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Abstract. 

 

 We tested human performance on the Euclidean Traveling Salesman Problem using problems 

with 6-50 cities.  Results confirmed our earlier findings that: (i) the time of solving a problem is 

proportional to the number of cities, and (ii) the solution error grows very slowly with the number of 

cities.  We formulated a new version of a pyramid model.  The new model has an adaptive spatial 

structure and it simulates visual acuity and visual attention.  Specifically, the model solves the E-TSP 

problem sequentially, by moving attention from city to city, the same way human subjects do.  The model 

includes a parameter representing the magnitude of local search.  This parameter allows modeling 

individual differences among the subjects.  The computational complexity of the current implementation 

of the model is O(n2), but this can most likely be improved to O(nlog(n)).  Simulation experiments 

demonstrated psychological plausibility of the new model.   
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1. Introduction 

In this paper we discuss the mental mechanisms involved in solving the Traveling Salesman 

Problem (TSP).  TSP refers to the task of finding the shortest tour of n cities given the intercity distances 

(costs).  When the distances between cities are Euclidean, the problem is called E-TSP (Graham, Joshi & 

Pizlo, 2000).  A simple way to present E-TSP to a subject is to show n points on a computer screen and 

ask the subject to produce a tour by clicking on the points.  TSP (including E-TSP) belongs to the class of 

difficult problems called NP-hard1.  Difficult means that finding an optimal solution (i.e. the shortest tour) 

may require, in the worst case, performing an exhaustive search through all tours.  Since the number of 

tours for an n-city problem is equal to (n-1)!/2, and thus grows very quickly with the number of cities n, 

determining lengths of all tours is usually impossible.  For this reason, TSP is called computationally 

intractable.  Because of the intractability of TSP, researchers interested in problem solving concentrated 

their efforts on finding approximating algorithms, that is, algorithms that can produce near-optimal 

solutions fairly quickly.  Good approximating algorithms can produce solutions that are only a few 

percent longer than an optimal solution and the time of solving the problem is a low-order polynomial 

function of the number of cities (Christofides, 1976, Lawler, Lenstra, Rinnooy Kan & Shmoys, 1985; 

Gutin & Punnen, 2002).   

Interestingly, humans are known to produce close-to-optimal solutions to E-TSP problems in time 

that is (on average) proportional to the number of cities (Graham et al., 2000; MacGregor & Ormerod, 

1996; MacGregor, Ormerod & Chronicle, 2000; Pizlo & Li, 2004; Pizlo, Rosenfeld & Epelboim, 2005; 

Vickers, Butavicius, Lee & Medvedev, 2001).  That is, the tours produced by the subjects are, on average, 

only a few percent longer than the shortest tours and the solution time is a linear function of the number 

of cities.  The two main attempts to emulate human performance by a computational model were 

undertaken by Graham et al. (2000) and by MacGregor et al. (2000).  The present study directly derives 

                                                 
1 Non-deterministic polynomial time - hard. 
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from that of Graham et al. (2000).  In particular, the model presented in this paper is an elaboration of that 

of Graham et al. 

Graham et al.’s attempt to formulate a new approximating algorithm for E-TSP was motivated by 

the failure to identify an existing algorithm that could provide a good fit to the subjects’ data.  The main 

aspect of Graham et al.’s (2000) model was its (i) (multiresolution) pyramid architecture, and (ii) a coarse 

to fine process of successive tour approximations.  They showed that performance of this model 

(proportion of optimal solutions and average solution error) is statistically equivalent to human 

performance.  Pyramid algorithms have been used extensively in both computer and human vision 

literature (e.g. Jolion & Rosenfeld, 1994; Pizlo et al., 1995), but not in problem solving.  The work of 

Graham et al. was the first attempt to use pyramid algorithms to solve TSP (Pizlo, Joshi & Graham, 1994; 

Graham, Pizlo & Joshi, 1995, 1996).  One of the most attractive aspects of pyramid algorithms, which 

make them suitable for problems such as early vision or E-TSP, is that they allow the solving 

(approximately) of global optimization tasks without performing global search.  Shortly after Graham et 

al. formulated their model, Arora (1998) described a pyramid algorithm for producing approximate E-

TSP solutions.  Arora was not interested in modeling human performance, but rather in formulating an 

algorithm that allows for trading computational complexity (speed) for error of the solution (accuracy) 

(see also the book by Gutin & Punnen, 2002, for a description of Arora’s results).  

