and e2 = (v1, v2) e1 �= e2, have different weights. Self-loops are not
encountered, since this would produce a cycle contradicting the definition of the tree. The
problem is formulated as construction of a minimum weight spanning tree of G. Here we will
give two lemmas that provide the basis of the minimum weight spanning tree algorithms, taken
from [Thulasiraman and Swamy, 1992], which will help us in proving the correctness of our
MST algorithm, afterward. The weight of the subgraph of G is the sum of edge weights of
subgraph, i.e. for T ⊆ G, the weight of a subgraph is :

w(T) =
∑
e∈T

w(e). (6.1)

Theorem 6.1 Consider a vertex v in a weighted connected graph G. Among all the edges
incident on v, let e be one of minimum weight. Then, G has a minimum weight spanning tree
that contains e.

Proof: Let Tmin be a minimum weighted spanning tree of G. If Tmin does not contain
e, then consider the fundamental circuit C of Tmin with respect to e, i.e. created by adding
e to Tmin. Let e′ be the edge of C that is adjacent to e and incident to the same vertex v.
Clearly e′ ∈ Tmin. Also T ′ = Tmin − e′ + e is a spanning tree of G. Since e and e′ are both
incident on v, we have w(e) ≤ w(e′), by assumption. But from the fact that Tmin is MST
w(T ′) = w(Tmin) − w(e′) + w(e) ≥ w(Tmin) follows w(e) ≥ w(e′). So, w(e) = w(e′) and
w(T ′) = w(Tmin). Thus T ′ is also a minimum weighted spanning tree. The theorem follows
since T ′ contains e. �

Theorem 6.2 Let T be an acyclic subgraph of a weighted connected graph G such that there
exists a minimum weight spanning tree containing T . If G′ denotes the graph obtained by
contracting all the edges of T , and T ′

min is a minimum weight spanning tree of G′, then T ′
min∪

T is a minimum weight spanning tree of G.

104

6.2 Minimum Weight Spanning Tree

G

T2T1

T3

G′

t2t1

t3

(a) Tmin = T ∪ T ′, where T = T1 ∪ T2 ∪ T3 (b) T ′ after contraction of all edges in T

Figure 6.1: The contraction of sub-trees.

Proof: Let Tmin be a minimum weight spanning tree of G containing T . If Tmin = T ∪ T ′

(Figure 6.1a, then clearly T ′ is a spanning tree of G′ (Figure 6.1b). Therefore,

w(T ′) ≥ w(T ′
min). (6.2)

Since T is an acyclic subgraph of G and T ′
min is a minimum spanning tree of G′, it is easy to

see that T ′
min ∪ T is also a spanning tree of G. So,

w(T ′
min ∪ T) ≥ w(Tmin)

= w(T) + w(T ′).
(6.3)

From this we get

w(T ′
min) ≥ w(T ′). (6.4)

Combining Equations (6.2) and (6.4) we get w(T ′
min) = w(T), and so w(T ′

min ∪ T) = w(T ′ ∪
T) = w(Tmin). Thus T ′

min ∪ T is a minimum spanning tree of G. �

Note that these theorems are derived from the well known strong cut property of the mini-
mum spanning trees, which is formulated as

• e ∈ MST ⇔ e is the lightest edge across some cut of G.

which is complementary to the strong cycle property

• e /∈ MST ⇔ e is the heaviest edge across some cycle of G.

All the algorithms presented below are based on the strong cut property of the graph G, since
they try to connect the lightest edge to the MST tree.

We intend to solve the problem of MST in by using Borůvka’s algorithm in conjunction with
dual graph contraction [Kropatsch, 1995a]. We use Borůvka’s algorithm since it can be used to
build MST in parallel. In the next Section 6.2.1 we give the parallel version of this algorithm.

105

6. Irregular Graph Image Partitioning

13

1
3 2 10

7

9

1411

12
4

5

6

8

T1

T2

T3

MST

(a) Input graph (b) Edges with minimum weight (solid lines) (c) MST (solid line)

Figure 6.2: The steps of building MST with Borůvka’s algorithm.

6.2.1 Borůvka’s Algorithm

The idea of the Borůvka [Borůvka, 1926a], [Borůvka, 1926b] is to do steps like in Prim-Jarnik’s
algorithm, in parallel over the graph at the same time. This algorithm constructs a spanning tree
in iterations composed of the steps shown in Algorithm 8.

Algorithm 8 – Borůvka’s Algorithm
Input: graph G = (V,E)

1: MST← empty edge list
2: all vertices v ∈ V make a list of trees L
3: while there is more than one tree in L do
4: each tree T ∈ L finds the edge e with the minimum weight which connects T to G \ T

and add edge e to MST.
5: using edge e merge pairs of trees in L
6: clean the graph from self-loops if necessary
7: end while

Output: minimum weight spanning tree - edge induced subgraph on MST.

First create a list L of trees, each a single vertex v ∈ V . For each tree T of L find the edge e
with the smallest weight, which connects T to G \ T . The trees T are then connected to G \ T
with the edge e. In this way the number of trees in L is reduced, until there is only one, the
minimum weight spanning tree. A simple example of steps of Borůvka’s algorithm is given in
Figure 6.2; (a) the simple attributed graph as input, where each vertex is a tree in L; (b) the
edges with the smallest weight (solid lines) incident on vertices, connect the trees (vertices in
this case) to each other creating the trees T1, T2 and T3; (c) each tree in b) finds the edge with
the smallest weight to connect to the other tree. The output shown in Figure 6.2c is the MST of
the input graph. Steps 4, 5, and 6 are called Borůvka phase.

The proof that this algorithm builds the minimum weight spanning tree is based on the proof
of the Kruskal’s MST algorithms given in [Thulasiraman and Swamy, 1992].

106

6.2 Minimum Weight Spanning Tree

Theorem 6.3 Borůvka’s algorithm constructs a minimum weight spanning tree of a weighted
connected graph G.

Proof: Let G be the given nontrivial weighted connected graph. When Borůvka’s algorithm
terminates the selected tree Tmin is a spanning tree. Thus we have to show that Tmin is indeed
a minimum weight spanning tree of G by proving that every Ti constructed in the course of
Borůvka’s algorithm is contained in a minimum weight spanning tree of G. Our proof is by
induction on i. The subgraph Ti+1 is constructed from Ti by adding an edge of minimum
weight with exactly one end vertex in Ti. This construction ensures that all Ti’s are connected.
As inductive hypothesis assume that Ti is contained in a minimum spanning tree of G. If G′

denotes the graph obtained by contracting the edges of Ti and v′ denotes the vertex of G′, which
corresponds to the vertex set of Ti, then ei+1 is in fact a minimum weight edge incident on v′ in
G′. Clearly by Theorem 6.1 the edge ei+1 is contained in a minimum weight spanning tree T ′

min

of G′. By Theorem 6.2, Ti ∪ T ′
min is a minimum weight spanning tree of G. More specifically

Ti+1 = Ti ∪{ei+1} is contained in a minimum weight spanning tree of G and the correctness of
Borůvka’s algorithm follows. �

It can be easily shown that Algorithm 8 may fail to build MST if the edge weights are
not distinct, since the set of selected edges may contain cycles. This problem can be solved
as follows. If there are several edges of minimal weight that touch a vertex v, then choose
among them the edge with the smallest random number. This random numbers should be all
distinct. If the merging step is implemented in O(|E|) time, the overall algorithmic complexity
is O(|E| log |V |). In practice the algorithm converges faster. In the case of planar graphs, i.e.
sparse graphs or dense graphs the algorithms runs in O(|V |) [Atallah, 1999, Chapter 6].

Observation 6.1 In 3rd step of the Algorithm 8, each tree T ∈ L finds the edge with the minimal
weight, and as trees become larger, the process of finding the edge with the minimal weight for
each tree T takes longer.

For completion of the presentation the other two classical algorithms to build a minimum
spanning tree are given, Kruskal’s and Prim-Jarnik’s algorithm. Kruskal’s algorithm is used as
a basis of the segmentation method presented in Chapter 7. The proofs that these algorithms
build minimum spanning trees are found in [Thulasiraman and Swamy, 1992].

6.2.2 Kruskal’s Algorithm

The Kruskal’s [Kruskal, 1956] approach is proceeded by a sorting of the weight of edges in a
non decreasing order. Every edge from this sorting is included in the tree as long as it does not
create a cycle in the already created tree. More formally the steps are shown in Algorithm 9.
This algorithm has computational complexity of O(|E| log |E|), because of the sorting step,

and can be reduced into O(|E| log |V |), if one uses more efficient sorting algorithm like heap
sort [Atallah, 1999].

6.2.3 Prim-Jarniks’s Algorithm

The Prim-Jarnik’s algorithm [Prim, 1957] [Jarnı́k, 1930] consist in construction of a sequence
of trees say Ti such that Ti+1 is constructed from Ti by adding an edge e with the minimum

107

6. Irregular Graph Image Partitioning

Algorithm 9 – Kruskal’s Algorithm
Input: graph G = (V,E)

1: make MST← empty edge list
2: sort edges of G, by nondecreasing order
3: while for all edges e ∈ E in sorted order do
4: select e ∈ E of minimal weight such that e /∈ MST
5: put edge e in MST such that it does not create a cycle
6: remove edge e from E
7: end while

Output: Minimum weight spanning tree - edge induced subgraph on MST.

Algorithm 10 – Prim-Jarniks’s Algorithm
Input: graph G = (V,E)

1: make MST← empty edge list, W an empty vertex list
2: select any vertex v and set W ← {v}
3: while there is more than one vertex in V do
4: select an edge e = (u,w) with minimum weight such that one its of vertices say u is in

W
5: put edge e in MST, add u in W and remove e from E
6: end while

Output: minimum weight spanning tree - edge induced subgraph on MST.

weight, which has one end vertex in Ti. The steps are shown in Algorithm 10. This algorithm
has computational complexity of O(|E| + |V | log |V |) using Fibonacci heaps, O(|V |2) using
arrays, and O(|E| log |V |) using binary heaps [Atallah, 1999].

6.2.4 Related Works

In the sections above the three text book algorithms for solving the minimum spanning tree
problem are given, the Borůvka’s, Kruskal’s, and Prim-Jarnik’s approaches. All these algo-
rithms give a deterministic solution to the MST problem and are widely known in the literature
as ’generalized greedy algorithms’ [Gabow et al., 1986]. These text book algorithms run in
O(|E| log |V |). A better performance is achieved by [Yao, 1975] and [Cheriton and Tarjan,
1976] to O(|E| log log |V |). With the Fibonacci heaps [Fredman and Robert, 1987] reduced
the complexity to O(|E|β(|E|, |V |)), where β(|E|, |V |) = min{i| log(i)(|V |) ≤ |E|/|V |}. 3 In
[Gabow et al., 1986] the solution of MST is improved to O(|E| log β(|E|, |V |)). The algo-
rithm proposed in [Chazelle, 2000] based on Borůvka’s approach is the fastest known present.
In this proposal the graph G is first decomposed into vertex-disjoint contractible subgraphs
of suitable size, called contractions kernels. Each of this subgraphs are contracted into a sin-
gle vertex, and thus a minor of G is formed, the process of forming contractible subgraphs is

3Where log(i) |V | is log(log(..(log(|V |))..))︸ ︷︷ ︸
i−times

.

108

6.2 Minimum Weight Spanning Tree

continued until G becomes a single vertex. This forms a hierarchy of contractible subgraphs,
which can be modeled by perfect balanced tree T , where its leaves represent the vertices of
G (level 0), the root correspond to the whole graph G (apex of the tree). An internal vertex
v with children {vvi

} is associated with the graph Nv, whose vertices are the contraction of
graphs {Nvi

}, i.e. of graphs in a level below. Each level of T represents a minor of G. Once
the T is found the MST of each contraction kernel is found, recursively. The MST of G is
computed by joining together the trees of MST of the contraction kernels. In [Chazelle, 2000]
the best possible trade-off between the size of the contraction kernels and the height of the
hierarchy is found such that the algorithms has the complexity of O(|E|α(|E|, |V |)), where
α(|E|, |V |) = min{i ≥ 1|A(i, 4 "|E|/|V |# > log |V |} is the inverse Ackerman’s function4 de-
fined in [Tarjan, 1975]. In [Fredman and Dan, 1994] an algorithm is given with the linear worst
case time solution under the assumption that weights are small integers. The ultimate goal is to
find a deterministic algorithm with linear complexity, i.e. O(|E|), under no restriction.

A non-deterministic solution the MST problem was proposed in [Karger et al., 1995] with a
randomized algorithm, which solves the problem in linear expected time. This algorithm need
an algorithm to verify that the result is MST. The first linear time verification algorithm is given
in [Dixon et al., 1992]. A simpler linear time verification algorithm is proposed in [King, 1997].
Both [King, 1997] and [Karger et al., 1995] make use of the Borůvka’s algorithm.

The MST problem has been solved using parallel machines as well. In [Hirschberg et al.,
1979] gave a parallel deterministic algorithm on CREW PRAM 5 with time complexityO(log2 |V |)
and |V |2/ log |V | number of processors. In [Chin et al., 1982] the results are improved into
O(log2 |V |) time complexity and |V |2/ log2 |V | needed processors. On the CRCW PRAM
model the authors [Shiloach and Vishkin, 1982] gave an algorithm with time complexityO(log |V |)
and O(|E| + |V |) processors, and it was further improved by [Cole et al., 1996] needing only
O((|E| + |V |)α(|E|, |V |)/ log |V |) processors. The logarithmic time linear work randomized
algorithm is proposed in [Cole et al., 1996], improving the results of [Cole et al., 1994] from
O(2log∗ |V | log |V |) to O(log |V |) time complexity. This works is based on the work of [Karger
et al., 1995].

The single-link clustering technique, used in statistics to cluster data points into coherent
groups is essentially MST [Duda et al., 2001]. The nearest-neighbor algorithm could be viewed
as an algorithm for building an MST of the data [Duda et al., 2001]. In [Chowdhury and Murhty,
1997] it was shown the MST approaches the performance of the Bayes classifier as the number
of data point goes to infinity, and an example of applying MST to cluster real world data are
shown in [Päivinen, 2005].

4The Ackerman function is defined as:

A(i, j) =

⎧⎨⎩
A(0, j) = 2j, for any j ≥ 0;
A(i, 0) = 0 and A(i, 1) = 2 for any i ≥ 1;
A(i, j) = A(i− 1, A(i, j − 1)), for any i ≥ 1, j ≥ 2.

5C-concurrent, E-exclusive, R-read, W-write, PRAM-parallel random access machine.

109

6. Irregular Graph Image Partitioning

6.2.5 Minimum Spanning Tree as Matroid Optimization Problem

In this section the connections of matroids and MST is shown. [Glantz and Kropatsch, 2000a]
shows that graph pyramids can be represented as a basis of matroid. The study of matroids6

arises from the need to capture fundamental properties of dependence in graphs and matrices.
One can think of matroids as an abstraction that generalizes both graphs and vector spaces. A
matroid M is an ordered pair (E, I) consisting of a finite set E and a collection I ⊂ E that
satisfies these conditions [Oxley, 1992]:

(I1). ∅ ∈ I,

(I2). every subset of every element of I is also in I, and

(I3). if I1 and I2 are in I and |I1| = |I2| + 1, then there is an element e in I1 − I2 such that
I2 ∪ e ∈ I.

Condition (I2) is called the hereditary axiom, and condition (I3) is called independence aug-
mentation axiom. If M is the matroid (E, I), then M is matroid on E. Elements of I are
independent sets of M , and E is the ground set of M .

Matroids arise in a number of combinatorial optimizations, among others also in minimum
spanning tree problem. An overview of many optimization problems that are special cases of
matroid problems are found in [Bixby and Cunnigham, 1995]. In this section a tight relation of
the greedy algorithm and the matroids is given. Note that the greedy algorithm is used to solve
the minimum spanning tree problem in [Borůvka, 1926a, Jarnı́k, 1930, Kruskal, 1956, Prim,
1957]. It is shown that the greedy algorithm is the one that solves a weight matroid optimization
problem. A graph G = (V,E) can be characterized as a matroid where the set of edges E and
a set of edges E ′ is independent if and only if it does not contain a cycle, or equivalently the
subgraph induced by E ′ is a forest. Since the spanning trees of this forest are a maximally
independent set, this sets are called bases. This kind of matroid is called a cycle matroid or
graphic matroid. If the edges of the graph are weighted then it is called weighted matroid.

The minimum spanning tree is a special case of the weighted matroid optimization pro-
blem [Oxley, 1992]. Let I be the subset of the edge set E which satisfies conditions (I1) and
(I2), and edges in E are weighted w : E → R. Let the weight of a non-empty set T of E be
defined as w(T) =

∑
e∈T w(e) and w(∅) = 0. The optimization problem for the pair (I, w) is

as follows [Oxley, 1992]:

Find a maximal member T of I of maximum weight. (6.5)

The set T is the solution of this optimization problem. If the weight function is w′ = W0 − w,
where W0 is larger then the largest weight w(e), and solve the optimization problem (I, w),
then T ′ is the maximal member of I for which w(T ′) is minimal, thus solving the minimal
spanning tree problem, as a special case of Problem 6.5. The simple greedy algorithm which
begins with empty independent set X , and consider the matroid elements in order of increasing
weight, adds each element to I if by adding I is kept independent. The result of this greedy
algorithm yields the Jarnik-Kruskal’s algorithm.

The set (E, I) is a matroid if the conditions (I1) and (I2) are satisfied together with the
condition

6Called also combinatorial geometry.

110

6.3 Minimum Spanning Tree with DGC

(G) For all weight functions w : E → R, the greedy algorithm produces a maximal member
of I of maximum weight.

The prove that (E, I) with conditions (I1), (I2), and (G) is a matroid is given in [Oxley, 1992,
page 64], i.e. greedy algorithm works for matroid. In Chapter 2, Section 2.7 was shown that
graphs can be represented over the Galois fields F2, therefore matroids can be represented over
the same fields F2 as well. In this section the relation of matroids with MST is shown, thus graph
pyramids build on the MST principle could be characterized as a special case of the weighted
matroid optimization problem, as well.

6.3 Minimum Spanning Tree with DGC

Taking the Observation 6.1 into consideration, a contraction of the edge e, which connects T
and G \ T in the 4th step of Algorithm 8 will speed up the process of searching for minimum
weight edges in the Borůvka’s algorithm. If the graphs are represented as adjacency list then a
vertex with degree d can enumerate its incident edges in its neighborhood in time O(d). Since
each tree (in level k) after edge contraction will be represented by a vertex (in the level k+1), the
search for the edge with the minimum weight would be a local search, and the resulting graph
is smaller (in the sense of less vertices and less edges), thus the next pass can run faster. Note
that introduction of the edge contraction method introduces naturally the hierarchy of graphs.
[Kropatsch, 1995a] and [Dey et al., 1998] introduce a topology preserving edge contraction.

The dual graph contraction algorithm [Kropatsch, 1994], [Kropatsch, 1995a] is used to
contract edges and create super vertices i.e. to create father-son relation between vertices in
subsequent levels (vertical relation) and at the same time to preserve the topology, whereas
Borůvka’s algorithm is used to create son-son relation between vertices in the same level (hor-
izontal relation). In Section 6.4 we will refine the son-son relation to simulate the pop-out
phenomena [Julesz, 1981], [Julesz and Bergen, 1983], and to find region borders quickly and
effortlessly in a bottom-up ’stimulus-driven’ based on local differences in a specific feature
(color).

Here we expand Borůvka’s algorithm with the steps that contract edges, remove parallel
edges and self loops (if the topology is not changed), see Algorithm 11.

Theorem 6.4 The equivalent contraction kernel of the apex of the graph pyramid constructed
by Algorithm 11 is the minimum spanning tree of the base level.

Proof: The top h of the pyramid, consists of an isolated vertex (apex). The set of edges
at the base level (input graph) which are contracted so that the apex is derived, is the equiva-
lent contraction kernel N0,h (see Section 4.4.2). The proof of this theorem is analogous with
Theorem 6.3 Let G0 be the given nontrivial weighted connected graph. When Algorithm 11
terminates the equivalent contraction kernel of the apex h of the pyramid is a spanning tree.
Thus we have to show that N0,h is indeed a minimum weight spanning tree of G0 by proving
that every equivalent contraction kernels of all vertices v ∈ Gk, ∀k = h, ..., 1 constructed in the
course of the algorithm is contained in a minimum weight spanning tree of G0. Our proof is by
induction on k. The contraction kernel of vertex v′ ∈ Gk+1, Nk,k+1(v

′) is constructed from all
its children Ch(v) ∈ Gk such that for each children an edge of minimum weight is added (Step
3 of Algorithm 11). Note that every contraction kernel in Gk is a tree, therefore connected.

111

6. Irregular Graph Image Partitioning

Algorithm 11 – Borůvka’s Algorithm with DGC

Input: attributed graph G0 = (V,E)

1: k ← 0
2: repeat
3: for each vertex v ∈ Gk find the minimum-weight edge e ∈ Gk incident to the vertex v

and mark the edges e to be contracted
4: determine CCk

i as the connected components of the marked edges e
5: contract connected components CCk

i in a single vertex and eliminate the parallel edges
(except the one with the minimum weight) and self-loops and create the graph Gk+1 =
C[Gk, CCk

i]
6: k ← k + 1
7: until all connected components of G are contracted into one single vertex

Output: a graph pyramid with an apex.