 The next section presents an overview of the new model, called the Foveating Pyramid (FP) 

model.  A psychophysical experiment on E-TSP is described in Section 3.  Fitting FP to the results of the 

five subjects is described in Section 4.  Section 5 concludes the paper.  The appendix has a pseudo-code, 

as well as estimated worst case complexity of the new model. 

 

2. Foveating Pyramid (FP) Model 

Figure 1 illustrates two versions of a one-dimensional pyramid model.  The pyramid shown in (a) 

is conventional, in the sense that the first (bottom) layer has representation of the entire input (e.g. an 

image).  The pyramid shown in (b) is called foveating because it simulates a non-uniform distribution of 
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visual acuity.  In the human visual system, the visual acuity is inversely proportional to the distance from 

the center of the retina, fovea (Pizlo, 1988).  This dependence of visual acuity on the distance from the 

fovea is related to the non-uniform density of receptors on the retina.  The non-uniform density of 

receptors allows the visual system to avoid handling too much visual information at a time, while being 

able to have a high resolution within the fovea, and a quite large field of view in the periphery.  The 

foveating pyramid model has similar properties.  It is a conventional pyramid in a sense of having 

multiple representations of the image, the representations being different in the sizes of the receptive 

fields and their resolution.  Unlike conventional pyramids, where every layer has information about the 

entire image, in the new pyramid, the highest resolution representation (at the first layer) has information 

only about a small part of the image around its “fixation point”.  The representation on the second layer 

has information about a larger part of the image, but the information is characterized by a lower 

resolution, compared to the first layer, and so on.  This kind of “foveating” pyramid for computer vision 

applications was presented by Burt (1988).  In the implementation described by Burt, the lower resolution 

representations were produced by Gaussian blurring.  Burt’s model is illustrated in Figure 2, where the 

fixation point is marked by the center of a large cross.  The regions that are farther from the “fixation” 

point are blurred proportionally more.  Note that the image in Figure 2 is not intended to accurately 

characterize the distribution of visual acuity.  For a quantitative relationship see Pizlo (1988). 

*******Insert Figures 1 and 2 here******* 

When a human subject produces a solution to an E-TSP problem by working successively on 

individual parts of the problem, the size of the attentional window is not necessarily fixed.  It is known 

that a human observer may attend to a small part of the visual field when the details are important.  

Alternatively, she may attend to a large part of the visual field when the global aspects are of interest 

(Pizlo et al., 1995).  Our pyramid model has similar properties.  The choice about which part of the E-TSP 

problem to analyze, and how large this part should be, is established in a top-down process, in which the 

global aspects are used to guide decisions on more local representations. 
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 Before the solution process begins, the FP forms a hierarchical representation of the problem.  

The goal of building this representation is to identify clusters of cities on many levels of resolution, as 

well as to establish spatial relations among the clusters.  This is done in a top-down process, called 

bisection, which is illustrated in Figure 3.  Figure 3a (left panel) shows an E-TSP problem where several 

clearly defined clusters are present.  The right panel shows the intensity distribution after the problem was 

blurred by a Gaussian filter (the size of the Gaussian filter is not critical).  Then, for each position on the 

X-axis, the maximum intensity ImaxY(X) along the Y direction is found.  Similarly, for each position on 

the Y-axis, the maximum intensity ImaxX(Y) along the X direction is found.  Then, a minimum of each of 

these two distributions is determined (min ImaxY(X), min ImaxX(Y)) and a smaller of the two corresponds to 

the boundary between two clusters on the coarsest level (see Figure 3b, top left and top center panels).2  

Then, the process of blurring (with proportionally smaller filters) and bisecting is repeated as shown on 

the remaining panels of Figure 3b.  The bisection process ends when each city is in its own cluster.  After 

the pyramid representation is built, the solution process begins. (See Appendix for a pseudo-code and 

complexity of the algorithm).   