As inductive hypothesis assume that Nk,k+1 is contained in a minimum spanning tree of Gk,
i.e. Tk. If Gk+1 denotes the graph obtained by contracting the edges of Nk,k+1 into the vertices
v′ ∈ Gk+1, then minimum weight edges e′ ∈ Gk+1 are incident on v′ ∈ Gk+1. Since the edges
of the graph Gk+1 correspond in fact to paths that connect trees in the level Gk and based on
Theorem 6.1 holds that e′ are contained in a minimum spanning tree of Gk. By Theorem 6.2,
Nk,k+1 ∪ e′ = Nk,k+2 (Definition 4.9) are contained in the minimum spanning tree of Gk. This
holds for all k and thus the proof that the N0,h is the minimum spanning tree of G0. �

Each level of the pyramid represents a set of sub trees of the MST. In the first step we
find the edges with the minimum weight incidented on every vertex v ∈ Gk. We contract
the marked edges (in general a connected component) into a single vertex (the survivor, ’super
vertex) using edge contraction and face contraction [Kropatsch, 1995a] (applying DGC), and
produce the graph Gk+1. If there are parallel paths that connect the same trees they are removed
except the one with the minimum-weight middle edge (see Figure 4.10). Self-loops are removed
if they do not include a surviving vertex. We repeat this process until we arrive at the apex of
the graph pyramid.

An example of building MST using DGC for Figure 6.2 is given in Figure 6.3. The solid
lines represent the marked edges (in general connected components) which are contracted by
DGC to create the graph of the next level. The equivalent contraction kernel of the apex in
level G3, i.e. the spanning tree consisting of the edges which are contracted, is the minimum
spanning tree of the graph G0 as shown in Figure 6.3.

For a connected attributed graph the time complexity of the algorithm above is as follows

Theorem 6.5 Algorithm 11 finds the minimum spanning tree after at most log |V | iterations
each of which involves O(|E|+ |V |) operations.

Proof: In the 3rd step each vertex of Gk chooses one edge that will be contracted in the
5th step. Since the contraction of an edge also eliminates one of its incident end vertices the
number of vertices decreases by a reduction factor of at least 2 at every iteration. Thus, the
number of iterations cannot exceed log2 |V |. The selection of CC can be performed in O(|V |)

112

6.4 Hierarchy of Partitions

G0

G1

G2

DGC

DGC

MST(apex)= N0,2

apex

Figure 6.3: Building MST with DGC.

and contraction of edges in O(|E|). Hence, the overall running time cannot exceed O((|E| +
|V |) log2 |V |). �

6.4 Hierarchy of Partitions

The segmentation problem is supposed to find natural groupings from the pixel set. The first
question that comes in mind is how this natural groupings are found. In other words what makes
pixels in a partition to be more like one another than pixels in other segments. This observation
pours down into two issues [Duda et al., 2001]:

• how to measure the similarity between pixels, and

• how to evaluate a partitioning of the pixels into segments.

In Section 6.5 different similarity (dissimilarity) measures between pixels are given, all of
them are metric measures. It is expected that, these measures of dissimilarity captures the
expectation that the distance of pixels within segment is less than the distance between pixels
in different segments. The second issue is defining the criterion function to be optimized. The
goal is to find the groups or segments that have strong internal similarities, which optimize the
criterion function.

Let G = (V,E) be a given attributed graph with the vertex set V and edge set E. We
will discuss later about the attributes. The goal is to find partitions P = {CC1, CC2, ..., CCn}
such that these elements are disjoint and satisfy certain properties. Moreover P is a partition of
V ∈ G, and

∀i �= j CCi ∩ CCj = φ ∧
⋃

i=1,...,n

CCi = V. (6.6)

In [Horowitz and Pavlidis, 1976] define a consistent homogeneity criteria over a set V as a
boolean predicate P over its parts Φ(V) that verifies the consistency property:

∀(x, y) ∈ Φ(V) x ⊂ y ⇒ (P (y) ⇒ P (x)). (6.7)

113

6. Irregular Graph Image Partitioning

In image analysis Equation 6.7 states that the subregions of homogeneous region are also
homogeneous. It follows that if P is a hierarchy and P a consistent homogeneity criteria on V
then the set of maximal elements of P that fulfill P defines a unique partition of V . Thus the
joint use of hierarchy and homogeneity criteria allow to define a partitioning in a natural way.

Definition 6.1 (Hierarchy) Given a set G, a set P(G) is a hierarchy if for any A,B ∈ P such
that A ∩B �= ∅ implies that A ⊂ B or B ⊂ A.

The hierarchical partitioning are the best known unsupervised methods. In general the ag-
glomerative (bottom-up, merging) procedure starts with singletons (e.g. pixels) and forms the
new partitions by successive merging. The divisive (top-down, splitting) procedure starts with
a single partitions and the new partitions are created by successive splitting old partitions.

The algorithm for hierarchical partitioning in general is given in Algorithm 12. The algo-
rithm terminates when the number of partitions reach c. If c = 1 the partitions are merged until
there is only one partition, i.e. a hierarchy of partitions with an apex is created.

Algorithm 12 – Agglomerative Hierarchical Partitioning Algorithm
Input: graph G = (V,E)

1: each vertex is a partition CCi ∀i = 1, . . . , |V |
2: repeat
3: find closest partition, say CCi and CCj

4: agglomerate CCi and CCj

5: until there are c partition

Output: a hierarchy of partitions.

The Algorithm 12 in line 3 needs a definition of the ’closness’ between two partitions. If
the dissimilarity between two partitions is defined by7

δmin(CCi, CCj) = min
u∈CCi, u′∈CCj

δ(u, u′). (6.8)

then the Algorithm 12 will induce a distance function for the given starting partitions. It can
be shown that a distance d(u, u′) between u, u′ defined as the lowest level in the hierarchy for
which u u′ are in the same partitions, form a metric [Duda et al., 2001].

Note that if the definition of dissimilarity is defined as:

δmin(CCi, CCj) = min
u∈CCi, u′∈CCj

‖u− u′‖. (6.9)

the Algorithm 12 is called nearest-neighbor cluster algorithm, or minimum algorithm. If the
algorithm stops when the distance between nearest partitions exceeds an arbitrary threshold, it
is called single-linkage algorithm [Duda et al., 2001]. The usage of the δmin(·, ·) as the measure
of dissimilarity means that the nearest partitions are found by nearest vertices. The merging
of CCi and CCj is in fact joining by an edge these partitions, and the resulting graph will not

7Or by the max function.

114

6.4 Hierarchy of Partitions

contain closed loops or circuits. If the algorithm continuous until all the partitions are joint,
i.e. all the vertices are connected with a path, it can be shown that the sum of edge lengths
of the resulting tree is minimal. Therefore, if δmin(·, ·) is used as the distance measure, the
agglomerative algorithms is an algorithm for creating a minimum spanning tree [Duda et al.,
2001], i.e. the Algorithm 12 can be used to solve the optimization problem of the minimum
spanning tree. In Section 6.2.5 it was shown that a greedy algorithm is the solution to the
minimum spanning tree problem. On contrary, if the distance measure is defined as:

δmax(CCi, CCj) = max
u∈CCi, u′∈CCj

‖u− u′‖. (6.10)

the Algorithm 12 is called farthest-neighbor cluster algorithm or maximum algorithm. If the
algorithm stops when the distance between nearest partitions trespass an arbitrary threshold, it is
called complete-linkage algorithm [Duda et al., 2001]. Posed into graph theory this algorithm
produce clusters in which all the vertices are connected to each other, i.e. create a complete
subgraph or clique.

Even thought the definition in Equation 6.8 is very sensitive to noise, the so called ’chaining
effect’, this definition of the nearness between two partitions is used as basis to define more
precisely the dissimilarity measure in the next section.

6.4.1 Building a Hierarchy of Partitions

The pairwise comparison of neighboring vertices, i.e. partitions is used to check for similar-
ities [Felzenszwalb and Huttenlocher, 2004], [Vergés-Llahi et al., 2000], [Fischer and Buh-
mann, 2002], [Guigues et al., 2003]. In [Felzenszwalb and Huttenlocher, 1998], a definition
of a pairwise group comparison function Comp(CCi, CCj) is given that judges whether or
not there is evidence for a boundary between two partitions CCi, CCj ∈ P . Definition of
Comp(CCi, CCj) depends on the application. Comp(CCi, CCj) is true, if there is evidence
for a boundary between CCi and CCj, and false when there is no boundary. This function mea-
sures the difference along the boundary of two components relative to a measure of differences
of components’ internal differences. This definition tries to encapsulate the intuitive notion of
contrast: a contrasted zone is a region containing two connected components whose inner dif-
ferences (internal contrast) are less than differences within it’s context (external contrast). We
define an external contrast measure between two components and an internal contrast measure
of each component.

Let G = (V,E, attrv, attre) be a given attributed graph with the vertex set V and edge set E
on the base level (level 0). Vertices v ∈ V and edges e ∈ E are attributed, i.e. attrv : V → R

+

and attre : E → R
+. One possible way to attribute the edges is given in Section 6.5. The

graph on level k of the pyramid is denoted by Gk. Every vertex u ∈ Gk is a representative of
a component CCi of the partition Pk. The equivalent contraction kernel of a vertex u ∈ Gk,
N0,k(u) is e set of edges of the base level e ∈ E that are contracted; i.e. applying equivalent
contraction kernel on the base level, one contracts the subgraph G′ ⊆ G onto the vertex u (see
Section 4.4.2 for more details).

The internal contrast measure of the CCi ∈ Pk is the largest dissimilarity measure of
component CCi i.e. the largest edge weight of the N0,k(u) of vertex u ∈ Gk:

Int(CCi) = max{attre(e), e ∈ N0,k(u)}. (6.11)

115

6. Irregular Graph Image Partitioning

Gk−1

Gk

ui

uj

CCi CCjmax{attre(· · ·)}
= Int(CCi)

max{attre(· · ·)}
= Int(CCj)

min{attre(· · ·)} = Ext(CCi, CCj)

e

Figure 6.4: Internal and External contrast.

Let ui, uj ∈ Vk be the end vertices of an edge e ∈ Ek. The external contrast measure between
two components CCi, CCj ∈ Pk is the smallest dissimilarity measure between component
CCi and CCj i.e. the smallest edge weight connecting N0,k(ui) and N0,k(uj) of vertices ui ∈
CCi and uj ∈ CCj:

Ext(CCi, CCj) = min{attre(e), e = (v, w) : v ∈ N0,k(ui) ∧ w ∈ N0,k(uj)}. (6.12)

In Figure 6.4, a simple example of Int(CCi) and Ext(CCi, CCj) is given. The Int(CCi)
(Int(CCj)) of the component CCi (CCj) is the maximum of weights of the solid line edges,
whereas Ext(CCi, CCj) is the minimum of weights of the dashed line edges (bridges) con-
necting component CCi and CCj on the base level G0. Vertices ui and uj are representative of
the components CCi and CCj. By contracting the edges N0,k(ui) one arrives to the vertex ui,
analogously N0,k(uj) for the vertex uj (see Section 4.4.2).

The pairwise comparison function Comp(·, ·) between two connected components CCi and
CCj can now be defined as:

Comp(CCi, CCj) =

{
True if Ext(CCi, CCj) > PInt(CCi, CCj),
False otherwise,

(6.13)

where PInt(CCi, CCj) is the minimum internal contrast difference between two components:

PInt(CCi, CCj) = min(Int(CCi) + τ(CCi), Int(CCj) + τ(CCj)). (6.14)

For the function Comp(CCi, CCj) to be true i.e. for the border to exist, the external contrast
difference must be greater than the internal contrast differences. Note that Comp(CCi, CCj)
is a boolean comparison function for pairs of partitions and the resulted segmentation is the so
called crisp segmentation. The reason for using a threshold function τ(CC) in Equation (6.14)
is that for small components CC, Int(CC) is not a good estimate of the local characteristics
of the data, in extreme case when |CC| = 1, Int(CC) = 0. Any non-negative function of a
single component CC, can be used for τ(CC) [Felzenszwalb and Huttenlocher, 1998]. One
can define τ to be function of the size of CC:

τ(CC) = α/|CC|, (6.15)

116

6.4 Hierarchy of Partitions

where |CC| denotes the size of the component CC and α is a constant. More complex definition
of τ(CC), which is large for certain shapes and small otherwise would produce a partitioning
which prefers certain shapes, e.g. using ratio of perimeter to area would prefer components that
are not long and thin.

6.4.2 Constructing a Hierarchy of Partitions

The Algorithm 11 in Section 6.3 in conjunction with the comparison function Comp(·, ·) de-
fined in Section 6.4.1 is used as basis to build the hierarchy of partitions. We proved that Al-
gorithm 11 builds a minimum spanning tree of an attributed graph, so the definition of internal
and external contrast are now recalled for clarity:

Int(CCk) = max{attre(e), e ∈ MST(uk)}.
Ext(CCk

i , CCk
j) = min{attre(e), e = (v, w) : v ∈ MST(uk,i) ∧ w ∈ MST(uk,j)}.

P Int(CCk
i , CCk

j) = min(Int(CCk
i) + τ(CCk

i), Int(CCk
j) + τ(CCk

j)).
τ(CCk) = f(CCk),

(6.16)

where f(CCk) is non-negative function, not defined yet.
Let Pk = CCk

i , CCk
j , ..., CCk

n be the partitions on the level k of the pyramid i.e Pk is the
graph Gk(Vk, Ek). The algorithm to build the hierarchy of partitions is as follows:

Algorithm 13 – Construct Hierarchy of Partitions (BorůSeg)
Input: attributed graph G0.

1: k ← 0
2: repeat
3: for all vertices u ∈ Gk do
4: Emin(u) ← argmin{attre(e) | e = (u, v) ∈ Ek or e = (v, u) ∈ Ek}
5: Emin = Emin ∪ Emin(u)
6: end for
7: for all e = (uk,i, uk,j) ∈ Emin with Ext(CCk

i , CCk
j) ≤ PInt(CCk

i , CCk
j) do

8: include edge e in contraction edges Nk,k+1

9: end for
10: contract graph Gk with contraction kernels, Nk,k+1: Gk+1 ← C[Gk, Nk,k+1].
11: for all ek+1 ∈ Gk+1 do
12: set edge attributes attre(ek+1) ← min{attre(ek) | ek+1 = C[ek, Nk,k+1]}
13: end for
14: k ← k + 1
15: until Gk = Gk−1

Output: a region adjacency graph (RAG) at each level of the pyramid.

If we assume that the steps 6 to 8 of the Algorithm 13 are left out, it can be shown, that
this algorithm produces a MST (Theorem 6.3). Each vertex uk ∈ Gk i.e. CCk represents a
connected region on the base level of the pyramid, and since the presented algorithm is based

117

6. Irregular Graph Image Partitioning

on Borůvka’s algorithm [Borůvka, 1926a], it builds a MST(uk) of each region, i.e N0,k(uk) =
MST(uk) (see Theorem 6.4).

The idea is to collect smallest weighted edges e (4th step) that could be part of MST, and
then to check if the edge weight attre(e) is smaller than the internal contrast of both of the
components (MST of end vertices of e) (6th step), if these conditions are fulfilled then these
two components will be merged (7th step). Two regions will be merged if the internal contrast,
which is represented by its MST, is larger than the external contrast, represented by the weight
of the edge, attre(e). All the edges to be contracted form the contraction kernels Nk,k+1, which
then are used to create the new graph Gk+1 = C[Gk, Nk,k+1] [Kropatsch et al., 1999]. Note that
edges consisting Nk,k+1 have no cycles, i.e. having cycles will contradict step 4 of Algorithm 13.
In general Nk,k+1 is a forest. We update the attributes of those edges ek+1 ∈ Gk+1 with the
minimum attribute of the edges ek ∈ Ek that are contracted into ek+1 (11th step). This means
that we do not recompute the attributes of the edges but simple inherit it. In oder to make
computation faster, one can store in each vertex of the new graph Int(CC) and the size of the
receptive field RF . Instead of computing Int(CCk+1) and RF from the base of the pyramid
one can update them successively. This means that ∀uk+1 ∈ Gk+1 on the new level k + 1, the
Int(CC(uk+1)) is computed as the max of the Int(uk), uk ∈ Ch(uk+1, uk) and as max of all
attributes on edges of the contraction kernel that is contracted into uk+1. The receptive field of
uk+1 is the sum of all vertices uk ∈ Gk of its contraction kernel. The Int() and RF are set to
zero for all vertices on the base level to start the algorithm.

The output of the algorithm is a pyramid where each level represents a RAG, i.e. a partition.
Each vertex of these RAGs is the representative of a MST of a region in the image. In general
the top of the pyramid consists of an apex, which represents the whole image. The algorithm
is greedy since it collects only the nearest neighbor with the minimal edge weights and merges
them if Equation 6.13 is false.

Proposition 6.1 For any connected attributed graph G = (V,E, attre, attrv) the set of regions
fulfilling Equation 6.13 is a hierarchy. over V .

Proof: Vertices v ∈ V0 on the base level partition the base graph G0. It is only needed to
check that partitions are partially ordered by the inclusion relation (see Definition 6.1). Assume
that for each pair of neighboring regions this is not the case, i.e. ∃(CCk

i , CCk
j) ∈ Pk, such that

CCk
i ∩CCk

j �= φ but neither Ck
i ⊂ Ck

j nor Ck
j ⊂ Ck

i . There are at least two edges, e′ connecting
CCk

i and CCk
j \ CCk

i and the other edge e′′ connecting CCk
j and CCk

i \ CCk
j , from which it

follows
Let us consider e′ connecting CCk

i and CCk
j \ CCk

i and the other edge e′′ connecting CCk
j

and CCk
i \ CCk

j , from which it follows

Ext(CCk
i , CCk

j) ≤ min(attre(e
′), attre(e

′′)) ≤ min(Int(CCk
i), Int(CCk

j)) < PInt(CCk
i , CCk

j)
(6.17)

this implies that Equation 6.13 is false, i.e. CCk
i and CCk

j are one component.
�

Proposition 6.2 For any connected attributed graph G = (V,E, attre, attrv) Algorithm 13
produces partitions on each level which are invariant under any monotone transformation of

118

6.5 Experiments on Image Graphs

dissimilarity measure attre. Moreover the hierarchy over V is invariant under monotone trans-
formation.

Proof: It should be verified that the order by which the edges are contracted is not changed
by monotone transformation. The monotone transformation does not change the total order of
edges incidented on a vertex. This implies that the edge with the minimum weight is also not
changed by this monotone transformation in the 2nd step of the Algorithm 13. Moreover this
transformation does not change the total order of the edges in a connected component CCk

i and
CCk

j , implying that the minima of maximum weight edge of the CCk
i and CCk

j is on the same
edge (3rd step). Edges marked in the 2nd and 3rd step of Algorithm 13 are not changed by the
transformation, which results in the invariance of the partitions. This implies also that the whole
hierarchy of partitions is also invariant under this transformation. �

The presented algorithm collects only the nearest neighbor partitions with the minimal edge
weights and merges if they fulfill the criterion Ext(CCk

i , CCk
j) ≤ PInt(CCk

i , CCk
j). This

way of merging is also known as single linkage clustering [Lance and Williams, 1967].

6.5 Experiments on Image Graphs

We start with the trivial partition, where each pixel is a homogeneous region. The attributes
of edges are defined as the difference of its end point vertices. The attributes of edges can be
defined as the difference between end point features of end vertices,

attre(ui, uj) = |F (ui)− F (uj)|, (6.18)

where F is some feature. Other distances could be used as well e.g. [Shi and Malik, 1997],

attre(ui, uj) = e
−||F (ui)−F (uj)||22

σI , (6.19)

where F is some feature, and σI is a parameter, which controls the scale of proximity measures
of F . F could be defined as

F (ui) = I(ui), (6.20)

for gray value intensity images, or

F (ui) = [vi, vi · si · sin(hi), vi · si · cos(hi)], (6.21)

for color images in HSV color distance [Shi and Malik, 1997]. However the choice of the
definition of the weights and the features to be used is in general a hard problem, since the
grouping cues could conflict each other [Malik et al., 1999].

For our experiments we use as attributes of edges the difference between pixel intensities,
Equation 6.18, F (ui) = I(ui), i.e. a simple distance in L1 norm,

attre(ui, uj) = |I(ui)− I(uj)|, (6.22)

Using color images, one may think to valuate each edge by the Euclidean distance between the

119

6. Irregular Graph Image Partitioning

Table 6.1: Test Images.

Image Size of image Number of vertices

Ramp 223× 111 = 24 753
Lena 512× 512 = 262 144

Monarch 768× 512 = 393 216
Tulips 400× 400 = 160 000

Woman 116× 261 = 25 056
Object 45 128× 128 = 16 384
Object 18 128× 128 = 16 384

Ramp

(a) Level 0 (24 753 components)

(b) 8 (44) (c) 9 (25) (d) 10 (13) (e) 14 (2)
Legend: level of pyramid (number of components)

Figure 6.5: Partitioning of a ramp.

vertice’s colors using a perceptual color space such as the CIE-Luv or CIE-Lab8. However, the
use of CIE color spaces requires the knowledge of the illuminants defining RGB components
which is often not available. Therefore, for the sake of simplicity and in order to valuate our
method we choose in our experiments a simple Euclidean distance in RGB space. Note that
the method is applicable to any color space as well. Using any other more complex norm, have
not shown any considerable difference in quality of the result. To compute the hierarchy of
partitions we also need to define

τ(CC) = α/|CC|, (6.23)

where α = const and |CC| is the number of elements in CC, i.e. the size of the region. The
algorithm has one running parameter α, which is used to compute the function τ . A larger
constant α sets the preference for larger components. A more complex definition of τ(CC),
which is large for certain shapes and small otherwise would produce a partitioning which prefers
certain shapes, e.g. using ratio of perimeter to area would prefer components that are compact,
e.g. not long and thin. Note that as size of |CC| gets larger, which happens as the algorithms

8L: luminance, a: red-green color information, and b: yellow-blue color information.