 The solution process starts at the top layer h in which the entire problem is represented by two 

clusters.  The initial tour involves just these two clusters.  More exactly, the tour involves centers of 

gravity of the cities within clusters.  The starting city is chosen randomly.  Then, the tour is refined 

recursively within the receptive fields that contains the starting city.  As a result, the tour is represented on 

many layers of the pyramid; different parts of the tour “residing” on layers having different spatial 

resolution.  The cities in the fovea are represented with the highest resolution, and the cities that are 

farther away in the tour from the fovea are represented with resolution that falls off gradually.  This is 

analogous to the blurring effect illustrated in Figure 2.  After the starting city and its immediate 

                                                 
2 Current model uses horizontal and vertical bisections only, and thus is rotationally variant (Bister, Cornelis & 
Rosenfeld, 1990).  In order to make the model orientation invariant, bisections with other orientations will have to 
be added.  The use of only two directions of bisection (vertical and horizontal) implies that this model may not be 
able to produce good solutions when long “strings” of cities are present, whose direction is different from the 
direction of the bisection.  This problem is likely to be removed when such strings of cities are explicitly detected 
and represented in the pyramid (see below). 
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neighborhood is described at the highest resolution, the simulated fovea is moved to the next city 

(clockwise, or counterclockwise) on the existing tour and the part of the tour “ahead” of the current city is 

projected down to layers with higher resolution so that a gradual transition between resolutions is 

maintained (the direction of the solution, clockwise vs. counterclockwise, is determined randomly).  

When a part of the tour on a layer j is projected to layer j-1, new clusters emerge.  These clusters are 

inserted into the existing tour by using cheapest insertion (Lawler et al., 1985).  Specifically, the new 

cluster (which is treated as a city) is inserted between pairs of consecutive “cities” in the existing tour, but 

only those pairs that are within k “cities” of the current city in the existing tour, are tried.  Thus, the 

parameter k represents the magnitude of local search involved in solving TSP.  The values of k in the 

range between 0 and 8 were used.  Larger values of k correspond to greater amount of local search, which 

is likely to lead to better solutions.  

******Insert Figure 3 here****** 

 At this point, the reader is encouraged to view the video illustrating the solution process 

(http://psych.purdue.edu/tsp/files/animations/Sample_BisecionPyr_50City.htm).  The video shows the 

process of solving a 50-city E-TSP problem by the foveating bisection pyramid model.  The model 

produced in this case an optimal tour.  In the demo, the parts of the tour that are shown in green 

correspond to the highest spatial resolution.  So, the green appears first around the point from which the 

model starts solving the problem.  The other parts of the tour have different shades of gray: the lighter the 

gray, the coarser the resolution.  In the regions where the spatial resolution of the problem representation 

is coarse, the tour connects centers of gravity of cities, rather than individual cities.  As the “fovea” gets 

closer to a given cluster, the cluster gets subdivided into smaller clusters, and the tour is modified so as to 

go through the centers of gravity of the new clusters.  

 A snapshot of the solution process is shown in Figure 4.  It is seen that a small part of the problem 

is already solved (this part of the tour is shown in green), while the rest is not.  Only a coarse 

approximation is available at this stage for large parts of the problem. 

******Insert Figure 4 here******  
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To summarize the main aspects of the FP model:  the FP solves an E-TSP problem in a top-down 

process of successive approximations, like the Gaussian pyramid model did (Graham et al., 2000).  The 

main difference is that FP uses much less information about the problem at any given time because only a 

small part of the problem is described with the highest resolution, at any given time.  In order to produce a 

solution to an E-TSP problem, the FP puts its fovea at one city, and then simulates the movement of the 

fovea around the problem so that it can successively “see” all parts of the problem.  The movements of 

the FP’s fovea are decided by a lower resolution representation of the E-TSP problem.  The tour 

modification on the higher resolution layers is performed by a cheapest insertion method, which is 

restricted to a local region of the tour.  Despite the fact that the “visual attention” of the foveating model 

is spatially limited, the solution tours are equally short as those produced by the Gaussian pyramid model 

of Graham et al. (2000).  The computational complexity of the FP is, in the current implementation, O(n2) 

(see Appendix).  This means that the time required to solve any given problem is, in the worst case, a 

quadratic function of the number of cities.  The average time cannot be longer than that, although it may 

be shorter.  The reader should keep this fact in mind when psychophysical results are discussed.  The 

experimenter cannot evaluate the worst case computational complexity of the mental algorithm.  The 

experimenter can only measure an average complexity. 