120

6.5 Experiments on Image Graphs

Lena

(a) Level 0 (262 144 components)

(b) 11 (228) (c) 12 (133) (d) 13 (78)

(e) 14 (48) (f) 15 (27) (g) 16 (19)
Legend: level of pyramid (number of components)

Figure 6.6: Partitioning of Lena.

proceeds toward the top of the pyramid, the function τ → 0, which means that the influence of
the parameter decreases. For computational efficiency we store in vertices the internal contrast
Int() and the size of the connected component |CC| (receptive field). We use indoor and
outdoor RGB images given in Table 6.1 to test the method. We found that α = 300 produces
the best hierarchy of partitions of the images shown in ’Lena’ and ’Tulips’ 9 (Figure 6.6 and
6.8), Monarch 3 (Figure 6.7) , and ’Object45’ and ’Object18’ 10(Figure 6.10 and Figure 6.11,
respectively). For the image in Figure 6.5 and Figure 6.9, α = 1000 is chosen.

Images on different level of the pyramid are visualized after the average intensity attribute

9Waterloo image database.
10Coil 100 image database.

121

6. Irregular Graph Image Partitioning

Monarch

(a) Level 0 (393 216 components)

(b) 12 (263) (c) 14 (108) (d) 16 (57)

(e) 18 (35) (f) 20 (25) (g) 22 (18)
Legend: level of pyramid (number of components)

Figure 6.7: Partitioning of Monarch.

122

6.5 Experiments on Image Graphs

Tulips

(a) Level 0 (160 000 components)

(b) 21 (2387) (c) 27 (321) (d) 37 (41) (e) 42 (9)
Legend: level of pyramid (number of components)

Figure 6.8: Partitioning of Tulips.

of vertices is down-projected onto their receptive fields on the base grid. Figures 6.6, 6.7, 6.10,
6.11, 6.8, 6.5 and 6.9 show some of the partitions on different levels of the pyramid and the
number of components (number of vertices). More examples of segmentation of gray value
images using different decimation strategies (MIS and D3P) are given in Chapter 7. In general
the top of the pyramid will consist of one vertex, an apex, which represents the whole image.

6.5.1 Discussion of Results

In Chapter 7 a direct comparison of the quality of segmentation results of the method presented
here and the ones presented in [Felzenszwalb and Huttenlocher, 2004] and [Shi and Malik,
2000] are given. Moreover in this chapter we study also the segmentation results of different
pyramid building strategies: MIES, MIS and D3P. Note that in all images there are regions
of large intensity variability and gradient. See for example the hair of Lena or the flower in
Monarch, or the gradual change of intensity in the cup of Object45 and Object18. Note also
that the background of the Woman image is not homogeneous and contains white spots. This
algorithm copes well with this kind of gradient and variability of pixel intensity. The ramp
image is taken as a test image to show that the method can cope with the gradient images
bordered on ’homogeneous’ regions. Even thought the algorithm makes only local decision it
is able to capture some certain perceptual groupings. [Felzenszwalb and Huttenlocher, 2004],
[Vergés-Llahi et al., 2000] gives final segmentation, in contrast to the result our method which
is a hierarchy of partitions with multiple resolutions suitable for further goal driven, domain
specific analysis, since the final segmentation is hard to define without knowing the context of
the image. Note that a whole class of partitions is created, where a partition is not limited to a
certain level of the pyramid, but can be constructed of components from different levels from

123

6. Irregular Graph Image Partitioning

Woman

(a) Level 0 (25 056 components)

(b) 8 (120) (c) 10 (38) (d) 14 (7) (e) 15 (3)
Legend: level of pyramid (number of components)

Figure 6.9: Partitioning of Woman.

the receptive fields of the vertices of a multilevel partition which occupy the whole image, and
do not overlap. On the lower level of the pyramid the image is over segmented (partitioned)
whereas in upper it is under segmented (partitioned), the help of mid and high level knowledge
would select the proper partitioning. Since the algorithm preserves details in low-variability
regions, a noisy pixel would survive through the hierarchy. Of course, image smoothing in low
variability regions would overcome this problem. We, however do not smooth the images (as
is done in [Felzenszwalb and Huttenlocher, 2004]), as this would introduce another parameter
into the method. The hierarchy of partitions can also be built from an over-segmented image

124

6.6 Conclusion

Object45

(a) Level 0 (16 384 components)

(b) 8 (129) (c) 10 (43) (d) 12 (13) (e) 14 (3)
Legend: level of pyramid (number of components)

Figure 6.10: Partitioning of Object45.

to overcome the problem of noisy pixels. Note that the influence of τ in decision criterion is
smaller as the region gets bigger for a constant α. The constant α is used to produce a kind of the
over-segmented image and the influence of τ is smaller after each level of the pyramid. For an
over-segmented image, where the size of regions is large, the algorithm becomes parameterless.
The method in based on the minimum spanning tree principle therefore it is computationally
efficient, running in O(|V | log |V |) time for |V | vertices, i.e. pixels if the base of the hierarchy
is an image.

6.6 Conclusion

In this chapter a method to build a hierarchy of partitions of an image by comparing in a pairwise
manner the difference along the boundary of two components relative to the differences of
components’ internal differences is introduced. Even though the algorithm makes simple greedy
decisions locally, it produces perceptually important partitions in a bottom-up ’stimulus-driven’
way based only on local differences. It was shown that the algorithm can handle large variation
and gradient intensity in images. Since this framework is general enough, RAGs of any over-
segmented image can be used to build the hierarchy of partitions. External knowledge can
help in a top-down segmentation technique. A drawback is that the maximum and minimum
criterion is very sensitive to noise, although in practice it has a small impact. Other criteria
like median would lead to an NP-complete algorithm. The algorithm has only one running
parameter which controls the sizes of the regions. In order to make this method produce only

125

6. Irregular Graph Image Partitioning

Object18

(a) Level 0 (16 384 components)

(b) 23 (512) (c) 32 (65) (d) 39 (10) (e) 42 (4)
Legend: level of pyramid (number of components)

Figure 6.11: Partitioning of Object18.

one single segmentation a stopping rule or selection of vertices on different levels can be applied
as in [Xu et al., 1993, Lallich et al., 2003]. An evaluation of this method to other well known
graph-based methods is done in Chapter 7.

126

CHAPTER 7

Evaluation of Segmentation Methods

”If your experiment needs statistics, you ought to have done a better experiment.” 1

by Bertrand Russell.

Summary Different graph-based segmentation methods, one based on normalized cut and the others
on the Borůvka’s minimum spanning tree principle are evaluated with respect to segmen-
tations produced by humans. Depending on different decimation strategies (MIS, MIES,
and D3P), three version of the Borůvka’s based method are used for the evaluation. The
Borůvka’s based method is compared with the method based on the Kruskal’s algorithm.
The discrepancy measures are chosen as best suited to compute the segmentation error. The
evaluation is done using gray value images. This kind of benchmarking will help under-
standing for which kind of images particular methods are best suited.

Keywords: Segmentation evaluations, normalized cut segmentation, Borůvka’s based segmentation meth-
od, MIS, MIES, D3P, Kruskal’s based segmentation method, pyramid segmentation method.

7.1 Introduction

The segmentation process results in ’homogeneous’ regions with respect to the low-level cues
using some similarity measures. Problems emerge because the homogeneity of low levels does
not always lead to semantics and the difficulty of defining the degree of homogeneity of a re-
gion. Also some of the cues can contradict each other. Thus, low-level cue image segmentation
cannot produce a complete final ‘good’ segmentation [Sudhir and Sarkar, 1997], leading re-
searchers to look the segmentation only in the context of a task, as well as the evaluation of the

1From Mathematical Approach to Biology and Medicine. N. T. J. Bailey , New York: Wiley, 1967.

127

7. Evaluation of Segmentation Methods

segmentation methods. However in [Martin et al., 2001] the segmentation is evaluated purely2

as segmentation by comparing the segmentation done by humans with those done by a particu-
lar method. As can be seen in Figure 7.1 and 7.2 3, there is a consistency of segmentation done
by humans (already demonstrated empirically in [Martin et al., 2001]), even thought humans
segment images at different granularity (refinement or coarsening). This refinement or coars-
ening could be thought as hierarchical structure of the image, i.e. the pyramid. Note that the
segmented image #35 Figure 7.1 in (a) can be coarsened to obtain the image in (c), this is called
simple refinement; whereas to obtain image in (b) from (a) (or vice versa) we must coarsen in
one part of the image and refine in the other (notice the chin of the man in (b)), this is called
mutual refinement. Therefore in [Martin et al., 2001] a segmentation consistency measure that
does not penalize this granularity is defined (Section 7.4).

In this chapter, we evaluate two graph-based segmentation methods, the normalized cut [Shi
and Malik, 1997](NCutSeg) and the method based on the Borůvka’s minimun spanning tree
(MST) [Haxhimusa and Kropatsch, 2003](BorůSeg)(see Chapter 6 for more details). In fact we
evaluate three flavors of the BorůSeg depending on the decimation strategy used: MIS, MIES
or D3P, and denoted by BorůSeg (MIS), BorůSeg (MIES) and BorůSeg (D3P). See Chapter 6
for details on these decimation strategies. Note that we do not use MIDES in the evaluation
since this method is developed to be used where the orientation of contraction is of importance
(e.g. in watersheds), which is not the case in the segmentation. The segmentation method based
on Kruskal’s algorithm [Felzenszwalb and Huttenlocher, 2004](KrusSeg) is compared with the
parallel, hierarchical BorůSeg method. We compare these methods following the framework
of [Martin et al., 2001] i.e. comparing the segmentation result of the two graph-based methods
with the human segmentations and the segmentation of two minimum spanning tree methods
to each other. The results of the evaluation are reported in Section 7.4. Also the variation of
regions sizes is shown in this section.

Some examples of applying BorůSeg on color image are shown in Chapter 6, Section 6.5,
where for visualization purposes each region has the mean color value. In this chapter we use
the region borders to highlight the regions. Note that, two pixel wide borders are used only for
better visualization purposes, and are not produced by these segmentation methods nor are part
of the evaluation process in Section 7.4.

7.2 Evaluated Graph-based Segmentation Methods

For an overview of graph based segmentation method please see Chapter 6. In the subsequent
subsection only the methods used in the evaluation are given in more details, to highlight the
used parameters.

7.2.1 Normalized Cuts Based Segmentation Method

For the sake of completion of presentation, in this section a description of the graph partition-
ing problem based on the normalized graph cut [Shi and Malik, 2000, Shi and Malik, 1997]

2The context of the image is not taken into consideration during segmentation.
3These images in the original database are in the landscape layout, thus for better visual presentation of images

the orderings in this figure is changed with respect to that in Figure 7.1.

128

7.2 Evaluated Graph-based Segmentation Methods

(a) (b) (c)

#35

#2

Figure 7.1: Sample images with human segmentations [Martin et al., 2001].

(NCutSeg) is presented. The approach starts by representing the problem as a weighted undi-
rected graph G = (V,E), where the vertices represent points in the feature space, and an edge
is formed between every pair of vertices. The weight on edges is a function of the similarity
between vertices that are joint by edges. The problem is posed as finding the partition of the set
of vertices into V1, V2, . . . , Vm such that the similarity is high among the vertices in set Vi and
is low across different sets Vi, Vj . The solution in measuring the goodness of the image parti-
tioning is found as the minimization of the normalized cut, which is formulated as a generalized
eigenvalue problem.

The graph G = (V,E) can be partitioned into two disjoint sets, say A, B such that A∪B =
V and A ∩ B = ∅, by simply cutting (deleting) edges connecting vertices of these sets. The
sum of the weights of deleted edges can be used to measure the dissimilarity between these
two sets. In [Wu and Leahy, 1993] this measures is minimized to produce a clustering method.
The clustering is done by recursively minimizing the cut criterion in the resulted segments.
As it is shown in [Wu and Leahy, 1993], this global optimal criterion can be used to produce
’good’ segmentation on images, but the method was biased toward cutting small sets (mostly
containing a single vertex). In order to overcome this problem [Shi and Malik, 2000] propose a
normalized cut criterion. The weights of the edges for this method in this evaluation are set to:

wi,j = e
− ‖I(i)−I(j)‖

σI ·
{

e
− ‖X(i)−X(j)‖

σX if ‖X(i)−X(j)‖ < r,
0 otherwise,

(7.1)

129

7. Evaluation of Segmentation Methods

(a)

(b)

(c)

#17 #12 #18

Figure 7.2: Sample images with human segmentations [Martin et al., 2001], Figure 7.1 cont.

where X(i) is the spatial location of the vertex i, I(i) the intensity value. Note that the first term
depends on the difference of intensities. The weight wi,j are set to zero if i and j are r pixels
apart. σI and σX represent some parameters to control the influence of intensity and/or spatial
position on the overall weight. The source code is taken from www.cis.upenn.edu/˜jshi/

software/ and the default parameters are not changed (r = 10, σX = 30, and σI = 0.1). The
method was only instructed to give a particular number of regions. Some segmentation results
of NCutSeg method are given in Figure 7.3 and 7.4

7.2.2 Kruskal’s Minimum Spanning Tree Based Segmentation Method

In this section a description of the graph segmentation method based on the minimum spanning
tree principle [Felzenszwalb and Huttenlocher, 2004, Felzenszwalb and Huttenlocher, 1998]
(KrusSeg) is shortly presented. The core of this algorithm is the Kruskal’s MST algorithm pre-

130

7.2 Evaluated Graph-based Segmentation Methods

(a) (b)

#35

#2

Figure 7.3: Segmentation produced by NCutSeg method.

sented in Chapter 6, Section 6.2.2. As in the previous section an undirected weighted graph
G = (V,E) is build from the the feature points (e.g. pixels), where v ∈ V represent the set of
vertices to be segmented, and each edge e ∈ E is weighted by a non-negative measure of dis-
similarity between neighboring vertices (segments). In this graph-based segmentation method,
a segmentation S = (CC1, . . . , CCr) is a partitions of the vertex set V into components such
that each component corresponds to a connected component in the graph G. Thus any segmen-
tation is simply induced by a subset of edges in E. The problem is specified as finding segments
such that elements in a component are similar, and elements in neighboring components be dis-
similar, i.e. edges joining vertices in the same component have relatively low weights, and
edges between two neighboring components have higher weights.

In order to evaluate whether or not there is a boundary between two components [Felzen-
szwalb and Huttenlocher, 2004] defines a predicate Comp(·, ·) based on the dissimilarity be-
tween elements along the border of the two components relative to a measure of the dissimilar-
ity within the components. See Chapter 6, Section 6.4, Equation 6.13 for the definition of this
predicate. In order to use this predicate one must define the function τ(CC):

τ(CC) =
α

|CC| , (7.2)

where |CC| is the size of the connected component, and α is constant parameter. This parame-
ter is a scale of observation, in that larger α sets preferences for larger components, but it is not

131

7. Evaluation of Segmentation Methods

(a)

(b)

#17 #12 #18

Figure 7.4: Segmentation produced by NCutSeg method, Figure 7.3 cont.

the minimum component. Thus, the algorithm segmentation is given in Algorithm 14 [Felzen-
szwalb and Huttenlocher, 2004].

The weight w(o) between two vertices vi and vj is set to the absolute intensity difference
between the pixels connected by an edge:

w(o) = w(vi, vj) = |I(pi)− I(pj)| (7.3)

where I(pi) is the intensity of the pixel pi. The images are first smoothed as required by [Felzen-
szwalb and Huttenlocher, 2004] with a Gaussian filter before the edge weight are computed. As
proposed by [Felzenszwalb and Huttenlocher, 2004], the default parameters for the evaluation
are not changed, the constant of the function τ is set to α = 300 and the Gaussian filter is used
with σ = 1.5. Some segmentation results of KrusSeg method are given in Figure 7.5 and 7.6
with different parameter settings.

KruSeg versus BorůSeg

Here we shortly discuss the differences of KrusSeg versus BorůSeg methods. Even thought both
of the methods use the same internal/external merging criteria and the same minimum spanning
tree principle, one might expect that the final segmentation of KrusSeg and at least one of the
levels of the pyramid produced by BorůSeg should at least be the same. This is not the case as

132

7.2 Evaluated Graph-based Segmentation Methods

Algorithm 14 – KrusSeg Algorithm
Input: Weighted graph G = (V,E)

1: sort edges of E by non-decreasing order into π = {o1, o2, . . . , om}
2: start with a segmentation S0, in which every vertex is a connected component.
3: q ← 1
4: repeat
5: if CCq−1

i �= CCq−1
j and w(oq) ≤ PInt(CCq−1

i , CCq−1
j) then

6: Sq is obtained from Sq−1 by merging CCq−1
i and CCq−1

j through the edge oq

7: q ← q + 1
8: else
9: Sq = Sq−1

10: end if
11: until q = m segments

Output: m connected segments S = Sm.

can be seen by comparing Figures 7.5 and 7.6 with Figures 7.7 and 7.8; 7.9 and 7.10; 7.11 and
7.12 respectively.

In the first step of the Algorithm 14 a sorting of edges based on their weight is done. Let e
be an edge that connects two regions CCi and CCj . Note that the sorting is done outside the
repeat loop (steps 4-11). This means, that if the edge e ∈ π that connects two regions CCi

and CCj, is thrown out-side of the if-else loop, because it did not satisfy the internal/external
criteria i.e. w(e) > PInt(CCi, CCj) (9th step is executed), this edge will not be considered in
any further iteration. Thus regions, CCi, and CCj connected by this edge will never be merged.

In the case of the Algorithm 13, since there is no sorting, the edge e that does not satisfy the
internal/external criteria (6th step), it is not thrown from the further processing, but it might be
processed in the upper levels of the pyramid. During the generation of new level in the pyramid,
the internal contrast of both regions, CCi and CCj connected by the edge e increases, hence the
PInt(CCi, CCj) will increase as well. At the brake point were w(e) ≤ PInt(CCi, CCj) the
two regions will be merged by the BorůSeg. And this behavior has occurred, which explains
the differences between results of these two methods. Note that the inclusion trees are different,
because of the way the data is processed in these algorithms.

Both methods, KrusSeg and BorůSeg use a threshold dependent on the size of the connected
component (k/|CC|4 as shown in the subsection above and in Chapter 6) in the merging crite-
ria. Setting this threshold to zero both of the methods would produce the MST of the image,
independent of the way the data is processed.

7.2.3 Results of the Graph-based Segmentation Methods

The segmentation results of NCutSeg on gray value images are shown in Figures 7.3 and 7.4; of
KrusSeg in Figures 7.5 and 7.6; of BorůSeg (MIS) in Figures 7.7 and 7.8; of BorůSeg (MIES)
in Figures 7.9 and 7.10 and of BorůSeg (D3P) in Figures 7.11 and 7.12. Note that NCutSeg

4|CC| cardinality of the connected component.

133

7. Evaluation of Segmentation Methods

(a) (b)

#35

#2

k = 300, σ = 1.5 k = 30000, σ = 1.5.

Figure 7.5: Segmentation produced by KrusSeg.

and BorůSeg methods are capable of producing a hierarchy of images, whereas KrusSeg gives
a final segmentation.

These methods use only local contrast based on pixel intensity values. As it is expected, and
can be seen from the Figures 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 7.10, and 7.11, 7.12, segmentation
methods which are based only on low-level local cues cannot create segmentation results as
good as humans. Even thought it looks like, the NCutSeg method produces more regions,
actually the overall number of regions in Figure 7.3a, 7.4a and Figures 7.7b, 7.8b 7.9b, 7.10b
7.11b, 7.12b are almost the same, but the BorůSeg produces a bigger number of small regions.
The BorůSeg method is capable of producing a hierarchy of images, the pyramid shown in
Figures 7.7, 7.8 7.9, 7.10 7.11, 7.12 under (a) represent lower levels of the pyramid, (b) the
middle levels, and (c) the higher levels. We smoothed the images before segmenting them with
the KrusSeg5 method (Gaussian with parameter σ = 1.5), whereas BorůSeg worked with non
smoothed images.

Anyway the methods (see Figures 7.3, 7.5, 7.7 7.9 and 7.11) were capable of segmenting the
face of a man satisfactory (image #35). The BorůSeg method did not merge the statue on the top
of the mountain with the sky (image #17), compared to humans which do segment this statue as
a single region (see Figure 7.2). All methods have problems segmenting the see creatures (image
#12). Note that the segmentation done by humans on the image of rocks (image #18), contains

5The method is very sensitive to noise [Felzenszwalb and Huttenlocher, 2004].

134

7.3 Evaluating Segmentations

(a)

(b)

#17 #12 #18

Figure 7.6: Segmentation produced by KrusSeg, Figure 7.5 cont.

the symmetry of axis, even thought there is no ’big’ change in the local contrast, therefore the
NCutSeg and BorůSeg methods fail in this respect, whereas the KrusSeg manged to recover this
axis. It must be mentioned that none of the methods is ’looking’ for this axis of symmetry.

7.3 Evaluating Segmentations

Evaluation of the segmentation algorithms is difficult because it depends on many factors [Heath
et al., 1997] among them: the segmentation algorithm; the parameters of the algorithm ; the
type(s) of images used in the evaluation; the method for evaluation of the segmentation algo-
rithms, etc. Our evaluation copes with these facts: (i) real world images should be used, because
it is difficult to extrapolate conclusion based on synthetic images to real images [Zhou et al.,
1989], and (ii)the human should be the the final evaluator [Cinque et al., 1994].