 

3. Psychophysical Experiment: Human Performance on E-TSP 

 In order to test the psychological plausibility of the foveating pyramid model, we performed an 

experiment, in which subjects solved E-TSP problems.  These psychophysical results were then used to fit 

the model to the subjects’ data.   

Subjects:  Five subjects, including three authors were tested.  The other two subjects (OSK and 

BSL) were naïve about the hypotheses being tested.  ZP and ZL received extensive practice in solving E-

TSP problems (ZP served as a subject in Graham et al.’s study, as well).  OSK and BSL solved only a few 
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problems before they were tested.  Ethical approval was obtained from the Institutional Review Board at 

Purdue University. 

Stimuli: Problems with 6, 10, 20 and 50 cities were used (25 randomly generated configurations 

of points were used for each number of cities).  The problems were presented on a computer screen.  The 

cities were represented by dots in a window of size 512 by 512 pixels.3

Procedure: Each subject solved the same problems in a random order.  The subject was 

instructed to produce a tour by clicking on the cities.  Specifically, he was asked to produce as short a tour 

as possible. The subject knew that the time of solutions was recorded, but the speed of solution was not 

emphasized.  The subject was free to start at any city.  He could undo the last move (recursively), or start 

over.  The time and position of each click, as well as the solution tour, were recorded.  The subject’s 

performance was evaluated by the average time per city, the proportion of optimal solutions and the 

average error of solution.  The error was computed as the difference between the length of the tour 

produced by the subject and the length of the shortest tour, normalized to the latter.  Thus, an optimal 

solution had an error of zero.  

 

Results and discussion. 

Results are shown in Figure 5.  Overall, the results are very similar to those reported by Graham 

et al. (2000).  It can be seen in Figure 5a that there is no systematic effect of the number of cities on the 

average time per city.  This means that the average solution time is proportional to the number of cities.  

This fact suggests that the computational complexity of the mental mechanisms is quite low, perhaps even 

linear - O(n).  Note, however, that the complexity of the mental mechanisms might actually be higher for 

two reasons.  First, we cannot evaluate the worst case complexity in the case of human subjects; we only 

can measure average solution time.  Since average time is not greater than the maximal time, it follows 

that the results shown in Figure 5a provide a lower bound for the worst case complexity of the mental 
                                                 
3 The programs for generating problems, collecting data, analyzing the data and testing our model can be 
downloaded from: http://psych.purdue.edu/tsp/workshop/downloads.html
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mechanisms.4  Second, one has to include the contribution of the hand movements.  Specifically, it is 

known that the movement time is proportional to the logarithm of the movement size (when the target 

size is constant).  This is referred to as Fitts’ law (Fitts, 1954).  When the number of cities is larger, and 

the area of the image within which they are generated stays the same, the inter-city distances are smaller 

and so it takes less time to move the computer mouse from one city to another.  It follows that the time of 

executing n movements is likely to grow slower than linearly with n.  As a result, when the overall time 

of solving an n-city E-TSP grows linearly with n, planning the E-TSP solution itself may actually grow 

faster than linearly with n.  The contribution of motor control to the time it takes to solve E-TSP has been 

recently evaluated by Dry, Lee, Vickers & Hughes (2006).  They showed that the contribution of motor 

control does not change the effect of the number of cities on the time it takes to solve the problem.  

Note that OSK spent more time, as compared to other subjects, in solving the problems.  This 

resulted in slightly better performance, which is shown on the next two graphs. 

****** Insert Figure 5 here ***** 

Figure 5b shows the proportion of optimal solutions as a function of the number of cities.  In the 

case of 6-city problems, the optimal solutions were produced 80-90% of the time.  In the case of 10-city 

problems, optimal solutions were produced 60-85% of the time.  This performance closely matches that in 

Graham et al.’s (2000) study.  In the case of 50-city problems, three subjects produced one optimal 

solution each (out of 25 problems).  Each of the three subjects found the shortest path for a different 

problem.  It is seen that OSK’s performance tended to be better than that of other subjects.  Recall that 

OSK had minimal experience in solving E-TSP problems.  This suggests that experience had no 

beneficial effect on performance.  It is more likely that the better performance was related to the fact that 

he took more time solving the problem.  