There are two general methods to evaluate segmentations:

• qualitative, and

• quantitative methods.

Qualitative methods are evaluated by humans, meaning that different observers would give
different opinions about the segmentations (e.g. already encountered in edge detection evalu-
ation [Heath et al., 1997], or in image segmentation [Martin et al., 2001]). On the other hand

135

7. Evaluation of Segmentation Methods

(a) finer (b) (c) coarser

#35

#2

k = 500

Figure 7.7: Hierarchy of segmentation produced by BorůSeg (MIS).

the quantitative methods are classified into analytic methods and empirical methods [Zhang,
1996]. Analytical methods study the principles and properties of the algorithm, like processing
complexity, efficiency and so on. For references on the analytic studies of methods based on
eigenvalue decomposition and on minimum spanning tree please see Chapter 6, Section 6.1.1.
The empirical methods study properties of the segmentations by measuring how ‘good’ a seg-
mentation is close to an ‘ideal’ one, by measuring this ‘goodness’ with some function of pa-
rameters. Both of the approaches depend on the subjects, the first one in coming up with the
reference (perfect) segmentation6 and the second one defining the function. The difference be-
tween the segmented image and the reference (ideal) one can be used to asses the performance
of the algorithm [Zhang, 1996]. The reference image could be a synthetic image or manu-
ally segmented by humans. These discrepancy methods measure the difference between the
segmented image and reference images. Higher value of the discrepancy means bigger error,
signaling poor performance of the segmentation method. In [Zhang, 1996], it is concluded that
evaluation methods based on “mis-segmented pixels should be more powerful that other meth-
ods using other measures”. In [Martin et al., 2001] the error measures used for segmentation
evaluation ‘count’ the mis-segmented pixels.

6Also called a gold standard [Graaf et al., 1994].

136

7.4 Segmentation Benchmarking

(a)

(b)

(c)

#17 #12 #18

Figure 7.8: Hierarchy of segmentation produced by BorůSeg (MIS), Figure 7.7 cont.

7.4 Segmentation Benchmarking

In [Martin et al., 2001] segmentations made by humans are used as a reference and basis for
benchmarking segmentations produced by different methods. The concept behind this, is the
observation, that even though different people produce different segmentations for the same
image, the obtained segmentations differ, mostly, only in the local refinement of certain regions.
This concept has been studied on the human segmentation database (see Figure 7.1 and 7.2)
created and maintained by them [Martin et al., 2001] and used as a basis for defining two error
measures, which do not penalize a segmentation if it is coarser or more refined than another. In
this sense, a pixel error measure E(S1, S2, p), called the local refinement error, is defined as:

E(S1, S2, p) =
|R(S1, p)\R(S2, p)|

|R(S1, p)| (7.4)

137

7. Evaluation of Segmentation Methods

(a) finer (b) (c) coarser

#35

#2

k = 500

Figure 7.9: Hierarchy of segmentation produced by BorůSeg (MIES).

where \ denotes set difference, |x| the cardinality of a set x, and R(S, p) is the set of pixels
corresponding to the region in segmentation S that contains pixel p. Using the local refinement
error E(S1, S2, p) the following error measures are defined [Martin et al., 2001]: the Global
consistency error (GCE), which forces all local refinements to be in the same direction, and is
defined as:

GCE(S1, S2) =
1

|I| min

{∑
p∈I

E(S1, S2, p),
∑
p∈I

E(S2, S1, p)

}
(7.5)

and the Local consistency error (LCE), which allows refinement in different directions in dif-
ferent parts of the image, and is defined as:

LCE(S1, S2) =
1

|I|
∑
p∈I

min {E(S1, S2, p), E(S2, S1, p)} , (7.6)

where |I| is the number of pixels in the image I . Notice that LCE ≤ GCE for any two segmen-
tations. GCE is tougher measure than LCE, because GCE tolerates simple refinements, while
LCE tolerates mutual refinement as well.

We have used the GCE and LCE measures presented above to do a evaluation of the BorůSeg
method using the human segmented images, from the Berkley humans segmented images data-
base [Martin et al., 2001]. The results of comparison of the NCutSeg method versus humans

138

7.4 Segmentation Benchmarking

(a)

(b)

(c)

#17 #12 #18

Figure 7.10: Hierarchy of segmentation produced by BorůSeg (MIES), Figure 7.9 cont.

and humans versus humans are confirmed [Martin et al., 2001]. The segmentations of BorůSeg
method are compared with KrusSeg as well, in order to show that these method do not produce
the same segmentation results.

7.4.1 Evaluation of Segmentations on Berkley Image Database

As mentioned in [Martin et al., 2001] a segmentation consisting of a single region and a seg-
mentation where each pixel is a region, is the coarsest and finest possible of any segmentation.
In this sense, the LCE and GCE measures should not be used when the number of regions in
the two segmentation differs a lot. In this line of ideas, taking into consideration that methods
can produce segmentations with different number of regions, we have taken for each image as
a region count reference number, the average number of regions from the human segmentations
available for that image. We instructed the NCutSeg to produce the same number of regions

139

7. Evaluation of Segmentation Methods

(a) finer (b) (c) coarser

#35

#2

k = 500

Figure 7.11: Hierarchy of segmentation produced by BorůSeg (D3P).

and for the BorůSeg we have taken the level of the pyramid that has the region number clos-
est to the same region count reference number. The input images to the KrusSeg method have
been smoothed with a Gaussian filter (e.g. σ = 1.5), as recommended by [Felzenszwalb and
Huttenlocher, 2004]. Because the KrusSeg still produced much more regions than the human
segmentations in the database have, a direct evaluation of the KrusSeg versus the humans would
have been unfair, because of different number of regions in segmenations. So, taking into con-
sideration that the BorůSeg produces a whole hierarchy of segmentations with different number
of regions (from coarser to finer), when evaluating the KrusSeg method, we have selected for
the evaluation a levels of the pyramid that has the number of regions closest to the number of
regions produced by the KrusSeg method. In all the cases this meant going lower in the pyra-
mid and taking a level which is basically a refinement of the one used when comparing to the
humans.

As data for the experiments, we take 100 gray level images from the Berkley Image Data-
base7. The names of these images are given in Appendix D. For segmentation, we have used
the normalized cuts Matlab implementation, version 7, available on the Internet8 and for the
BorůSeg and KrusSeg we have implementations based on combinatorial pyramids [Haxhimusa
et al., 2005a].

7http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.
8http://www.cis.upenn.edu/∼jshi/software/.

140

7.4 Segmentation Benchmarking

(a)

(b)

(c)

#17 #12 #18

Figure 7.12: Hierarchy of segmentation produced by BorůSeg (D3P), Figure 7.11 cont.

For each of the images in the test, we have calculated the GCE and LCE using the results
produced by the three methods and all the human segmentations available for that image. Hav-
ing more then one pair of GCE and LCE for the methods NCutSeg and BorůSeg and each image,
we have calculated the mean and the standard deviation. The results can be seen in Figure 7.13,
7.14, 7.15, 7.16 , and 7.17 (where the point stands for the mean, and the interval for the stan-
dard deviation). You can notice that there is a big similarity between the values of GCE and
LCE for NCutSeg and BorůSeg methods for some images. One can note from the results of
the GCE and LCE in Figure 7.13 made by humans, for the same image, that the humans did
very good and proved to be consistent when segmenting the same image, and that the NCutSeg
and BorůSeg produces segmentations that obtained higher values for the GCE and LCE error
measures (Figure 7.14, and 7.15, 7.16, 7.17 respectively). The GCE and LCE using the results
produced by the KrusSeg and the corresponding level from the hierarchy produced by BorůSeg,
are calculated. The results are summarized in Figure 7.23.

141

7. Evaluation of Segmentation Methods

Table 7.1: Summary of LCE and GCE discrepancy errors.
Method μ̂LCE μ̂GCE

Humans 0.0592 0.0832
NCutSeg 0.2041 0.2485

MIES 0.2038 0.2784
BorůSeg MIS 0.2000 0.2731

D3P 0.2150 0.3034

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

(a) LCE (b) GCE

Figure 7.13: Error measure results: Human versus Human.

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

(a) LCE (b) GCE

Figure 7.14: Error measure results: NCutSeg versus Human.

142

7.4 Segmentation Benchmarking

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

(a) LCE (b) GCE

Figure 7.15: Error measure results: BorůSeg (MIS) versus Human.

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

(a) LCE (b) GCE

Figure 7.16: Error measure results: BorůSeg (MIES) versus Human.

In Fig. 7.18, 7.19, 7.20, 7.21, and 7.22 one can see the histograms of the GCE and LCE
values obtained ([0 . . . 1], where zero means no error), Human versus Human, NCutSeg versus
Human, BorůSeg (MIES, MIS, D3P) versus Human, and in Figure 7.24 BorůSeg (MIES) versus
KrusSeg. In these image μ̂ represent the mean value of the error. Notice that the humans are
consistent in segmenting the images and the Human versus Human histogram shows a peak
very close to 0. i.e. a small μ̂ = 0.0592 for LCE and μ̂ = 0.0832 for GCE. The NCutSeg and
BorůSeg there is not a significant difference between the values of LCE and GCE (see the mean
values of the respective histograms). One can conclude that the quality of segmentation of these
methods seen over the whole database is not different. Also, the results of the histograms in
Figure 7.24 show that there is a significant difference (LCE mean μ̂ = 0.3619 and GCE mean
μ̂ = 0.407) between the segmentations produced by the BorůSeg and KrusSeg methods. One

143

7. Evaluation of Segmentation Methods

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

(a) LCE (b) GCE

Figure 7.17: Error measure results: BorůSeg (D3P) versus Human.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

100

160

μ̂LCE = 0.0592

error
0 0.2 0.4 0.6 0.8 1

0

20

40

60

100

160

μ̂GCE = 0.0832

error
(a) LCE (b) GCE

Figure 7.18: Histograms of discrepancy measure: Human versus Human.

can note that these method produce different segmentation results, as well. In Table 7.1 the
histogram mean values of LCE and GCE error are summarized. Note that different decimation
strategies have similar error values, indicating that the segmentation results does not depend on
the chosen decimation strategy.

In order to analyse how produced region sizes vary from one method to the other and how
this variation depends on the content of the segmented images, we have normalized the size of
each region by dividing it to the size of the segmented image it belonged to (number of pixels),
and for each segmentation, we have calculated the standard deviation (σS) of the normalized
region sizes. For the case of human segmented images, we have done separately the calculation
for each segmentation and taken the mean of the results for the segmentations of the same
image. Figure 7.25a shows the resulting σS for 70 images (a clear majority for which the σS

144

7.4 Segmentation Benchmarking

0 0.2 0.4 0.6 0.8 1
0

20

40

60

100

160

μ̂LCE = 0.2041

error
0 0.2 0.4 0.6 0.8 1

0

20

40

60

100

160

μ̂GCE = 0.2485

error
(a) LCE (b) GCE

Figure 7.19: Histograms of discrepancy measure: NCutSeg versus Human.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

100

160

μ̂LCE = 0.2000

error
0 0.2 0.4 0.6 0.8 1

0

20

40

60

100

160

μ̂GCE = 0.2731

error
(a) LCE (b) GCE

Figure 7.20: Histograms of discrepancy measure: BorůSeg (MIS) versus Human.

order Humans>BorůSeg>NCutSeg existed). Results are shown sorted by the sum of the 3 σS

for each image. The average region size variation for the whole dataset is: 0.1537-Humans,
0.0392-NCutSeg, and 0.0872-BorůSeg (MIES). Note, that the size variation is smallest and
almost content independent for the NCutSeg and largest for Humans. We also calculated the
variation of regions sizes of different decimation strategies MIS and D3P. The average region
size variation for the whole data set is 0.0893 for BorůSeg (MIS) and 0.1037 for BorůSeg (D3P).
One can produce three plot, one for each decimation strategies MIS, MIES, and D3P. In order
not to overload the figure with too many plots, we show in Figure 7.25b, a solid line representing
the mean region size variation of the three decimation strategies MIES, MIS, and D3P, and the
doted line the standard deviation.

145

7. Evaluation of Segmentation Methods

0 0.2 0.4 0.6 0.8 1
0

20

40

60

100

160

μ̂LCE = 0.2038

error
0 0.2 0.4 0.6 0.8 1

0

20

40

60

100

160

μ̂GCE = 0.2784

error
(a) LCE (b) GCE

Figure 7.21: Histograms of discrepancy measure: BorůSeg (MIES) versus Human.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

100

160

μ̂LCE = 0.2150

error
0 0.2 0.4 0.6 0.8 1

0

20

40

60

100

160

μ̂GCE = 0.3034

error
(a) LCE (b) GCE

Figure 7.22: Histograms of discrepancy measure: BorůSeg (D3P) versus Human.

7.5 Conclusion
In this chapter we have evaluated segmentation results of three graph-based methods; the well
known method based on the normalized cuts (NCutSeg) and two methods based on the minimal
spanning tree principle (BorůSeg and KrusSeg). The NCutSeg method and the BorůSeg are
compared with human segmentations. The BorůSeg is compared to KrusSeg. The evaluation
is done by using discrepancy measures, that do not penalize segmentations that are coarser or
more refined in certain regions. We used only gray images to evaluate the quality of results on
one feature. In Figure 7.18, 7.19, 7.20, 7.21, and 7.22 you can see the histograms of the GCE
and LCE values obtained, Human versus Human, NCutSeg versus Humans, and BorůSeg versus
Human. The NCutSeg and BorůSeg segmentation methods have not proved to be as efficient

146

7.5 Conclusion

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

1 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

number of images

error

(a) LCE (b) GCE

Figure 7.23: Error measure results: BorůSeg versus KrusSeg.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

100

160

μ̂LCE = 0.3619

error
0 0.2 0.4 0.6 0.8 1

0

20

40

60

100

160

μ̂GCE = 0.4070

error
(a) LCE (b) GCE

Figure 7.24: Histograms of discrepancy measure: BorůSeg versus KrusSeg.

as the humans, but one can see that, for both the error measure results are concentrated in the
lower half of the output domain and that the mean of the GCE measure, which is stronger than
LCE, is for both around the value of 0.2. We have observed that the results produced by the
BorůSeg versus KrusSeg methods have shown a considerable difference. Moreover different
decimation strategies used in BorůSeg have shown same error results. One can say that for
image segmentation choosing any of the decimation strategies will produce satisfiable results.
This evaluation can be used to find classes of images for which the algorithms have segmenta-
tion problems. We plan to use in a larger image database in order to to confirm the quality of
the obtained results, and do the evaluation with additional low level cues (color and texture) as
well as different statistical measures.

147

7. Evaluation of Segmentation Methods

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

Human
NCutSeg
BorůSeg (MIES)

variation

images (variation sum)
0 10 20 30 40 50 60 70

0

0.1

0.2

0.3

0.4

0.5

variation

images (variation sum)

μ

σ

(a) region size variation (b) μ(MIES+MIS+D3P), and
σ(MIES+MIS+D3P)
of region size variation

Figure 7.25: Variation of region sizes σS .

148

CHAPTER 8

Epilogue

” It is actually impossible in theory to determine exactly what the hidden mecha-
nism is without opening the box, since there are many different mechanism with
identical behavior. Quite apart from this, analysis is more difficult than invention
in the sense in which, generally, induction takes more time to perform than deduc-
tion: in induction one has to search for the way, whereas in deduction one follows
a straightforward path. ”

“Vehicles - Experiments in Synthetic Psychology” by Valentino Braitenberg.

8.1 Conclusion

The main goal of many approaches in computer vision is to make machines to see. Delin-
eating, detecting and recognizing objects in complex scenes using computers is complex and
time consuming process. One way to deal with a complex and time consuming processes is
to reduce input data without loosing important information, through abstraction. Hierarchical
organization are very well suited to cope with complex and time consuming processes, since
they facilitate data abstraction. Hierarchical structures allow the transformation of local into a
global information. The main advantage of regular hierarchical structures is rapid computation
of global information in a recursive way, because of their fixed height, i.e. logarithmic height.
The regular pyramid lack shift invariance and do not preserve connectivity of objects, because
of the fixed vertical structure. These drawbacks made regular pyramid to be rejected as gen-
eral segmentation methods. To cope with these drawbacks, the vertical structure of pyramids
should be adapted on input data. This implies, that the irregular pyramids loose the good prop-
erty of rapid computation since they do not have logarithmic height. In this thesis we show

149

8. Epilogue

that it is possible to bound irregular pyramid, i.e. the irregular pyramids are logarithmically
tapered. We introduce two new iteratively local method for selecting contraction kernels, the
maximal independent edge set (MIES) and maximal independent directed edge set (MIDES).
We experimentally show that:

• the stochastic decimation method (MIS) and data driven decimation process (D3P) do
not lead to logarithmic tapering graph pyramids, as opposed to our methods (MIES, and
MIDES).

We introduce also an efficient image partition method into this irregular graph pyramid.
This method is based on minimum spanning tree principle and thus is time efficient. Even
thought this method makes greedy decision during merging process it is able to capture impor-
tant perceptually groupings. In fact the method is able to handle regions with high variability of
intensity e.g. bush, hair etc. as well as regions with low intensity variability, e.g. grass, house
etc. We evaluate the quality of segmentation results of MIES, MIS and D3P versions of this
method with respect to humans and to other graph-based methods. The evaluation shows that

• in image segmentation different stochastic decimations used in MST image partitioning
method produce comparable results.

The evaluation shows that different flavors (MIES, MIS, and D3P) of this method are compa-
rable to each other as well as to other graph-based methods. It is shown that the quality of the
segmentation result of none of the methods is significantly better.

8.2 Contribution and Evaluations

The work in this thesis concentrated mostly in hierarchical representation called irregular graph
pyramid. We have studied in details many aspects of the irregular graph pyramid. This resulted
into new insights and algorithms. Main contributions of this work are:

• Maximal independent vertex set method (MIS) does not guarantee a logarithmic tapered
pyramid,

• Two new iteratively local method for selecting contraction kernels lead to logarithmic
tapered pyramid:

– Maximal independent edge set (MIES), and

– Maximal independent directed edge set (MIDES),

• Comparison of different selection methods (MIS, MIES, MIDES, and D3P),

• Novel efficient hierarchical image partitioning method based on Borůvka’s minimum
spanning tree,

– different version of this algorithm by using different selection methods: MIES, MIS,
and D3P.

• Evaluation of different graph-based segmentation method with respect to humans

– Kruskal’s and Borůvka’s (using MIES, MIS and D3P) minimum spanning tree,

150

8.3 Outlook

– different stochastic decimation method produce comparable segmentation results.

Some topics have not been studied in detail, thus some points for further research are:

• Comparison of the decimation methods (MIS, MIES, MIDES, and D3P) with the decima-
tion method based on Hopfield neural network [Bischof, 1995],

– evaluation of the segmentation of Hopfield neural network decimation method.

• Comparison with other pyramid methods [Jolion and Montanvert, 1992, Brun and Kropatsch,
2003a]

• Single segmentation by selecting vertices on different levels of the pyramid like in [Lal-
lich et al., 2003],

• Theoretical investigation of the similarity of the minimum spanning tree segmentation
method and watersheds,

• Non-parametric hierarchical image partition method by using as input an over-segmentation
(e.g. watershed segmentation),

• Using different minimum spanning tree algorithms for segmentations (e.g. randomized
method [Karger et al., 1995] and using consensus vision [Cho and Meer, 1997] to produce
more robust hierarchical image partitioning),

• Theoretical investigation of graph vector spaces and dual graph contraction on higher
dimension.

These are many other things that can be envisioned to enhance the proposed algorithms. One
long term topic is however of great interest: the graph matching problem. In the section below
some ideas on this topic are discussed.

8.3 Outlook

Many approaches in computer vision problems like segmentation, tracking and stereo vision
do not take structure into consideration. It is to expect that structure would be very useful in
these problems. For example in tracking, finding object correspondences in image sequences
is not a trivial problem. While in many computer vision applications the tasks segmentation,
object detection and tracking are often solved stepwise, the idea is to determine a structure
within the observed scene that is tracked over time. The structure is represented e.g. in a graph
or more generally graph pyramid representation of the segmented image and correspondence
between frames (not necessary subsequent) can be found for example by graph matching (see
Figure 8.1).

In general a (sub) graph matching problem is NP-complete. A detailed overview on this
topic can be found in [Bunke, 2000]. The classical algorithm for graph and subgraph iso-
morphism detection is the one by Ullman [Ullmann, 1976]. Methods for error-tolerant graph
matching based on the A∗ search procedure are studied in [Sanfeliu and Fu, 1983]. These
methods incorporate various heuristics and look-ahead techniques in order to prune the search
space. All of these methods guarantee to find the optimal solution, unfortunately with expo-
nential time and space computational cost, because of the NP-completeness of the problem. It

151

8. Epilogue

t

t + 1

t + 2

t t + 1 t + 2

(a) Image Sequence (b) Graph pyramid representation

Figure 8.1: Representation of 2D image structure as graph pyramid in an image sequence.

is possible to find a solution in polynomial time by using sub-optimal (approximate) methods.
A wide range of algorithms are used for solving this sub-optimal matching problem, like prob-
abilistic relaxation [Kittler et al., 1993]; or continuous optimization methods: Hopfield neural
networks [Feng et al., 1994] and Kohonen maps [Xu and Oja, 1990]; genetic search [Wang
et al., 1997]; or Tabu search [Williams et al., 1999]. All of these methods are based on a heuris-
tic optimization function and therefore can easily end in local minima. Alternative approaches
are based on eigenvalue decomposition [Umeyama, 1998], linear programming [Almohamed,
1993] or specialized work in matching trees in terms of maximum cliques [Pelillo et al., 1999].
However, due to their complexity, these algorithms cannot be used for graphs having very large
sets of vertices (> 1000). An approach to approximate the solution of graph matching is to
work on the data, by reducing the number of vertices on graphs, for example by graph reduc-
tion strategies. One such strategy is the irregular graph pyramid (as shown in this thesis). The
advantage of using a graph pyramid is that it would allow grouping of structures and hence
simplify graph matching. Higher levels of the pyramid, containing fewer vertices, can be effi-
ciently matched. This matching can then be used to guide the matching of lower levels of the
pyramid. In [Pailloncy et al., 1998, Pelillo et al., 1999, Glantz et al., 2004] graph hierarchies
of graphs are used to solve the matching problem in a coarse to fine strategy. Moreover, the
graph representation allows the detection and correction of over- and under-segmentation and
therefore leads to a new representation of the scene structure.

The first step in structural approach is the representation of the image as a graph (as shown
in Chapter 4 or combinatorial map [Brun and Kropatsch, 2001b]). The most common way of
doing this is to first segment the image (e.g. by the method presented in Chapter 6 or wa-
tersheds [Tremeau and Colantoni, 2000]) and build a region adjacency graph (or graph pyra-
mid). An alternative approach is to extract significant features (like SWIFT [Lowe, 2004] or
MSER [Matas et al., 2002]) from the image and represent their characteristics and spatial dis-
tribution as a graph. A problem is, however, determining spatial relationships between these
features which lead to a useful set of edges connecting the vertices. With a segmentation shown
in Chapter 6, these relationships are available based on the neighborhood relationships of the

152

8.3 Outlook

resulting regions.
The fact that we have motion information can already be used at this early stage to improve

the segmentation. Combination of motion measurement with image segmentation can result
in better analysis of motion. The knowledge of spatial partition can improve the reliability
of motion-based segmentation [Gelgon and Bouthemy, 1999]. Temporal tracking of a spatial
partition of an image, from the motion-based segmentation, is easily done than if spatial regions
are tracked individually [Gelgon and Bouthemy, 1999]. Sequences can be segmented using
spatial information and motion cues.

Using matching of graphs of two successive frames allows objects of interest to be followed
along the sequence. Graph matching avoids the costly motion estimation and compensation,
and moreover the graph representation permits objects (vertices) which are not visible any-
more in the scene to be retained in memory and to be recognized correctly when they reappear.
Unfortunately, there is no one-to-one mapping between vertices; if both partitions belong to a
sequence, moving objects change their structures or even the global number of vertices due to
temporal occlusion. Thus, some question must be answered to overcome drawbacks of already
existing methods:

• How can an update of the scene representation (object model) be accomplished?

• Are the existing segmentation and graph matching methods under the assumption of struc-
tural search fast enough to allow real time performance?

• What kind of influences have to be considered in case of drastic scene changes (i.e. object
changes, illumination changes etc.)?

• How can coarse-to-fine approaches be realized (e.g. using under-segmentations)?

It is possible to extend this idea to track higher level, such as faces and their relations, by
creating graphs with vertices representing these features. These graph could be created by lower
lying graphs and information from images, yielding to the concept of a ‘pyramid of graphs’.

The information representation embodied by the graphs can be used to find correspondences
between subsequent images in a sequence and thereby to track objects. This should allow an
integration of the segmentation into the tracking process, a problem which is not solved yet.
The use of graphs in this task is a promising approach. This would mean also finding answers
to graph matching problem.

153

8. Epilogue

Copyright Acknowledgment

Part of results shown in Chapter 5 are previously published in the German Pattern Recognition
Symposium (DAGM) [Haxhimusa et al., 2002] and in the International Workshop on Graph-
based Representations in Pattern Recognition [Haxhimusa et al., 2003]. This results are com-
piled in the journal publication for Pattern Recognition Letters [Kropatsch et al., 2005].

Some of results in Chapter 6 and Chapter 7 are published in the German Pattern Recognition
Symposium [Haxhimusa and Kropatsch, 2003], in the International Workshop on Syntactical
and Structural Pattern Recognition and Statistical Pattern Recognition (SSPR and SPR) [Hax-
himusa and Kropatsch, 2004], in the IS&T/SPIE Annual Symposium Computational Imagin-
ing [Kropatsch and Haxhimusa, 2004], in the Joint Hungarian-Austrian Conference on Image
Processing and Pattern Recognition [Haxhimusa et al., 2005a], in the International Conference
on Computer Analysis of Images and Patterns [Haxhimusa et al., 2005b], in the International
Conference on Pattern Recognition [Haxhimusa et al., 2006a] and in the Iberoamerican Sym-
posium on Pattern Recognition [Haxhimusa et al., 2006b].

All rights are acknowledged.

154

APPENDIX A

Vector Spaces

Summary In this appendix some basics concepts from algebra, namely the group and the filed concept
are recalled. These concepts will help in defining a vector space on a graph in Chapter 4.
With the help of the vector space on graphs the prove of existence of the dual graph of an
planar one is strait forward.

A.1 Groups and Fields

A set K with a defined binary operation of addition⊕, is a group if these conditions are satisfied:

1. X is closed under ⊕, i.e.
∀x, y ∈ X, x⊕ y ∈ X,

2. the addition operation ⊕ is associative, i.e

∀x, y, z ∈ X, (x⊕ y)⊕ z = x⊕ (y ⊕ z),

3. ∃eX⊕ ∈ X , called identity1 element under addition, if

∀x ∈ X,x⊕ eX⊕ = eX⊕ ⊕ x = x,

4. ∃iX⊕ ∈ X , called inverse element of x under addition, if

∀x ∈ X, x⊕ iX⊕ = iX⊕ ⊕ x = eX⊕ , iX⊕.

A group X is called abelian if it also fulfills:

5. the addition operation ⊕ is commutative, i.e.

∀x, y ∈ X, x⊕ y = y ⊕ x.

An important group when studying graphs is the set Zp = {0, 1, . . . , p− 1} of integers with
modulo p addition operation, i.e. x = y(modulo p) if x = m ∗ p + y for m ∈ I and y ∈ Zp. It
can be shown easily that this set is an abelian group.

A set K with defined binary operation of addition ⊕ and of multiplication �, is a field if
these conditions hold:

1Called also neutral element.

155

A. Vector Spaces

Table A.1: Modulo 2 operations of addition and multiplication.
⊕

0 ⊕ 0 = 0
0 ⊕ 1 = 1
1 ⊕ 0 = 1
1 ⊕ 1 = 0

�
0 � 0 = 0
0 � 1 = 0
1 � 0 = 0
1 � 1 = 1

i. the set K is an abelian group under ⊕, with the identity element eK⊕ ,

ii. the set K − {eK⊕} is an abelian group under �,

iii. the multiplication operation is distributive with respect to addition operation, i.e.

∀x, y, z ∈ K, x� (y ⊕ z) = (x⊕ y)� (x⊕ z).

The set Zp = {0, 1, . . . , p− 1} under the addition (modulo p) is an abeilan group, with 0 as
identity element. Set Zp − {0} is also an abelian group under multiplication (modulo p), if p is
a prime. The distributive law is proved simply, therefore Zp is a field iff p is prime. This kind
of fields are called Galois field and are denoted by Fp.

A field that is used to create vector space on graph is the F2 = {0, 1}, the set of integers
modulo 2, on which the modulo 2 addition and modulo 2 multiplication operation are defined
as given in Table A.12.

A.2 Vector Space

Having the definition of the field, the vector space can now be defined. A set H over the field
K, with (vector) addition � and a (scalar) multiplicative operation �, such that

∀a ∈ K and ∀x ∈ H, then a � x ∈ H, i.e. K ×H → H,

is called a vector space3 over the field K if the following axioms are satisfied ∀a, b ∈ K and
∀x, y ∈ H:

I. H is abelian group under �,

II. the scalar multiplication � is distributive over vector addition � that is

a � (x � y) = (a � x) � (a � y),

III. the scalar multiplication � is distributive over scalar addition ⊕ i.e.

(a⊕ b) � x = (a � x) � (b � x),

2The table resembles the XOR and AND function, respectively.
3The elements of H are called vectors, and of K are called scalars, respectively.

156

A.2 Vector Space

IV. scalar multiplication � is associative, that is

(a� b) � x = a � (b � x), and

V. ∀x ∈ H , eK� � x = x, where eK� is the multiplicative identity in K.

In order to define a vector space H over the field K, one has to define vector addition and scalar
multiplication in H and to fulfill the five axioms above.

An important case of vector spaces is the set of all n-vectors over the field K, such that each
vector x = (a1, a2, . . . , an) of this vector space is a vector with n elements ai from the field K.
Let ⊕ and � be the addition and multiplication and eK⊕ and eK� additive and multiplicative
identities in K. Let this vector space be R, and let vector addition � and scalar multiplication
� be defined as:

1. ∀ x = (a1, a2, . . . , an) and y = (b1, b2, . . . , bn) ∈ R

x � y = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn), (A.1)

2. ∀a ∈ K
a � x = (a� a1, a� a2, . . . , a� an). (A.2)

In order to show that R is vectors space over K, one has to prove that R is abelian group under
�. Since K is a field then it is closed under⊕ and by the definition of �, R is closed also under
� as well (axiom 1). The ⊕ operation is associative, hence for all x = (a1, a2, . . . , an), y =
(b1, b2, . . . , bn), and z = (c1, c2, . . . , cn) ∈ R:

(x � y) � z = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn) � z =
= ((a1 ⊕ b1)⊕ c1, (a2 ⊕ b2)⊕ c2, . . . , (an ⊕ bn)⊕ cn) =
= (a1 ⊕ (b1 ⊕ c1), a2 ⊕ (b2 ⊕ c2), . . . , an ⊕ (bn ⊕ cn)) =
= (a1 ⊕ (b1 ⊕ c1), a2 ⊕ (b2 ⊕ c2), . . . , an ⊕ (bn ⊕ cn)) =
= x � (b1 ⊕ c1, b2 ⊕ c2, . . . , bn ⊕ cn) =
= x � (y � z),

So the � is also associative (axiom 2). Let eR� be the identity vector under �. Since there
exists identity element eK⊕ ∈ K for the addition,

x � eR� = x =
= (a1, a2, . . . , an) =
= (a1 ⊕ eK⊕ , a2 ⊕ eK⊕ , . . . , an ⊕ eK⊕) =
= (a1, a2, . . . , an) � (eK⊕ , eK⊕ , . . . , eK⊕)1×n =
= x � (eK⊕ , eK⊕ , . . . , eK⊕)1×n.

Hence the identity vector eR� = (eK⊕, eK⊕ , . . . , eK⊕)1×n. By the same procedure one proves
also that eR� � x = x. So it is proved that there exists an identity vector for � (axiom 3). There
is an inverse element iK⊕ of the element a ∈ K under ⊕ then it can be written:

(eK⊕ , eK⊕ , . . . , eK⊕)1×n = (a1 ⊕ iK⊕1, a2 ⊕ iK⊕2, . . . , an ⊕ iK⊕n) =
= (iK⊕1 ⊕ a1, iK⊕2 ⊕ a2, . . . , iK⊕n ⊕ an).

157

A. Vector Spaces

If inverse vector is written as iR� = (iK⊕1, iK⊕2, . . . , iK⊕n) then it holds

eR� = x � iR� = iR� � x,

with which the axiom 4 is proved. Finally, since ⊕ is commutative than

x � y = (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn) =
= (b1 ⊕ a1, b2 ⊕ a2, . . . , bn ⊕ an) =
= y � x.

All five axioms are proved, therefore R is abelian group, and fulfills the axiom I of being a
vector space. Let x, y, z ∈ R and a, b ∈ K. From the definition of scalar multiplication and
vector addition follows:

a � (x � y) = a � (a1 ⊕ b1, a2 ⊕ b2, . . . , an ⊕ bn) =
= (a� (a1 ⊕ b1), a� (a2 ⊕ b2), . . . , a� (an ⊕ bn)) =

and since K is a field then � is distributive over ⊕, hence

= ((a� a1)⊕ (a� b1), (a� a2)⊕ (a� b2), . . . , (a� an)⊕ (a� bn)) =
= (a� a1, a� a2, . . . , a� an)⊕ (a� b1, a� b2, . . . , a� bn) =
= (a � x) � (a � y).

Therefore the axiom II of vector space is satisfied. Also based on same conditions the axiom III
is proved:

(a⊕ b) � x = ((a⊕ b)� a1, (a⊕ b)� a2, . . . , (a⊕ b)� an) =
= ((a� a1)⊕ (b� a1), (a� a2)⊕ (b� a2), . . . , (a� an)⊕ (b� an)) =
= (a� a1, a� a2, . . . , a� an) � (b� a1, b� a2, . . . , b� an) =
= (a � x) � (b � x).

It follows the prove for the axiom IV:

(a� b) � x = ((a� b)� a1, (a� b)� a2, . . . , (a� b)� an) =
= (a� (b� a1), (a� (b� a2), . . . , a� (b� an) =
= a � (b� a1, b� a2, . . . b� an) =
= a � (b � x).

and for a scalar eK� as the multiplicative identity in K the prove for the axiom V is:

eK� � x = (eK� � a1, eK� � a2, . . . eK� � an) =
= (a1, a2, . . . an) =
= x.

It is proved that all 5 needed axioms for a vector space are satisfied, therefore the set R is vector
space over the field K.

Next, some important properties of vector space are listed. Let a set R be a vector space
over the field K of scalars, with vector addition � and scalar multiplication � defined. If a
vector x ∈ R can be expressed as

x = (a1 � x1) � (a1 � x1) � . . . � (an � xn),

158

A.2 Vector Space

where x1, x2, . . . , xn are vectors in R and a1, a2, . . . , an scalars in K, than the vector x is a
linear combination of vectors x1, x2, . . . , xn. A set of vectors are linearly independent if no
vector from this set can be stated as a linear combination of the others. If the set of vectors say
B = {x1, x2, . . . , xm} from R are linearly independent and every vector xi ∈ R ∧ xi /∈ B,∀i
can be specified as the linear combination of the vectors from I , then B is a basis of the vector
space and the vectors x1, x2, . . . , xm are the basis vectors. The number of basis vectors is the
dimension of the vector space R. Finally,

Proposition A.1 A set S of vectors from the vector space R over the field K is a vector sub-
space if ∀ s1, s2 ∈ S and ∀ a ∈ K the following condition are satisfied:

1. s1 � s2 ∈ S,

2. a � y ∈ S, and

3. S �= ∅.
Proof: One has to prove that S satisfies the axioms of the vector space. From the condition 1
and 2 the set S is closed under vector addition and scalar multiplication. There exist an additive
identity eK⊕ and additive inverse iK⊕ in K, such that for every s ∈ S, eK⊕ � s = eS� ∈ S and
iK⊕ � s = iS� (using condition 2), where eS� is the vector additive identity and iS� is the vector
additive inverse, respectively. Therefore for S to be a subspace it must contain eS� (zero vector)
and consequently S is never empty. Since elements of S are also elements of vector space R,
other axioms of vector space are satisfied as well. Hence, it is proved that S is a vector subspace
over the field K. �

Finally, the introduction of the dot product between two n-vectors is given. Let x1 =
(a1, a2, . . . , am) and x2 = (b1, b2, . . . , bm) in R over the field K be the two n-vectors, the
dot product is specified as:

〈x1, x2〉 = a1 � b1 ⊕ a2 � b2 + · · ·+ am � bm.

If 〈x1, x2〉 = eK⊕ , where eK⊕ is the additive identity in K, it is said that x1 and x2 are orthogonal
to each other.

Let a simple example clarify the vector space concept. Let R = {(0, 0), (0, 1), (1, 1)} be the
vector space of all 2-vectors over the field F2 = 0, 1, and let the addition � and multiplication
� be defined as given in Equations A.1 and Equations A.2 and scalar addition ⊕ and scalar
multiplication⊕ as in Table A.1. For example vector (0, 0) and (1, 1) can be expressed as linear
combination of (0, 1) and (1, 0)

(0, 0) = (0 � (0, 1)) � (0 � (0, 1)), and (1, 1) = (1 � (0, 1)) � (1 � (0, 1).

Vectors (0, 1) and (1, 0) are linearly independent and form the basis of R. It was shown above
that the rest of the vectors can be stated as the linear combination of these two vectors. Vector
space R has 2 dimensions. The set S = {(0, 0), (0, 1), (1, 1)} and S ′ = {(0, 0), (0, 1)} form
subspaces of R, of dimensionality 2, respectively 1. Vectors (0, 1) and (1, 0) are orthogonal
since 〈(0, 1), (1, 0)〉 = 1�0⊕0�1 = 0 (see Table A.1). Note that basis vectors are orthogonal.

The notions introduced in this appendix are used in Chapter 2, Section 2.7 in order to create
a vector space on graphs over the field F2, which in turn will be helpful in defining a very
important notion of dual graphs in Chapter 4, Section 4.2.

159

APPENDIX B

A Procedure for Constructing Dual Graphs

Summary In this appendix a procedure to construct a dual graph from a plane graph is described.

B.1 Constructing the Dual Graph of a Plane Graph

Let a plane graph G with vertex set V and edge set E be given. Let the elements of vertex set be
denoted by v1, v2, . . . , vm and of edge set by e1, e2, . . . , en. Since the graph G is a plane graph
it is embedded in a plane (or a sphere), it separates the plane into regions. Let this regions be
depicted with f1, f2, . . . , fr, and called faces. Note that there is one unbounded region (with
infinite area), which will be called the background. Construction a dual graph G of G is as
follows:

Algorithm 15 – Dual Graph Construction
Input: Plane graph G(V,E).
Output: Dual graph G = (V ,E).

1: Make a vertex v in G for each face fi, i = 1, . . . , k.
2: Place vertices vi arbitrarily in each face of G.
3: If an edge in G is common to two faces fi and fj (not necessarily distinct) then draw a

line (or any arbitrary curve) connecting the vertices vi and vj , so that it crosses the edge
e = (vi, vj). This line depicts the edge e = (vi, vj) of G.

The number of edges in the dual graph G is the same as in G, since edges cross each other
in these two graphs. Note also that an edge in e ∈ G is boundary to at most two faces, and it is
possible that an edge lays in one face as well, in this case the dual edge will be a self loop.

Figure B.1 is an illustration of the algorithm above. Not to overload the image by depicting
all the elements, only some elements of G and G are denoted, just to clarify the steps in the algo-
rithm. The vertices and edges of the graph G are drawn with circles and solid lines, respectively;
whereas vertices and edges of the dual graph G with square and dotted lines, respectively.

For example in the faces fi, fj and fk vertices vi, vj and vk of the dual graph G is placed
arbitrarily (step 2 of the algorithm). The edge e = (vi, vj) is a boundary between faces fi and

161

B. A Procedure for Constructing Dual Graphs

G = (V, E)

G = (F, E)
e

e

vi

vj fj

vi

vj

ep

ep
vk

fk

fi

Figure B.1: A plane graph G and it dual G.

fj , therefore an edge e is drawn between vi and vj , such that it crosses the edge e (the edge
cross is shadowed). The edge eP is a pedant edge and lay in the face fj therefore its dual edge
ep is e self loop. Note that the deg(v) is equal to the number of edges that bound its face. If a
face is bounded by only two edges, i.e. by parallel edges the dual vertex has the degree 2.

Some notes about the notations. Since there is a one to one correspondence between the
faces f of the graph G and the vertices in the dual graph v ∈ G, these vertices are not explicitly
differentiated from the faces f , if not otherwise stated, therefore the notation f is used some-
times to denote the vertices v of the dual graph of G, and the set F of the all the faces f of G
represents the set V . So the notation G = (V ,E) is sometimes written as G = (F,E).

162

APPENDIX C

Data Structures Representing Graphs

Summary Two standard data structures for representing graphs: the adjacency lists and the adjacency
matrix are shown. The memory requirements for storing the adjacency lists representing a
graph, as well as dual graphs is Θ(V + E).

C.1 Representation of Graphs

Generally there are two standard data structures representing a graph G = (V,E): an adjacency
matrix and a collection of adjacency lists [Cormen et al., 2001]. The adjacency matrix is usually
used for graphs with number of edges |E| ≈ |V |2, whereas adjacency list for graphs with
number of edges much less than the square of the number of vertices, i.e. |E| ' |V |2.

C.1.1 Adjacency Lists Structures

The adjacency list data structure of G consist of an array AL of |V | lists, that is for each vertex
there is a list. A list AL[v] in this collection contains all the incident vertices w on v, i.e. all
those vertices which are joint by an edge e = (v, w) ∈ E. One can choose to store pointers to
these vertices instead of vertices itself. The order in which these vertices are stored in a list is
usually arbitrary.

This data structure is used to represent directed and undirected multigraphs, and can be
easily modified to represent other graph types. Note that, in directed graphs the sum of length of
all the adjacency list is |E|, whereas for undirected graphs is 2|E|, since for an edge e = (v, w),
vertex v appears in w’s adjacency list and vice versa. The amount of memory used for storing
the adjacency list data structure is Θ(V + E)1, for both directed and undirected graphs. A
disadvantage of adjacency list is that there is no fast way to check if a given edge e = (v, w) is
in a graph, other that to search for w in AL[v]. The usage of a hash table for each array in AL[v]
containing the vertices w will softener the problem of fast access to the edges. More advanced
data structures for the adjacency list are found in [Mehlhorn and Näher, 1999].

Adjacency list data structures can be used to represent weighted graphs as well. Let w(e) =
w(v, w) be a weight of the edge e = (v, w) ∈ E taken from the weight function w : E → R.