Is it possible that the effect of the number of cities on the proportion of optimal solutions is 

simply related to the fact that problems with more cities have more tours?  For example, a 3-city E-TSP 

has only one tour and it is the shortest tour.  A 4-city E-TSP has two different tours, but only one does not 
                                                 
4 The authors are grateful to Dr. van Rooij for raising this issue. 
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have a self intersection, and this non-self intersecting tour is the shortest tour.  It is known that subjects 

almost never produce self intersecting tours, so it is reasonable to expect that they “select” their tour from 

the set of non-self intersecting tours (van Rooij, Stege & Schactman, 2003).  The number of self 

intersecting tours depends on the distribution of cities.  If all cities are on the convex hull, then there is 

only one non-self intersecting tour (regardless of the number of cities), and this is the shortest tour.  For a 

random distribution of cities, the restriction that the tour is non-self intersecting is not very tight, 

however; there are still a large number of non-self intersecting tours.  Consider a 10-city E-TSP with a 

random distribution of cities.  Our simulation tests showed that the average non-self intersecting tour for a 

randomly generated 10 city E-TSP is 35% longer than the shortest tour, whereas the average from all 

tours is about 85% longer than the shortest tour (see MacGregor, Chronicle & Ormerod, 2004 for a 

similar argument).  Next, the longest non-self intersecting tour is 80% longer than the shortest tour, 

whereas the longest 10-city tour is on average 180% longer than the shortest tour.  Clearly, imposing a 

constraint that the tour must be non-self intersecting restricts the set of tours.  However, it is not likely 

that subjects choose randomly a non-self intersecting tour because the 10-city tour produced by subjects is 

on average less than 1% longer than the shortest tour, which is two orders of magnitude better than an 

average from non-self intersecting tours. 

Figure 5c shows the effect of the number of cities on the average error of the solution.  Solution 

error is defined as a difference between the length of the subject’s tour and the length of the shortest tour, 

normalized to the latter.  It is seen that the errors are small and they do not depend strongly on the number 

of cities.  Again, OSK’s performance was overall better than that of the other four subjects, although the 

differences among the subjects were not very large.  

 

4. Fitting the Foveating Bisection Pyramid Model 

 This model has only one free parameter and it is the magnitude k of the local search in the 

cheapest insertion method.  The model was applied to the 100 E-TSP problems used in the 

psychophysical experiment with the value of k in the range between 0 and 8.  For each problem and each 
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subject, the solution whose error was closest to that produced by a given subject was selected.  Then, the 

average error, the proportion of optimal solutions and the average estimated k were computed for each 

subject. 

 Figure 6 shows the effect of the number of cities on the average estimated k.  First, it can be seen 

that the individual variability in the estimated k is not large.  This is related to the fact that the individual 

variability in the length of the solution tours was small, as well.  Depending on the number of cities, k 

varies from close to zero to about 5.  The subjects who produced better solutions (OSK, YH) tended to 

have higher values of k.  Figure 7 shows the fit of the FP to the individual subjects’ data.  Figure 7a shows 

the average error and Figure 7b shows the proportion of optimal solutions. The FP’s performance in 

Figure 7b is based on the same solutions that optimized k values in the case of results in Figure 7a.  In 

other words, k was optimized in the case of results shown in Figure 7a, but not 7b; the fit in Figure 7b 

involved no free parameter.  Overall, the fits are quite good, which suggests that the FP provides a 

plausible explanation of the underlying mental mechanisms.  