1Θ-notation used for asymptoticly tight bound, see [Cormen et al., 2001] for more details. Note that if Θ(f(n))
implies O(f(n)), the asymptotic upper bound.

163

C. Data Structures Representing Graphs

This weight is simply stored in v’s adjacency list. An example of the adjacency list data structure
for an undirected and directed graph is given in Figure C.1a.

There is also another data structures, the incidence list, where the edges are represented as
an array of pairs of vertices (and the other data if necessary).

C.1.2 Adjacency Matrix Structures

Let the vertices of a graph G = (V,E) be numbered in some arbitrary way, say 1, 2, · · · , |V |.
The adjacency matrix is a |V | × |V | matrix AM with elements:

ai,j =

{
1 if (i, j) ∈ E,

0 otherwise.
∀i, j = 1, . . . , |V |

Memory consumption for storing an adjacency matrix of a graph is Θ(V 2), independent of the
number of edges. An example of adjacency matrix is shown in Figure C.1b. Note that for the
undirected graph edge (v, w) is the same as (w, v), therefore the transpose matrix2 AT

M = AM .
Hence, the AM adjacency matrix is symmetric with respect to the main diagonal. So one can
store only the upper (or lower) part of the adjacency matrix together with the diagonal, to reduce
the memory usage.

Adjacency matrix data structures can be used also to represent weighted graphs. Similar to
adjacency lists the weight w(v, w) of the edge e = (v, w) is stored as entry in row v and column
w of the adjacency matrix. If an edge does not exist one puts a 0 or ∞ value. If the graph is
unweighted, this data structures has an advantage in storage, since instead of using a word of
computer memory for each entry, per entries of the matrix one uses only one bit of memory. One
major drawback of the adjacency matrix data structures is that they cannot uniquely represent a
graph with parallel edges and double (or multiple) self-loops.

There are other matrix structures to represent graphs. The incidence matrix IM of size
|E| × |V |, is a matrix with elements:

ii,j =

{
1 if edge i is incident with vertex j,

0 otherwise.
∀i = 1, . . . , |E| and j = 1, . . . , |V |

The memory amount required is Θ(|V ||E|), and depends on the number of edges and vertices.
The Laplace matrix 3, LM is the matrix of size |V | × |V | with elements:

li,j =

⎧⎪⎨⎪⎩
deg(i) if vertex i = j,

−1 if ∃e = (i, j) and i �= j,

0 otherwise.

∀i, j = 1, . . . , |V |

That is LM = DM − AM , where DM is the degree matrix

di,j =

{
deg(i) if vertex i = j,

0 otherwise.
∀i, j = 1, . . . , |V |

The memory requirement for this matrix structure is Θ(V 2). A detailed discussion of Laplace
matrix for graph representation is found in [Chung, 1997].

2Transpose matrix AT = (aT
i,j) of A = (ai,j) is the one with elements aT

i,j = aj,i.
3Called also Kirchhoff matrix.

164

C.2 Representation of Dual Graphs

v1

v2

v3

v4

v5

G1

v1

v2

v3

v4

v5

G2

Undirected graph Directed graph

v1 v2 v3

v2 v5 v4 v1

v3 v4 v1 v5

v4 v2 v5 v3

v5 v5 v3 v2 v4

v1 v2 v3

v2 v4 v5

v3 v2 v5

v4 v3

v5 v4 v5

(a) Adjacency lists

v1 v2 v3 v4 v5

v1 0 1 1 0 0
v2 1 0 0 1 1
v3 1 0 0 1 1
v4 0 1 1 0 1
v5 0 1 1 1 1

v1 v2 v3 v4 v5

v1 0 1 1 0 0
v2 0 0 0 1 1
v3 0 1 0 0 1
v4 0 0 1 0 0
v5 0 0 0 1 1

(b) Adjacency matrix

Figure C.1: Two usual data structures for representing graphs.

C.2 Representation of Dual Graphs

In general, the graphs analyzed in this document are planar multi-graphs with multiple paral-
lel edges and self-loops. Since the number of edges in analyzed graphs is |E| ' |V |2, the
adjacency list is used as the data structure to represent graphs4. This data structure allows to
represent not just graphs with weights on edges but also graphs with weights on vertices as well
and it has a good property that in general the memory requirement is Θ(V + E).

Dual graphs (G,G), are also represented by the adjacency list, with an additional look-up
table. This look-up table relates edges in primary graph G to edges in dual one G. Therefore
the memory consumption for this data structure (taking that Θ(V + E) is needed to store an
adjacency list) is Θ(2(V + E)) for dual graph and Θ(E) for the look-up table i.e. Θ(2(V +
E)) + Θ(E) = Θ(V + E) 5. In case of simple planar graph G = (V,E) with |V | vertices and

4For planar grid graph of size 100 by 100 there are 10000 vertices and approximately 40000 edges, it holds
40000 ' 100002.

5From the properties of Θ(k(f(n, n)) = Θ(f(n, m)),where k is a constant and Θ(f(n, m)) + Θ(g(n, m)) =

165

C. Data Structures Representing Graphs

|E| edges it follows |E| ≤ 3|V | − 6, thus the overall memory requirement is Θ(V). Note that
the dual of a planar graph is also planar. In Chapter 4 a detailed theoretical treatment of dual
graphs is given.

C.3 Representation of Dual Graph Pyramids

A dual graph is defined as a stack of dual graphs (Gk, Gk) for k = 1, . . . , h, where h is the height
of the pyramid. The adjacency lists are used for representing dual graph and a look-up table to
relate vertices of two subsequent levels in the pyramid. The overall memory consumption for
the pyramids with the logarithmic height h = log(|V |) (and a reduction factor of at least 2), is
Θ((V + E)(1 + (1/2) + (1/4) + · · ·+ (1/2h)) for the pyramid itself and Θ(V) for the look-up
table i.e. the overall memory requirement is Θ(V +E) i.e. Θ((V +E)∗ (1+1/2+1/4+ · · ·+
1/ log |V |) + Θ(V) = Θ(2(V + E)) + Θ(V) = Θ(V + E). In case of simple planar graph it
holds |E| ≤ 3|V | − 6 then amount of memory it needs is Θ(V). Note that for a planar graph,
the dual is also planar. In Chapter 4 a detailed theoretical treatment of dual graphs pyramids is
given.

Θ(max(f(n, m), g(n, m))), see [Cormen et al., 2001] for details.

166

APPENDIX D

Names of Images on Berkley Image Database

Summary The file names of images from the Berkley Image Database, and their corresponding num-
bers used in figures in Chapter 7 are given.

D.1 Corresponding Numbers of Images

In the table below the file names of the images from the Berkley Image Database [Martin et al.,
2001] (without file extension), and their corresponding numbers are given. These numbers of
images are depicted in Figures 7.13, 7.14, 7.15, 7.16, 7.17 and 7.23 in Chapter 7, Section 7.4.
Images are found www.cs.berkeley.edu/projects/vision/grouping/segbench/

Table D.1: Image names and their corresponding numbers
Number Name Number Name Number Name Number Name Number Name

1 101085 21 148026 41 21077 61 299086 81 45096
2 101087 22 148089 42 216081 62 300091 82 54082
3 102061 23 156065 43 219090 63 302008 83 55073
4 103070 24 157055 44 220075 64 304034 84 58060
5 105025 25 159008 45 223061 65 304074 85 62096
6 106024 26 160068 46 227092 66 306005 86 65033
7 108005 27 16077 47 229036 67 3096 87 66053
8 108070 28 163085 48 236037 68 33039 88 69015
9 108082 29 167062 49 24077 69 351093 89 69020
10 109053 30 167083 50 241004 70 361010 90 69040
11 119082 31 170057 51 241048 71 37073 91 76053
12 12084 32 175032 52 253027 72 376043 92 78004
13 123074 33 175043 53 253055 73 38082 93 8023
14 126007 34 182053 54 260058 74 38092 94 85048
15 130026 35 189080 55 271035 75 385039 95 86000
16 134035 36 19021 56 285079 76 41033 96 86016
17 14037 37 196073 57 291000 77 41069 97 86068
18 143090 38 197017 58 295087 78 42012 98 87046
19 145086 39 208001 59 296007 79 42049 99 89072
20 147091 40 210088 60 296059 80 43074 100 97033

167

Bibliography

[Ahronovitz et al., 1995] Ahronovitz, E., Aubert, J.-P., and Fiorio., C. (1995). The star-
topology: A topology for image analysis. In Ahronovitz, E. and Fiorio, C., editors, 5th

Discrete Geometry for Computer Imagery, pages 107–116.

[Almohamed, 1993] Almohamed, H. (1993). A linear programming approach for the weighted
graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,
15:522–525.

[Alon et al., 1986] Alon, N., Babai, L., and Itai, A. (1986). A fast and simple randomized par-
allel algorithm for the maximal independent set problem. Journal of Algorithms, 7(4):567–
583.

[Atallah, 1999] Atallah, M. J., editor (1999). Algorithms and Theory of Computational Hand-
book. CRC Press.

[Bartelma, 2004] Bartelma, J. (2004). Flycatcher: Fusion of gaze with hierarchical image seg-
mentation for robust object detection. Master’s thesis, Massachusetts Institute of Technology
Media Laboratory, Cambridge, Massachusetts.

[Bartelma and Roy, 2006] Bartelma, J. and Roy, D. (2006). Flycatcher: Fusion of gaze with
hierarchical image segmentation for robust object detection. In submitted draft.

[Bederson, 1992] Bederson, B. B. (1992). A Miniature Space-variant Active Vision System.
PhD thesis, New York University, Courant Insitute, New York.

[Bertin et al., 1996] Bertin, E., Bischof, H., and Bertolino, P. (1996). Voronoi pyramids con-
trolled by hopfield networks. Computer Vision and Image Understanding, 63(3):462–475.

[Biggs et al., 1976] Biggs, N. L., Lloyd, E. K., and Wilson, R. J. (1976). Graph Theory 1736-
1936. Clarendon Press, Oxford.

[Bischof, 1995] Bischof, H. (1995). Pyramidal Neural Networks. Lawrence Erlbaum Asso-
ciates.

[Bischof and Kropatsch, 1993] Bischof, H. and Kropatsch, W. G. (1993). Hopfield networks
for irregular decimation. In Pölzleitner, W. and Wenger, E., editors, Image Analysis and
Synthesis, volume 68, pages 317–327. OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für
Mustererkennung, R. Oldenburg.

169

Bibliography

[Bister et al., 1990] Bister, M., Cornelis, J., and Rosenfeld, A. (1990). A critical view of pyra-
mid segmentation algorithms. Pattern Recognition Letters, 11(9):605–617.

[Bixby and Cunnigham, 1995] Bixby, R. E. and Cunnigham, W. H. (1995). Matroid optimiza-
tion and algorithms. In Graham, R., Groetschel, M., and Lovazs, L., editors, Handbook of
Combinatroics, pages 551–609. MIT Press, Elsevier Amsterdam.

[Bondy and Murty, 1976] Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Appli-
cations, 5th Ed. Elevier Science Publishing Co. Inc.

[Borowy and Jolion, 1995] Borowy, M. and Jolion, J.-M. (1995). A pyramidal framework for
fast feature detection. In Proceedings of International Workshop on Parellel Image Analysis,
pages 193–202.

[Borůvka, 1926a] Borůvka, O. (1926a). O jistém problému minimálnim (about a certain min-
imal problem). Práce Moravské Přı́rodvědecké Společnosti v Brně (Acta Societ. Scienc.
Natur. Moravicae), 3(3):37–58.

[Borůvka, 1926b] Borůvka, O. (1926b). Přı́spěvek k řešenı́ otázky ekonomickè stavby elektro-
vodnc̀h sı̀tı̀ (contribution to the solution of a problem of economical construction of electrical
networks). Elekrotechnickỳ Obzor, 15:153–154.

[Boykov et al., 1998] Boykov, Y., Veksler, O., and Zabih, R. (1998). Markov random fields
with efficient approximations. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 648–655, USA. IEEE Computer Society. Also as Cornell CS
technical report TR97-1658, December 3, 1997.

[Braquelaire and Brun, 1998] Braquelaire, J.-P. and Brun, L. (1998). Image segmentation with
topological maps and interpixel representation. Journal of Visual Communication and Image
Representation, 9(1):62–79.

[Brun and Kropatsch, 2001a] Brun, L. and Kropatsch, W. G. (2001a). Contraction kernels and
combinatorial maps. In Jolion, J.-M., Kropatsch, W. G., and Vento, M., editors, Proceedings
of IAPR Workshop on Graph-based Representations in Pattern Recognition, pages 12–21.
CUEN.

[Brun and Kropatsch, 2001b] Brun, L. and Kropatsch, W. G. (2001b). Introduction to combi-
natorial pyramids. In Bertrand, G., Imiya, A., and Klette, R., editors, Digital and Image
Geometry, pages 108–128. Springer, Berlin, Heidelberg.

[Brun and Kropatsch, 2003a] Brun, L. and Kropatsch, W. G. (2003a). Construction of com-
binatorial pyramid. In Hancock, E. and Vento, M., editors, 4th IAPR-TC15 Workshop on
Graph-based Representation in Pattern Recognition, volume 2726 of Lecture Notes in Com-
puter Science, pages 1–12, York, UK. Springer, Berlin Heidelberg, New York.

[Brun and Kropatsch, 2003b] Brun, L. and Kropatsch, W. G. (2003b). Contraction kernels and
combinatorial maps. Pattern Recognition Letters, 24(8):1051–1057.

170

Bibliography

[Brun and Kropatsch, 2006] Brun, L. and Kropatsch, W. G. (2006). Contains and inside rela-
tionship within combinatorial pyramids. Pattern Recognition, 39(4):515–526.

[Bunke, 2000] Bunke, H. (2000). Recent developments in graph matching. In Sanfeliu, A.,
Villanueva, J., Vanrell, M., Alquezar, R., Jain, A., and Kittler, J., editors, Proceedings of
the International Conference on Pattern Recognition ICPR2000, volume 2, pages 117–124.
IEEE Computer Society.

[Burge and Kropatsch, 1999] Burge, M. and Kropatsch, W. G. (1999). A minimal line property
preserving representation of line images. Devoted Issue on Image Processing, 62(4):355–
368.

[Burt and Adelson, 1983] Burt, P. J. and Adelson, E. H. (1983). The laplacian pyramid as a
compact image code. IEEE Transactions on Communications, 31(4):532–540.

[Burt et al., 1981] Burt, P. J., Hong, T.-H., and Rosenfeld, A. (1981). Segmentation and es-
timation of image region properties through cooperative hierarchical computation. IEEE
Transactions on Systems, Man, and Cybernetics, 11(12):802–809.

[Chazelle, 2000] Chazelle, B. (2000). A minimum spanning tree algorithm with inverse-
ackermann type complexity. Journal of the Association for Computer Machinery, 47(6):1028
– 1047.

[Chen and Pavlidis, 1980] Chen, P. and Pavlidis, T. (1980). Image segmentation as an estima-
tion problem. Computer Graphics and Image Processing, 12(2):153–172. Also in Image
Modeling, (A. Rosenfeld, ed.), Academic Press, 1981, pp. 9-28.

[Cheriton and Tarjan, 1976] Cheriton, D. and Tarjan, R. E. (1976). Finding minimum spanning
tree. SIAM Journal on Computing, 5(4):724–742.

[Chernyak and Stark, 2001] Chernyak, D. and Stark, L. (2001). Top-down guided eye move-
ments. IEEE Transactions on Systems, Man, and Cybernetics, 31(4):514–522.

[Chin et al., 1982] Chin, F. Y., Lam, J., and Chen, I.-N. (1982). Efficient parallel algorithms
for some graphs problems. Communications of the Association for Computer Machinery,
25(9):659–665.

[Cho and Meer, 1997] Cho, K. and Meer, P. (1997). Image segmentation from consensus in-
formation. Computer Vision and Image Understanding, 68(1):72–89.

[Chowdhury and Murhty, 1997] Chowdhury, N. and Murhty, C. (1997). Minimal spanning
tree based clustering technique: Relationship whith bayes classifier. Pattern Recognition,
30(11):1919–1929.

[Christofides, 1975] Christofides, N. (1975). Graph Theory - An Algorithmic Approach. Aca-
demic Press, New York, London, San Francisco.

[Chung, 1997] Chung, F. R. K. (1997). Spectral Graph Theory. American Mathematical Soci-
ety.

171

Bibliography

[Cinque et al., 1994] Cinque, L., Guerra, C., and Levialdi, L. (1994). Reply: On the paper by
r. haralick. CVGIP: Image Understanding, 60(2):250–252.

[Cole et al., 1994] Cole, R., N., K. P., and E., T. R. (1994). A linear-work parallel algorithm
for finding minimum spanning trees. In Annual Association for Computer Machinery Sym-
posium on Parallel Algorithms and Architectures, pages 11–15.

[Cole et al., 1996] Cole, R., N., K. P., and E., T. R. (1996). Finding minimum spanning forests
in logarithmic time and linear work using random sampling. In Annual Association for
Computer Machinery Symposium on Parallel Algorithms and Architectures, pages 243–250.

[Cooper, 1998] Cooper, M. (1998). The tractibility of segmentation and scene analysis. In
IJCV, volume 30:1, pages 27–42.

[Cormen et al., 2001] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001).
Introduction to Algorithms. MIT Press, Massachusetts Institute of Technology.

[Dey et al., 1998] Dey, T. K., Edelsbrunner, H., Guha, S., and Nekhayev, D. V. (1998). Topol-
ogy preserving edge contraction. Technical Report RGI-Tech-98-018, Raindrop Geomagic
Inc., Research Triangle Park, North Carolina.

[Diestel, 1997] Diestel, R. (1997). Graph Theory. Springer, New York.

[Dixon et al., 1992] Dixon, B., Rauch, M., and Tarjan, R. E. (1992). Verification and sensitivity
analysis of minimum spanning trees in linear time. SIAM Journal on Computing, 21(6):1184
– 1192.

[Duda et al., 2001] Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification.
John Wiley & Sons.

[Euler, 1736] Euler, L. (1736). Solutio problematis ad geometriam situs pertinentis (The solu-
tion of a problem relating to the geometry of position). Commentarii academiae scientiarum
Petropolitanae, 8:128–140. reprinted in Opera Omnia: Series 1, Volume 7, pp. 1 - 10, 1766.

[Feldman and Ballard, 1982] Feldman, J. A. and Ballard, D. H. (1982). Connectionist models
and their properties. Cognitive Science, (6):205–254.

[Felzenszwalb and Huttenlocher, 1998] Felzenszwalb, P. F. and Huttenlocher, D. P. (1998). Im-
age segmentation using local variation. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, pages 98–104. IEEE Computer Society.

[Felzenszwalb and Huttenlocher, 2004] Felzenszwalb, P. F. and Huttenlocher, D. P. (2004).
Efficient graph-based image segmentation. International Journal of Computer Vision,
59(2):167–181.

[Feng et al., 1994] Feng, J., Laumy, M., and Dhome, M. (1994). Inexact matching using neural
networks. Pattern Recognition in practice IV: Multiple paradigm, comparative studies and
hybrid systems, pages 177–184.

172

Bibliography

[Fiedler, 1975] Fiedler, M. (1975). A property of eigenvectors of nonnegative symmetric ma-
trices and its application to graph theory. Czechslovak Mathematical Journal, 25(100):619–
633.

[Fischer and Buhmann, 2002] Fischer, B. and Buhmann, J. M. (2002). Data resampling for
path based clustering. In van Gool, L., editor, Proceedings of German Pattern Recognition
Symposium, volume 2449 of Lecture Notes in Computer Science, pages 206–214, Switzer-
land. Springer.

[Fredman and Dan, 1994] Fredman, M. L. and Dan, W. E. (1994). Trans-dichotomous algo-
rithms for minimum spanning trees and shortest paths. Journal of Computer and System
Sciences., 48(3):533–551.

[Fredman and Robert, 1987] Fredman, M. L. and Robert, T. E. (1987). Fibonacci heaps and
their uses in improved network optimization algorithms. Journal of the Association for Com-
puter Machinery, 34(3):596–615.

[Fuh et al., 2000] Fuh, C.-S., Cho, S, W., and Essig, K. (2000). Hierarchical color image region
segmentation for content-based image retrival system. IEEE Transaction on Image Process-
ing, 9(1):156–62.

[Gabow et al., 1986] Gabow, H. N., Galil, Z., Spencer, T., and Tarjan, R. E. (1986). Efficient
algorithms for finding minimum spanning trees in undirected and directed graps. Combina-
torica, 6(2):109–122.

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers and In-
tractability. Freeman.

[Gavril, 1972] Gavril, F. (1972). Algorithms for minimum coloring, maximum clique, min-
imum covering by cliques, and maximum independent set of a chordal graph. Journal of
Computing, 1(2):180–187.

[Gdalyahu et al., 1998] Gdalyahu, Y., Weinshall, D., and Werman, M. (1998). A randomized
algorithm for pairwise clustering. In Kearns, M. J., Solla, S. A., and Cohn, D. A., editors,
Advances in Neural Information Processing Systems, volume 2, pages 424–430. The MIT
Press.

[Gdalyahu et al., 2001] Gdalyahu, Y., Weinshall, D., and Werman, M. (2001). Self-
organization in vision: Stochastic clustering for image segmentation, perceptual grouping,
and image database organization. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 23(10):1053–1074.

[Gelgon and Bouthemy, 1999] Gelgon, M. and Bouthemy, P. (1999). A region-level motion-
based graph representation and labeling for tracking a spatial image partition. Pattern Recog-
nition, 33(4):725–740.

[Geman and Geman, 1984] Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs
distribution, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 6:721–741.

173

Bibliography

[Glantz et al., 1999] Glantz, R., Englert, R., and Kropatsch, W. G. (1999). Representation of
image structure by a pair of dual graphs. In Kropatsch, W. G. and Jolion, J.-M., editors,
Proceedings of IAPR Workshop on Graph-based Representations in Pattern Recognition,
pages 155–163. OCG-Schriftenreihe, Österreichische Computer Gesellschaft. Band 126.

[Glantz and Kropatsch, 2000a] Glantz, R. and Kropatsch, W. G. (2000a). Guided relinking of
graph pyramids. In Ferri, F. J., Iñesta, J. M., Amin, A., and Pavel, P., editors, Proceedings
of Joint IAPR International Workshops on Syntactic and Structural Pattern Recognition and
Statistical Patern Recognition, volume 1876 of Lecture Notes in Computer Science, pages
367–376, Alicante, Spain. Springer Verlag.

[Glantz and Kropatsch, 2000b] Glantz, R. and Kropatsch, W. G. (2000b). Plane embedding of
dually contracted graphs. In Borgefors, G., Nyström, I., and Sanniti di Baja, G., editors,
Proceedings of Discrete Geometry for Computer Imagery, volume 1953 of Lecture Notes
in Computer Science, pages 348–357, Uppsala, Sweden. Springer, Berlin Heidelberg, New
York.

[Glantz et al., 2004] Glantz, R., Pellilo, M., and Kropatsch, W. G. (2004). Matching segmen-
tation hierarchies. International Journal for Pattern Recognition and Artificial Intelligence,
18(3):397–424.

[Goldberg et al., 1988] Goldberg, A. V., Plotkin, S. A., and Shannon, G. E. (1988). Parallel
symmetry-breaking in sparse graphs. SIAM Journal of Discrete Mathematics, 1(4):434–445.

[Goldberg and Spencer, 1989] Goldberg, M. and Spencer, T. (1989). A new parallel algorithm
for the maximal independent set problem. SIAM Journal on Computing, 18(4):419–427.

[Graaf et al., 1994] Graaf, C. N., Koster, A. S. E., Vincken, K. L., and Viergever, M. A. (1994).
Validation of the interleaved pyramid for the segmentation of 3d vector images. Pattern
Recognition Letters, 15(5):469–475.

[Graham et al., 2000] Graham, S. M., Joshi, A., and Pizlo, Z. (2000). The travelling salesman
problem: A hierarchical model. Memory and Cognition, 28(7):1191–1204.

[Granlund, 1999] Granlund, G. H. (1999). The complexity of vision. Signal Processing,
74(1):101–126.

[Guigues et al., 2003] Guigues, L., Herve, L. M., and Cocquerez, J.-P. (2003). The hierarchy
of the cocoons of a graph and its application to image segmentation. Pattern Recognition
Letters, 24(8):1059–1066.

[Guy and Medioni, 1996] Guy, G. and Medioni, G. G. (1996). Inferring global perceptual
contours for pairwise clustering. International Journal of Computer Vision, 20(1-2):113–
133.

[Haralick and Shapiro, 1993] Haralick, R. M. and Shapiro, L. G. (1993). Computer and Robot
Vision., volume II. Addison Wesley.

[Harary, 1969] Harary, F. (1969). Graph Theory. Addison Wesley.

174

Bibliography

[Haxhimusa et al., 2003] Haxhimusa, Y., Glantz, R., and Kropatsch, W. G. (2003). Construct-
ing stochastic pyramids by mides - maximal independent directed edge set. In Hancock, E.
and Vento, M., editors, 4th IAPR-TC15 Workshop on Graph-based Representation in Pattern
Recognition, volume 2726 of Lecture Notes in Computer Science, pages 35–46, York, UK.
Springer, Berlin Heidelberg, New York.

[Haxhimusa et al., 2002] Haxhimusa, Y., Glantz, R., Saib, M., Langs, G., and Kropatsch, W. G.
(2002). Logarithmic tapering graph pyramid. In van Gool, L., editor, Proceedings of German
Pattern Recognition Symposium, volume 2449 of Lecture Notes in Computer Science, pages
117–124, Switzerland. Springer.

[Haxhimusa et al., 2005a] Haxhimusa, Y., Ion, A., Kropatsch, W. G., , and Brun, L. (2005a).
Hierarchical image partitioning using combinatorial maps. In Proceeding of the Joint
Hungarian-Austrian Conference on Image Processing and Pattern Recognition, pages 179–
186.

[Haxhimusa et al., 2006a] Haxhimusa, Y., Ion, A., and Kropatsch, W. G. (2006a). Evaluating
hierarchical graph-based segmentation. In Y. Y Tang, P. Wang, G. L. and Yeung, D. S.,
editors, Proceedings of 18th International Conference on Pattern Recognition, volume 2,
pages 195–198, Hong Kong, China. IEEE Society.

[Haxhimusa et al., 2006b] Haxhimusa, Y., Ion, A., and Kropatsch, W. G. (2006b). Irregular
pyramid segmentations with stochastic graph decimation strategies. In etal., J. F. M.-T.,
editor, Proceedings of 11th Iberoamerical Congress on Pattern Recognition, volume 4225,
pages 277–280, Cancun, Mexico. Springer.

[Haxhimusa et al., 2005b] Haxhimusa, Y., Ion, A., Kropatsch, W. G., and Illetschko, T.
(2005b). Evaluating minimum spanning tree based segmentation algorithms. In Gagalowicz,
A. and Philips, W., editors, Proceedings of the 11th International Conference on Computer
Analysis of Images and Patterns, volume 3891 of Lecture Notes in Computer Science, pages
579–586, France. Springer.

[Haxhimusa and Kropatsch, 2003] Haxhimusa, Y. and Kropatsch, W. G. (2003). Hierarchy of
partitions with dual graph contraction. In Milaelis, B. and Krell, G., editors, Proceedings
of German Pattern Recognition Symposium, volume 2781 of Lecture Notes in Computer
Science, pages 338–345, Germany. Springer.

[Haxhimusa and Kropatsch, 2004] Haxhimusa, Y. and Kropatsch, W. G. (2004). Segmentation
Graph Hierarchies. In Fred, A., Caelli, T., Duin, R. P., Campilho, A., and de Ridder, D.,
editors, Proceedings of Joint International Workshops on Structural, Syntactic, and Statisti-
cal Pattern Recognition S+SSPR 2004, volume 3138 of Lecture Notes in Computer Science,
pages 343–351, Lisbon, Portugal. Springer, Berlin Heidelberg, New York.

[Heath et al., 1997] Heath, M. D., Sarkar, S., and Sanocki, T. Bowyer, K. W. (1997). A robust
visual method for assessing the relative performance of edge-detection algorithms. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(12):1338–1359.

175

Bibliography

[Hird and Willson, 1989] Hird, J. and Willson, D. (1989). A comparison of target detection and
segmentation techniques. In Lettington, A., editor, Optical Systems for Space and Defence,
volume 1191, pages 375–386.

[Hirschberg et al., 1979] Hirschberg, D. S., Chandra, D. H., and Sarwate, D. V. (1979). Com-
puting connected components on parallel computers. Communications of the Association for
Computer Machinery, 22(8):461–464.

[Hofmann et al., 1998] Hofmann, T., Puzicha, J., and Buhmann, J. M. (1998). Unsupervised
texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(8):803–818.

[Hooker, 1995] Hooker, J. N. (1995). Testing heuristics: We have it all wrong. Journal of
Heuristics, 1:33–42. electronic.

[Horowitz and Pavlidis, 1976] Horowitz, S. and Pavlidis, T. (1976). Picture segmentation
by a tree traversal algorithm. Journal of the Association for Computer and Machinery.,
2(23):368–388.

[Jain and Dubes, 1988] Jain, A. K. and Dubes, R. (1988). Algorithms for Clustering Data.
Prentice Hall, Berlin.

[JáJá, 1992] JáJá, J. (1992). An Introduction to Parallel Algorithms. Addison-Wesley, NY.

[Jarnı́k, 1930] Jarnı́k, V. (1930). O jistém problému minimálnim (about a certain minimal
problem)). Práce Moravské Přı́rodvědecké Společnosti v Brně (Acta Societ. Scienc. Natur.
Moravicae), 6:57–63.

[Johnson, 2002] Johnson, D. S. (2002). A theoretician’s guide to the experimental analysis of
algorithms. In Goldwasser, M., Johnson, D. S., and McGeoch, C. C., editors, Data Struc-
tures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges, pages 215–250. American Mathematical Society.

[Jolion, 2001] Jolion, J.-M. (2001). Data driven decimation of graphs. In Jolion, J.-M.,
Kropatsch, W. G., and Vento, M., editors, Proceedings of IAPR Workshop on Graph-based
Representations in Pattern Recognition, pages 105–114. CUEN.

[Jolion, 2003] Jolion, J.-M. (2003). Stochastic pyramid revisited. Pattern Recognition Letters,
24(8):1035–1042.

[Jolion and Montanvert, 1992] Jolion, J.-M. and Montanvert, A. (1992). The adaptive pyramid,
a framework for 2D image analysis. Computer Vision, Graphics, and Image Processing:
Image Understanding, 55(3):339–348.

[Jolion and Rosenfeld, 1994] Jolion, J.-M. and Rosenfeld, A. (1994). A Pyramid Framework
for Early Vision. Kluwer.

[Julesz, 1981] Julesz, B. (1981). Textons, the elements of texture perception and their interac-
tions. Nature, 290:91–97.

176

Bibliography

[Julesz and Bergen, 1983] Julesz, B. and Bergen, J. R. (1983). Textons, the fundamental ele-
ments in preattentive vision and perception of textures. The Bell System Technical Journal,
62(6):1619–1645.

[Kaiser, 2004] Kaiser, G. (2004). Meta-segmentation of remote sensing images based on com-
binatorial maps. Master’s thesis, University of Natural Resources and Applied Life Sciences.,
Vienna.

[Kammerer and Glantz, 2001] Kammerer, P. and Glantz, R. (2001). Using graphs for segment-
ing crosshatched brush strokes. In Jolion, J.-M., Kropatsch, W. G., and Vento, M., editors,
Proceedings of IAPR Workshop on Graph-based Representations in Pattern Recognition,
pages 74–83. CUEN.

[Karger et al., 1995] Karger, D. R., Klein, P. N., and Tarjan, R. E. (1995). A randomized linear-
time algorithm to find minimum spanning trees. Journal of Assoc. Computer and Mathemat-
ics, 42(2):321–328.

[Karp and Wigderson, 1985] Karp, R. and Wigderson, A. (1985). A fast parallel algorithm for
the maximal independent set problem. Journal of Association for Computing Machinery,
32(4):762–773.

[Kelly, 1970] Kelly, M. D. (1970). Edge detection in pictures by computer using planning.
In Meltzer, B. and Michie, D., editors, Machine Intelligence, volume 6, pages 397–409,
Edinburgh Scotland. Edinburgh University Press.

[Keselman and Dickinson, 2001] Keselman, Y. and Dickinson, S. (2001). Generic model ab-
straction from examples. In Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, volume 1, pages 856–863, Kauai, Hawaii. IEEE Computer Society.

[Keselman and Dickinson, 2005] Keselman, Y. and Dickinson, S. (2005). Generic model ab-
straction from examples. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(7):1141–1156.

[King, 1997] King, V. (1997). A simpler minimum spanning tree verification algorithm. Algo-
rithmica, 18(2):263–270.

[Kittler et al., 1993] Kittler, J., Christmas, W., and Petrou, M. (1993). Probabilistic relaxation
for matching problems in machine vision. In Proceedings 4th International Conference on
Computer Vision, pages 666–674.

[Kovalevsky, 1989] Kovalevsky, V. A. (1989). Finite topology as applied to image analysis.
Computer Vision, Graphics, and Image Processing, 46:141–161.

[Kovalevsky, 1993] Kovalevsky, V. A. (1993). Digital Geometry Based on the Topology of
Abstract Cellular Complexes. In Chassery, J.-M., Francon, J., Montanvert, A., and Réveillès,
J.-P., editors, Géometrie Discrète en Imagery, Fondements et Applications, pages 259–284,
Strasbourg, France.

177

Bibliography

[Kropatsch, 1986] Kropatsch, W. G. (1986). Curve representations in multiple resolutions. In
Proceedings 8th International Conference on Pattern Recognition, pages 1283–1285. IEEE
Comp.Soc.

[Kropatsch, 1991] Kropatsch, W. G. (1991). Image Pyramids and Curves - An Overview.
Technical Report PRIP-TR-2, Vienna University of Technology, Faculty of Informatics, In-
stitute of Computer Aided Automation, Pattern Recognition and Image Processing Group,
http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/.

[Kropatsch, 1994] Kropatsch, W. G. (1994). Building irregular pyramids by dual graph con-
traction. Technical Report PRIP-TR-35, Vienna University of Technology, Faculty of Infor-
matics, Institute of Computer Aided Automation, Pattern Recognition and Image Processing
Group, http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/.

[Kropatsch, 1995a] Kropatsch, W. G. (1995a). Building irregular pyramids by dual graph con-
traction. IEE-Proc. Vision, Image and Signal Processing, 142(6):366–374.

[Kropatsch, 1995b] Kropatsch, W. G. (1995b). Equivalent contraction kernels and the domain
of dual irregular pyramids. Technical Report PRIP-TR-42, Vienna University of Technology,
Faculty of Informatics, Institute of Computer Aided Automation, Pattern Recognition and
Image Processing Group, http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/.

[Kropatsch, 1995] Kropatsch, W. G. (1995). Towards higher decimation ratios. In Hlavác, V.
and Sára, R., editors, Proceedings of Computer Analysis of Images and Patterns, volume 970
of Lecture Notes in Computer Science, pages 747–752. Springer.

[Kropatsch, 1999] Kropatsch, W. G. (1999). How useful is structure in motion? In D.
Chetverikov and T. Szirányi, editor, Fundamental Structural Properties in Image and Pattern
Analysis. OCG-Schriftenreihe, Österr. Arbeitsgemeinschaft für Mustererkennung, R. Olden-
burg.

[Kropatsch, 2002] Kropatsch, W. G. (2002). Abstraction pyramids on discrete representations.
In Braquelaire, A. J.-P., Lachaud, J.-O., and Vialard, A., editors, Proceedings of Discrete
Geometry for Computer Imagery, pages 1–21, Bordeaux, France, April 3-5, 2002. Springer.

[Kropatsch and BenYacoub, 1996] Kropatsch, W. G. and BenYacoub, S. (1996). A general
pyramid segmentation algorithm. In Melter, R., Wu, A. Y., and Latecki, L., editors, Vision
Geometry V, volume 2826 of Lecture Notes in Computer Science, pages 216–224. SPIE.

[Kropatsch and Burge, 1998] Kropatsch, W. G. and Burge, M. (1998). Minimizing the topo-
logical structure of line images. In Amin, A., Dori, D., Pudil, P., and Freeman, H., edi-
tors, Proceedings of Joint IAPR International Workshops on Syntactic and Structural Pattern
Recognition and Statistical Patern Recognition, volume 1451 of Lecture Notes in Computer
Science, pages 149–158, Sydney, NSW, Australia, August 11-13, 1998. Springer.

[Kropatsch and Haxhimusa, 2004] Kropatsch, W. G. and Haxhimusa, Y. (2004). Grouping and
Segmentation in a Hierarchy of Graphs. In Bouman, C. A. and Miller, E. L., editors, Pro-
ceedings of 16th Annual IS&T/SPIE Symposium Electronic Imaging, Computational Imaging
II, volume SPIE 5299, pages 193–204, USA. IS&T/SPIE.

178

Bibliography

[Kropatsch et al., 2006] Kropatsch, W. G., Haxhimusa, Y., and Lienhardt, P. (2006). Hierar-
chies relating topology and geometry. In Christensen, H. I. and Nagel, H.-H., editors, Cog-
nitive Vision Systems, volume 3948 of Lecture Notes in Computer Science, pages 199–220.
Springer Verlag.

[Kropatsch et al., 2004] Kropatsch, W. G., Haxhimusa, Y., and Pizlo, Z. (2004). Integral trees:
Subtree depth and diameter. In Klette, R. and Žunic, J., editors, International Workshop on
Combinatorial Image Analysis 2004, volume 3322 of Lecture Notes in Computer Science,
pages 77–87, Berlin Heidelberg. Springer-Verlag.

[Kropatsch et al., 2004] Kropatsch, W. G., Haxhimusa, Y., and Pizlo, Z. (2004). Integral trees:
Subtree depth and diameter. Technical Report PRIP-TR-092, Vienna University of Technol-
ogy, Faculty of Informatics, Institute of Computer Aided Automation, Pattern Recognition
and Image Processing Group.

[Kropatsch et al., 2005] Kropatsch, W. G., Haxhimusa, Y., Pizlo, Z., and Langs, G. (2005).
Vision pyramids that do not grow too high. Pattern Recognition Letters, 26(3):319–337.

[Kropatsch et al., 1999] Kropatsch, W. G., Leonardis, A., and Bischof, H. (1999). Hierarchical,
adaptive and robust methods for image understanding. Surveys on Mathematics for Industry,
9:1–47.

[Kropatsch and Macho, 1995] Kropatsch, W. G. and Macho, H. (1995). Finding the structure of
connected components using dual irregular pyramids. In Proceedings of Discrete Geometry
for Computer Imagery, pages 147–158. LLAIC1, Université d’Auvergne.

[Kropatsch and Montanvert, 1991a] Kropatsch, W. G. and Montanvert, A. (1991a). Irregular
pyramids. Technical Report PRIP-TR-5, Vienna University of Technology, Faculty of Infor-
matics, Institute of Computer Aided Automation, Pattern Recognition and Image Processing
Group, http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/.

[Kropatsch and Montanvert, 1991b] Kropatsch, W. G. and Montanvert, A. (1991b). Irregular
versus regular pyramid structures. In Eckhardt, U., Hbler, A., Nagel, W., and Werner, G.,
editors, Geometrical Problems of Image Processing, pages 11–22. Springer.

[Kruskal, 1956] Kruskal, J. B. J. (1956). On the shortest spanning subtree of a graph and the
travelling salesman problem. In Proc. Am. Math. Soc., volume 7, pages 48–50.

[Lallich et al., 2003] Lallich, S., Muhlenbach, F., and Jolion, J.-M. (2003). A test to controll a
region growing process within a hiearchical graph. Pattern Recognition, 36(10):2201–2211.

[Lance and Williams, 1967] Lance, J. and Williams, W. (1967). A general theory of classifica-
tory sorting strategies: I Hierarchical systems. Computer Journal, 9:373–380.

[Langs and Bischof, 2002] Langs, G. and Bischof, H. (2002). Focusing visual attention in
mobile robot navigation. In Proceedings of the Workshop of the Austrian Association of
Pattern Recognition, pages 95–102.

179

Bibliography

[Langs et al., 2001] Langs, G., Bischof, H., and Kropatsch, W. G. (2001). Irregu-
lar image pyramids and robust appearance-based object recognition. Technical Re-
port PRIP-TR-67, Vienna University of Technology, Faculty of Informatics, Institute
of Computer Aided Automation, Pattern Recognition and Image Processing Group,
http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/.

[Langs et al., 2002] Langs, G., Bischof, H., and Kropatsch, W. G. (2002). Hierarchical top-
down enhancement of robust pca. In Proceedings of Joint IAPR International Workshops
on Syntactic and Structural Pattern Recognition and Statistical Patern Recognition, volume
2396 of Lecture Notes in Computer Science, pages 234–242. Springer.

[Lienhardt, 1989] Lienhardt, P. (1989). Subdivisions of n-dimensional spaces and n-
dimensional generalized maps. In Mehlhorn, K., editor, Proceedings of the 5th Annual
Symposium on Computational Geometry, pages 228–236, Saarbrücken. ACM Press.

[Lienhardt, 1991] Lienhardt, P. (1991). Topological models for boundary representation: a
comparison with n-dimensional generalized maps. Computer-Aided Design, 23(1):59–82.

[Lindeberg, 1990] Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(3):234–254.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110.

[Luby, 1986] Luby, M. (1986). A simple parallel algorithm for the maximal independent set
problem. SIAM Journal of Computing, 15(4):1036–1053.

[Malik et al., 2001] Malik, J., Belongie, S., Leung, T., and Shi, J. (2001). Contour and texture
analysis for image segmentation. International Journal of Computer Vision, 43(1):7–27.

[Malik et al., 1999] Malik, J., Belongie, S., Shi, J., and Leung, T. (1999). Textons, contours and
regions: Cue integration in image segmentation. In Proceedings of International Conference
on Computer Vision, volume 2, pages 918–925.

[Mallat, 1989] Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The
wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(7):674–693.

[Marchadier et al., 2003] Marchadier, J., Kropatsch, W. G., and Hanbury, A. (2003). Homo-
topic transformations of combinatorial maps. In Nystrm, I., di Baja, G. S., and Svensson, S.,
editors, Proceedings of Discrete Geometry for Computer Imagery, volume 2886 of Lecture
Notes in Computer Science, pages 134–143, Naples, Italy. Springer.

[Marfil et al., 2004] Marfil, R., Rodrgı́guez, J. A., Bandera, A., and Sandoval, F. (2004).
Bounded irregular pyramid: A new structure for color image segmentation. Pattern Recog-
nition, 37(3):623–626.

180

Bibliography

[Martin et al., 2001] Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of
human segmented natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics. In Proceedings of International Conference on Computer
Vision, volume 2, pages 416–423.