********Insert Figures 6 and 7 here********* 

 

5. Summary 

We formulated a new pyramid model for solving E-TSP problems.  This new model (FP) solves 

approximately E-TSP problems in time that is a quadratic function of the number of cities.  The FP 

simulates the non-uniform distribution of visual acuity, as well as the movements of visual attention.  By 

comparing performance of FP with that of five subjects, we found that the model produces solutions 

whose quality (length of the tour and proportion of optimal tours) is very close to that produced by the 

subjects.  The FP analyzes and uses both global and local properties of E-TSP problems.  Global 

properties have been emphasized by MacGregor and colleagues (MacGregor & Ormerod; Chronicle, 

1999).  Local properties have been emphasized by Vickers and his colleagues (Vickers, Lee, Dry & 

Hughes, 2003).  By combining both local and global properties, the FP can find close to optimal E-TSP 
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tours by performing local search only.  As a result, the computational complexity of FP is very low and 

comparable to the complexity of mental mechanisms.  

Pyramid algorithms have been used to model human problem solving in the case of other 

problems, as well.  In a recent study, Pizlo & Li (2005) tested humans on a combinatorial problem called 

the 15-puzzle and three other variants of different sizes (5, 8 and 35 puzzle).  Similarly to E-TSP, this 

family of puzzles is computationally intractable, but humans find a path to the goal state in time that is 

only a quadratic function of the problem size.  For the 15-puzzle, the number of states is 16!/2, which is 

approximately equal to 1013.  It is obvious that a human solver cannot represent in her memory all states 

of this puzzle.  Instead, she has to focus on only a small part of the problem space at a time.  In order to 

model the mental mechanisms, Pizlo & Li (2005) used a pyramid which at any time analyzes only a small 

number of states.  In order to solve the puzzle, the model shifts its “attention” across different, but related, 

parts of the graph representing the puzzle.  The model’s performance was very similar to human 

performance.  It is tempting to speculate that pyramid algorithms capture something important about the 

architecture of cognitive functions, such as problem solving, decision making, visual perception and 

motor control (see the recent work on motor control by Kwon, Pizlo, Zelaznik & Chiu, 2005).  All of 

these cognitive functions can be formulated as optimization problems.  The search spaces are large but 

humans provide approximate solutions quickly.  Pyramids seem to be the right way to represent the 

optimization problem and then to find the global optimum without performing global search. 
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Appendix 

Below is the pseudo-code of the FP model.  The pseudo-code is followed by a table specifying 

computational complexity of the individual functions.  Figure 8 provides schematic illustration of the 

pyramid representation.   

 

BUILD-PYRAMID( map ) 
1 
2 
 

apex  CREATE-NODE( map* ) 
SUBDIVIDE( apex ) 
 
 

SUBDIVIDE( parentNode ) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

if CITY-COUNT( parentNode ) = 1 
 done 
cut  CHOOSE-CUT( region[parentNode] ) 
regions  DIVIDE-REGION( region[parentNode], cut ) 
for each r in regions
 n  CREATE-NODE( r ) 
 ADD-CHILD( parentNode, n ) 
for each child c of parentNode
 SUBDIVIDE( c ) 
 
 

SOLVE-PYRAMID( apex, k ) 
1 
2 
3 
 

tour  apex
while HAS-INTERNAL-NODES( tour ) 
 REFINE-TOUR(tour, k) 
 
 

REFINE-TOUR( tour, k ) 
1 
2 
3 
4 
5 

n  SELECT-NEXT-NODE( tour ) 
REMOVE-FROM-TOUR( n, tour ) 
for each child c of n
 position  LOCAL-CHEAPEST-INSERTION ( c, tour, k ) 
 INSERT-INTO-TOUR( c, tour, position ) 
 

CITY-COUNT(node) 
 
 

Counts the cities in the region represented by a node. 
 

CHOOSE-CUT(region) 
 
 

Determines the boundary between regions as described in  Section 2. 
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DIVIDE-REGION(region, cut) 
 
 

Divides a region into two at the specified cut. 
 

CREATE-NODE(region) 
 
 

Creates a node representing a region of the map. 
 

ADD-CHILD(parent, child) 
 
 

Links child as a child node of parent. 
 

HAS-INTERNAL-NODE(tour) 
 
 

The tour has no internal nodes when all nodes in the tour are leaf nodes. An internal 
node is a node with at least one child node. 
 

SELECT-NEXT-NODE(tour) 
 
 

This function picks the next node to refine while simulating the fovea phenomenon. 
 