[Matas et al., 2002] Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Robust wide base-
line stereo from maximally stable extremal regions. In Rosin, P. L. and Marshall, D., editors,
Proceedings of the British Machine Vision Conference, volume 1, pages 384–393, London,
UK. BMVA.

[Mathieu et al., 1992] Mathieu, C., Magnin, I. E., and Baldy-Porcher, C. (1992). Optimal sto-
chastic pyramid: Segmentation of MRI data. Proceedings of SPIE-IS&T Medical Imaging
VI: Image Processing, 1652:14–22.

[Matsumoto and Nishimura, 1998] Matsumoto, M. and Nishimura, T. (January, 1998).
Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number
generator. Transactions on Modeling and Computer Simulation, 8(1):3–30.

[McGeoch, 1992] McGeoch, C. C. (1992). Analyzing algorithms by simulation: Variance re-
duction techniques and simulation speedups. Computing Surveys, 24(2):195–212.

[Meer, 1989] Meer, P. (1989). Stochastic image pyramids. Computer Vision, Graphics, and
Image Processing, 45(3):269–294. Also as UM CS TR-1871, June, 1987.

[Meer et al., 1990] Meer, P., Mintz, D., Montanvert, A., and Rosenfeld, A. (1990). Consensus
vision. In AAAI-90 Workshop on Qualitative Vision, pages 111–115, Boston, Massachusetts,
USA.

[Mehlhorn and Näher, 1999] Mehlhorn, K. and Näher, S. (1999). The LEDA Platform of Com-
binatorial and Geometric Computing. Cambridge University Press, Cambridge, U.K.

[Meyer, 1999] Meyer, F. (1999). Graph based morphological segmentation. In Kropatsch,
W. G. and Jolion, J.-M., editors, Proceedings of IAPR Workshop on Graph-based Represen-
tations in Pattern Recognition, pages 51–60. OCG-Schriftenreihe, Band 126, Österreichische
Computer Gesellschaft.

[Montanvert et al., 1991] Montanvert, A., Meer, P., and Rosenfeld, A. (1991). Hierarchical
image analysis using irregular tesselations. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 13(4):307–316.

[Munkres, 1993] Munkres, J. R. (1993). Elements of Algebraic Topology. Addison-Wesley.

[Nacken, 1994] Nacken, P. F. (1994). Image Analysis Methods Based on Hierarchies of Graphs
and Multi-scale Mathematical Mophology. PhD thesis, University of Amsterdam, Amster-
dam.

[Nacken, 1995] Nacken, P. F. (1995). Image segmentation by connectivity preserving relinking
in hierarchical graph structures. Pattern Recognition, 28(6):907–920.

181

Bibliography

[Neštřil, 1997] Neštřil, J. (1997). A few remarks on the history of mst-problem. Archivum
Mathematicum Brno, 33:15–22.

[Neštřil et al., 2001] Neštřil, J., Miklovà, E., and Neštřilova, H. (2001). Otakar Boro̊vka on
minimal spanning tree problem translation of both the 1926 papers, comments, history. Dis-
crete Mathematics, 233:3–36.

[Oxley, 1992] Oxley, J. (1992). Matroid theory. Oxford University Press, New York, USA.

[Pailloncy et al., 1998] Pailloncy, J.-G., Kropatsch, W. G., and Jolion, J.-M. (1998). Object
matching on irregular pyramid. In Jain, A. K., Venkatesh, S., and Lovell, B. C., editors,
14th International Conference on Pattern Recognition, volume II, pages 1721–1723. IEEE
Comp.Soc.

[Päivinen, 2005] Päivinen, N. (2005). Clustering with a minimum spanning tree of a scale-
free-like structure. Pattern Recognition Letters, 26(7):921–930.

[Pal and Pal, 1993] Pal, N. R. and Pal, S. K. (1993). A review on image segmentation tech-
niques. Pattern Recognition, 26(3):1277–1294.

[Pavan and Pelillo, 2003] Pavan, M. and Pelillo, M. (2003). Dominant sets and hierarchical
clustering. In Proceedings of International Conference on Computer Vision, volume 1, pages
362–369. IEEE Computer Society.

[Pavan and Pelillo, 2003] Pavan, M. and Pelillo, M. (2003). Graph-theoretic approach to clus-
tring and segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, volume 1, pages 145–152. IEEE Computer Society.

[Pavlidis, 1977] Pavlidis, T. (1977). Structural Pattern Recognition. Springer Verlag.

[Pelillo et al., 1999] Pelillo, M., Siddiqi, K., and Zucker, S. W. (1999). Matching hierarchical
structures using association graphs. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1105–1120.

[Perona and Freeman, 1998] Perona, P. and Freeman, W. (1998). A factorization approach to
grouping. In Burkhardt, H. and Neumann, B., editors, Proceeding of European Conference
in Computer Vision, volume 1406 of Lecture Notes in Computer Science, pages 655–670.
Springer Verlag.

[Pizlo, 2001] Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research,
41(24):3145–3161.

[Pizlo and Li, 2003] Pizlo, Z. and Li, Z. (2003). Pyramid algorithms as models of human
cognition. In Proceedings of SPIE-IS&T Electronic Imaging, Computational Imaging, pages
1–12. SPIE.

[Pizlo and Li, 2004] Pizlo, Z. and Li, Z. (2004). Graph pyramids as models of human problem
solving. In Proceedings of SPIE-IS&T Electronic Imaging, Computational Imaging, pages
205–215. SPIE.

182

Bibliography

[Pizlo et al., 1997] Pizlo, Z., Salach-Golyska, M., and Rosenfeld, A. (1997). Curve detection
in a noisy image. Vision Research, 37(9):1217–1241.

[Pizlo et al., 2006] Pizlo, Z., Stefanov, E., Saalweachter, J., Li, Z., Haxhimusa, Y., and
Kropatsch, W. G. (2006). Traveling salesman problem: a foveating model. in press.

[Prim, 1957] Prim, R. C. (1957). Shortest connection networks and some generalizations. The
Bell System Technical Journal, 36:1389–1401.

[Privitera and Stark, 2000] Privitera, C. M. and Stark, L. W. (2000). Algorithms for defining
visual regions-of-interest: Comparison with eye fixations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(9):970–982.

[Rojer and Schwartz, 1990] Rojer, A. and Schwartz, E. L. (1990). Design considerations for
a space variant visual sensor complex-logarithmic geometry. In Proceeding of Internation
Conference in Pattern Recognition, volume 2, pages 278–285, Los Alamitos, California.
IEEE Computer Society Press.

[Rosenfeld, 1982] Rosenfeld, A. (1982). Quadtrees and pyramids: Hierarchical representation
of images. Technical Report TR-1171, University of Maryland, Computer Science Center.

[Rosenfeld, 1984] Rosenfeld, A., editor (1984). Multiresolution Image Processing and Analy-
sis. Springer Verlag.

[Rosenfeld, 1985] Rosenfeld, A. (1985). Arc colorings, partial path groups, and parallel graph
contractions. Technical Report TR-1524, University of Maryland, Computer Science Center.

[Rosenfeld, 1986] Rosenfeld, A. (1986). Pyramid algorithms for perceptual organization. Be-
havior Research Methods, Instruments, and Computers, 18:595–600.

[Rosenfeld, 1987] Rosenfeld, A. (1987). Pyramid algorithm for efficient vision. Technical
Report CAR-TR-299, University of Maryland, Computer Science Center.

[Rosenfeld, 1989] Rosenfeld, A. (1989). Computer vision: A source of models for biological
visual processes?. IEEE Transaction on Biomedical Engineering, 36(1):93–96.

[Rosenfeld et al., 1976] Rosenfeld, A., Hummel, R., and Zucker, S. (1976). Scene labeling
by relaxation operations. IEEE Transactions on Systems, Man, and Cybernetics, 6(6):420 –
433.

[Rosenfeld and Thurston, 1971] Rosenfeld, A. and Thurston, M. (1971). Edge and curve de-
tection for visual scene analysis. IEEE Transactions on Computers, 20(12):562–569.

[Roy et al., 2004] Roy, D., Ghitza, Y., Bartelma, J., and Kehoe, C. (2004). Visual memory aug-
mentation: Using eye gaze as an attention filter. In Proceedings of the 8th IEEE International
Symposium on Wearable Computers, pages 128–131.

183

Bibliography

[Saib et al., 2002] Saib, M., Haxhimusa, Y., and Glantz, R. (2002). Dgc tool:
Building irregular graph pyramid using dual graph contraction. Technical Re-
port PRIP-TR-69, Vienna University of Technology, Faculty of Informatics, Institute
of Computer Aided Automation, Pattern Recognition and Image Processing Group,
http://www.prip.tuwien.ac.at/ftp/pub/publications/trs/.

[Samet, 1990] Samet, H. (1990). Applications of Spatial Data Structures. Addison Wesley
Publishers.

[Sanfeliu et al., 2002] Sanfeliu, A., Alquèrez, R., Andrade, J., Climent, J., Serratosa, F., and
Vergès, J. (2002). Graph-based representation and techniques for image processing and
image analysis. Pattern Recognition, 35(3):639–650.

[Sanfeliu and Fu, 1983] Sanfeliu, A. and Fu, K. (1983). Adistance measure between attributed
relational graphs for pattern recognition. IEEE Transaction on Sytems Man and Cybernetics,
13:353–362.

[Serra, 1982] Serra, J. (1982). Image Analysis and Mathematical Morphology, volume I. Aca-
demic Press.

[Sharon et al., 2000] Sharon, E., Brandt, A., and Basri, R. (2000). Fast multiscale image seg-
mentation. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, pages 70–77.

[Shen et al., 1998] Shen, X., Spann, M., and Nacken, P. F. M. (1998). Segmentation of 2d and
3d images through a hierarchical clustering based on region modelling. Pattern Recognition,
31(9):1295–1309.

[Shi and Malik, 1997] Shi, J. and Malik, J. (1997). Normalized cuts and image segmentation.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
731–737. IEEE Computer Society.

[Shi and Malik, 2000] Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905.

[Shiloach and Vishkin, 1982] Shiloach, Y. and Vishkin, U. (1982). An o(log(n)) parallel con-
nectivity algorithm. Journal of Algorithms, 3(1):57–67.

[Skiena, 1990] Skiena, S. (1990). Implementing Discrete Mathematics., chapter 5.6.3, pages
218–219. Addison-Wesley.

[Soille, 1994] Soille, P. (1994). Morphological Image Analysis. Springer Verlag.

[Sonka et al., 1999] Sonka, M., Hlavac, V., and Boyle, R. (1999). Image Processing, Analysis
and Machine Vision. Brooks/Cole Publishing Company.

[Stark and Privitera, 1997] Stark, L. W. and Privitera, C. M. (1997). Top-down and bottom-up
image processing. In IEEE Proceeding of International Conference on Neural Networks,
volume 4, pages 2294 –2299.

184

Bibliography

[Stelldinger and Ullrich, 2005] Stelldinger, P. and Ullrich, K. (2005). Towards a general sam-
pling theory for shape preservation. Image and Vision Computing, 23(10):237–248.

[Sudhir and Sarkar, 1997] Sudhir, B. and Sarkar, S. (1997). A framework for performance
characterization of intermediate-level grouping modules. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(11):1306–1312.

[Tanimoto and Pavlidis, 1975] Tanimoto, S. and Pavlidis, T. (1975). A hierarchical data struc-
ture for picture processing. Computer Graphics and Image Processing, (4):104–119.

[Tarjan, 1975] Tarjan, R. E. (1975). Efficiency of a good but not linear set-union algorithm.
Journal of the Association for Computer Machinery, 22(2):215–225.

[Thulasiraman and Swamy, 1992] Thulasiraman, K. and Swamy, M. N. S. (1992). Graphs:
Theory and Algorithms. Wiley-Interscience.

[Tremeau and Colantoni, 2000] Tremeau, A. and Colantoni, P. (2000). Regions adjacency
graph applied to color image segmentation. IEEE Transaction on Image Processing,
9(4):735–744.

[Tsotsos, 1988a] Tsotsos, J. K. (1988a). A ‘complexity level’ analysis of immediate vision.
International Journal of Computer Vision, 2(1):303–320.

[Tsotsos, 1988b] Tsotsos, J. K. (1988b). How does human vision beat the computational com-
plexity of visual perception? In Pylyshyn, Z., editor, Computational Processes in Human
Vision: An Interdisciplinary Perspective, pages 286–338. Ablex Press, Notwood, NJ.

[Tsotsos, 1990] Tsotsos, J. K. (1990). Analyzing vision at the complexity level. Behavioral
and Brain Sciences, 13(3):423–469.

[Tsotsos, 1992] Tsotsos, J. K. (1992). On the relative complexity of passive vs active visual
search. International Journal of Computer Vision, 7(2):127–141.

[Ullmann, 1976] Ullmann, J. R. (1976). An algorithm for subgraph isomorphism. Journal of
the Association for Computing Machinery, 23(1):31–42.

[Umeyama, 1998] Umeyama, S. (1998). An eigendecomposition approach to weghted graph
matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10:695–703.

[Urquhart, 1982] Urquhart, R. (1982). Graph theoretical clustering based on limited neighbor-
hood sets. Pattern Recognition, 15(3):173–187.

[Vergés-Llahi et al., 2000] Vergés-Llahi, J., Climent, J., and Sanfeliu, A. (2000). Color seg-
mentation solving hard-constraint on graph partitioning greedy algorithms. In Sanfeliu, A.,
Villanueva, J., Vanrell, M., Alquezar, R., Jain, A., and Kittler, J., editors, Proceeding of
Internation Conference in Pattern Recognition, volume 3, pages 625–628. IEEE Computer
Society.

185

Bibliography

[Vlachos and Constantinides, 1993] Vlachos, T. and Constantinides, A. (1993). Graph-
theoretical approach to color picture segmentation and contour classification. IEE Proceed-
ings I: Communications, Speech and Vision, 140(1):36–45.

[Wallace et al., 1994] Wallace, R. S., Ong, P.-W., Bederson, B. B., and Schwatz, E. L. (1994).
Space variant image processing. International Journal of Computer Vision, 13(1):71–90.

[Wang et al., 1997] Wang, Y., Fan, K., and Horng, J. (1997). Genetic-based search for error-
correcting graph isomorphism. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 27:588–597.

[Webster, 1913] Webster, M. (1913). Webster’s Revised Unabridged Dictionary. Merriam
Webster Inc.

[Weiss, 1999] Weiss, Y. (1999). Segmentation using eigenvectors: A unifying view. In Pro-
ceedings of International Conference on Computer Vision, volume 2, pages 975–982.

[Wertheimer, 1925] Wertheimer, M. (1925). über Gestaltheorie. Philosophische Zeitschrift für
Forschung und Aussprache, 1:30–60.

[Willersinn, 1995] Willersinn, D. (1995). Dual Irregular Pyramid. PhD thesis, Vienna Univer-
sity of Technology, Faculty of Informatics, Institute of Computer Aided Automation, Pattern
Recognition and Image Processing Group, Vienna.

[Williams et al., 1999] Williams, M. L., Wilson, R. C., and Hancock, E. R. (1999). Determin-
istic search for relational graph matching. Pattern Recognition, 32:1255–1271.

[Willis, 1997] Willis, D. E. (1938, reprinted by Gestalt Journal Press, New York 1997.). Source
Book of Gestalt Psychology. Harcourt, Brace and Co. New York.

[Witkin, 1986] Witkin, A. P. (1986). Scale space filtering. In Pentland, A. P., editor, From
Pixels to Predicates: Recent Advances in Computational and Robot Vision, pages 5–19.
Ablex, Notwood, NJ.

[Wu and Leahy, 1993] Wu, Z. and Leahy, R. M. (1993). An optimal graph theoretic approach
to data clustering: Theory and its application to image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 15(11):1101–1113.

[Xu and Oja, 1990] Xu, L. and Oja, E. (1990). Improved simmulated annealing, boltzman
machines and attributed graph matching. In Almeida, L., editor, Lecture Notes in Computer
Science, volume 412, pages 151–161. Springer Velag.

[Xu et al., 1993] Xu, S., Kamath, M. V., and Capson, D. W. (1993). Selection of partitions
from a hierarchy. Pattern Recognition Letters, 14(1):7–15.

[Xu and Uberbacher, 1997] Xu, Y. and Uberbacher, E. C. (1997). 2d image segmentation using
minimum spanning tree. Image and Vision Computing, 15(1):47–57.

[Yao, 1975] Yao, A. C.-C. (1975). An o(|e| log log |v|) algorithm for finding minimum span-
ning tree. Information Processing Letters, 4(1):21–23.

186

Bibliography

[Yu and Shi, 2001] Yu, S. and Shi, J. (2001). Segmentation with pairwise attraction and re-
pulsion. In Proceedings of International Conference on Computer Vision, volume 1, pages
52–58. IEEE Computer Society.

[Yuille and Poggio, 1986] Yuille, A. L. and Poggio, T. A. (1986). Scaling theorems for zero
crossings. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(1):15–25.

[Zahn, 1971] Zahn, C. (1971). Graph-theoretical methods for detecting and describing gestal
clusters. In IEEE Transaction on Computing, volume 20, pages 68–86.

[Zeki, 1993] Zeki, S. (1993). A Vision of the Brain. Oxford: Blackwell.

[Zhang, 1996] Zhang, Y. (1996). A survey on evaluation methods for image segmentation.
Pattern Recognition, 29(8):1335–1346.

[Zhou et al., 1989] Zhou, Y., Venkateswar, V., and Chellappa, R. (1989). Edge detection and
linear feature extraction using a 2-d random field model. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(1):84–95.

187

List of Symbols and Abbreviations

If not stated otherwise in the text the symbol and abbreviations applies throughout the document.

Symbols
Nk,k+1 contraction kernel from level k to k + 1
G dual graph
E dual edge set
e dual edge
attre edge attribute
E edge set
e edge
Ext(·) external contrast
F face set
f face
(Gk, Gk) pair of dual graphs at level k
CC connected component
G = (V,E) graph
Gk graph at level k
h height of pyramid
Int(·) internal contrast
k level k of the pyramid
R, Z number sets
N (·) neighborhood of a vertex or edge
G̃ plane graph
λ reduction factor
T tree
V dual vertex set
v dual vertex
attrv vertex attribute
V vertex set
v vertex
| · | set cardinality

189

Bibliography

Abbreviations
BorůSeg Segmenation based on Borůvka’s MST
BorůSeg (D3P) Segmentation based on Borůka’s MST using D3P
BorůSeg (MIES) Segmentation based on Borůka’s MST using MIES
BorůSeg (MIS) Segmentation based on Borůka’s MST using MIS
D3P Data driven decimation process
DGC Dual Graph Contraction
ECK Equivalent contraction kernel
GCE Global consistency error
KrusSeg Segmenation based on Kruskal’s MST
LCE Local consistency error
MIDES Maximal (independent) set of directed edges
MIES Maximal independent edge set
MIS Maximal independent vertex set
MST Minimum spanning tree
NCutSeg Normalized cuts segmentation

190

Index

The first page number is usually, but not always, the primary reference to the indexed topic.

a

adaptive pyramid, 101
ancestor, 33
apex, 28

b

BorůSeg, 117
D3P, 128
MIES, 128
MIS, 128

Borůvka’s Algorithm, 106

c

children, 32
connecting path, 53

bridge, 53
contraction kernels, 51

d

data driven decimation process, 80
descendant, 33
discrepancy error, 136
dual graph contraction, 49

minor, 55
dual graph pyramid, 57
dual graphs

dual, 44
primal, 44

dual image graphs, 46

e

edge, 11
adjacent, 12
incident, 12
order, 12
parallel edge, 11
self-loop, 11

external contrast, 115

f

face, 41
background face, 41
interior, 41

field, 155

g

Global consistency error, 138
graph, 11

dual, 42
primal, 42
acyclic, 17
complete, 12
component, 16
connected, 16
cut, 17
cycles, 15

cycle length, 15
diameter, 15
edge space, 23
empty, 12
forest, 18

191

Index

girth, 15
isomorphism, 21
multigraph, 11
operation

edge contraction, 20
edge removal, 19
intersection, 19
symmetric difference,, 19
union, 19
vertex identifying, 20
vertex removal, 19

path, 14
path length, 15

planar, 41
plane, 41
simple, 12
spanning, 13
subgraph, 12

maximal, 13
minimal, 13
spanning subgraph, 13

tree, 17
branch, 17
leaves, 17

trivial, 12
walk, 14

closed, 14
open, 14
trail, 14

group, 155

h

hierarchy, 28

i

internal contrast, 115

k

Kruskal’s Algorithm, 107
KrusSeg, 130

l

Local consistency error, 138

m

matroid, 110
graphic matroid, 110
weighted matroid, 110

maximal independent edge set, 70
maximal independent set of directed edges, 76
maximal independent vertex set , 67
minimum spanning tree, 104
mutual refinement, 128

n

NCutSeg, 129

o

overlapping pyramid, 33

p

parent, 32
Prim-Jarnik’s Algorithm, 107
pyramid, 28

content, 36
dual graph pyramid, 40
Gaussian pyramid, 37
irregular pyramid, 35
processing, 36
regular pyramid, 34
structure

horizontal neighborhood, 32
vertical neighborhood, 32

r

receptive field, 33

s

set partition, 16
simple refinement, 128

t

topological space, 46
topology, 46

closed sets, 46
discrete topology, 46

192

Index

open sets, 46

v

vertex, 11
adjacent, 12
isolated, 12
neighbors, 12
order, 12
pendant, 12
source, 11
target, 11

193