REMOVE-FROM-TOUR(node, tour) 
 
 

Removes a node from the tour. 
 

LOCAL-CHEAPEST-INSERTION (node, tour, k) 
 
 

Find the locally optimal position to insert the node into the tour using local cheapest 
insertion. 
 

INSERT-INTO-TOUR(node, tour, position) 
 
 

Add the node to the tour at the specified position. 
 

 
* A map is a layout of cities represented as a list of coordinates.  

 
********Insert Figure 8 here********* 
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In the table, n is the number of cities in the problem, k is the local search parameter, and h is the height of 

the pyramid representation.  In most cases, h = Θ(log(n)).  In the worst case, h = Θ(n).  Thus, the 

complexity of building and solving is, in most cases, O(n·log(n) + n·k) = O(n·log(n)) (in the worst 

case O(n2)) and the complexity of our implementation is O(n2 + n·k) = O(n2). 

 
 
Function Name Complexity Implementation 
BUILD-PYRAMID O(n·h) O(n2) 
 SUBDIVIDE O(n·h) O(n2) 
  CITY-COUNT O(1) O(1) 
  CHOOSE-CUT O(n) O(n) 
  DIVIDE-REGION O(n) O(n) 
  CREATE-NODE O(1) O(1) 
  ADD-CHILD O(1) O(1) 
SOLVE-PYRAMID O(n·h + n·k) O(n2 + n·h + n·k)  
 HAS-INTERNAL-NODE O(1) O(1) 
 REFINE-TOUR O(h + k) O(n + h + k) 
  SELECT-NEXT-NODE O(h) O(n + h) 
  REMOVE-FROM-TOUR O(1) O(n) 
  LOCAL-CHEAPEST-INSERTION O(k) O(k) 
  INSERT-INTO-TOUR O(1) O(n) 
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Figure 1a.  One-dimensional pyramid.  Receptive fields of the individual nodes are indicated in the 

bottom by the oval shapes. 

 

 

 

 

 

Figure 1b.  Pyramid with a “fovea”.  Sizes of the smallest receptive fields are not uniform across the 

“image”.  This is similar to the non-uniform distribution of the visual acuity in the human visual system. 

 

   (a)     (b)       (c) 
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a)       b) 

Figure 2.  Illustration of the effect of non-uniform distribution of visual acuity. The fixation point in (b) is 

set on the eye of the baby Zebra on the right (the center of the white cross). Notice the blurring effect 

compared to the original image in (a).  (The image in (a) was taken from the Berkeley Image Database 

http://www.cs.berkeley.edu/projects/vision/grouping/segbench/) 
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with four clusters.  On the right, there is an “intensity 

 

 

 
Figure 3b.  The top-down (coarse-to-fine) process of determining cluster boundaries. 

 
 

  
 

 

Figure 3a.    On the left, there is a 34 city problem 
distribution” produced by Gaussian blurring. 
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Figure 4.  A snapshot from the solution process by the bisection foveating pyramid. 
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Figure 5a.  Time per city in E-TSP. 

 

 

Figure 5b.  The effect of the number of cities on the proportion of optimal solutions. 
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Figure 5c.  The effect of the number of cities on the solution error. 

 

 

 

 

Figure 6.  Estimated values of k for individual subjects and problems with different numbers of cities. 
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Figure 7a.  Model fits to the performance of individual subjects.  Average error. 
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Figure 7b.  Model fits to the performance of individual subjects.  Proportion of optimal solutions.  The 
model data was produced by using k values estimated from fitting the error (Figure 7a). 
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Figure. 8.  Schematic illustration of the pyramid 
representation. 
 

• Each of the five large squares represents a layer of 
the bisection pyramid. 

• The dots represent the cities. 
• The top layer has only one region called A.  The 

bottom layer has as many regions as there are cities.  
• A dashed line within a given layer is the cut 

representing the boundary between regions (clusters) 
detected at that layer (see Figure 7b). 

• The letters represent the regions in the order they are 
detected. 

• The lines between layers represent the connections 
between parent and child nodes.  Dots at the end of 
each line represent the center of a region. 

• B is an internal node: it does have children. 
• D is a leaf node: it has no children. 
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