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Abstract Homology groups and their generators of a 2D
image are computed using a hierarchical structure i.e. irreg-
ular graph pyramid. In this paper we show that the gener-
ators of the first homology groups of a 2D image, computed
with this pyramid based method always fit on the borders of
the regions.

1 Introduction

A region/object is a (structured) set of pixels or voxels, or
more generally a (structured) set of lower-level regions. At
the lowest level of abstraction, such an object is a subdivi-
sion, i.e. a partition of the object into cells of dimensions
0,1, 2, 3 ... (i.e. vertices, edges, faces, volumes ...) [12].
In general, combinatorial structures (graphs, combinatorial
maps, nG-maps etc.) are used to describe objects subdi-
vided into cells of different dimensions. The structure of
the object is related to the decomposition of the object into
sub-objects, and to the relations between these sub-objects:
basically, topological information is related to the cells and
their adjacency or incidence relations. Further information
(embedding information) is associated to these sub-objects,
and describes for instance their shapes (e.g. a point, respec-
tively a curve, a part of a surface, is associated with each
vertex, respectively each edge, each face), their textures or
colors, or other information depending on the application.
A common problem is to characterize structural (topologi-
cal) properties of handled objects. Different topological in-
variants have been proposed like Euler characteristics, ori-
entability, homology... (see [1]).

Homology is a powerful topological invariant, which
characterizes an object by its “p—dimensional holes”.
Intuitively 0—dimensional holes can be seen as connected
components, 1—dimensional holes can be seen as tun-
nels and 2—dimensional holes as cavities. The notion
of p—dimensional hole is defined in any dimension. In
Fig.1(a) an example of the torus is shown, which contains
one 0—dimensional hole, two 1—dimensional holes (each
of them are an edge cycle) and one 2—dimensional hole (the
cavity enclosed by the entire surface of the torus). While
subdivisions depend on sampling, noise, and data capture,
connectivity, cavities and holes are intrinsic properties of
objects. Plainly, homology is a tool to study digital spaces,
and has been applied for 2D and 3D image analysis [2]. Us-

age of homology groups and generators is a new topic and
has been recently used in image processing. Although in
this paper we use 2D images to show some nice properties
of using homology groups and their generators in studying
images, we do not encourage usage of homology groups
and generators to find connected components in 2D image,
since efficient approaches already exist [20]. However,
these ’classical’ approaches cannot be easily extended for
many problems that exist in higher dimensions, since our
visual intuition is inappropriate and topological reasoning
becomes important. Computational topology has been used
in metallurgy [9] to analyze 3D spatial structure of metals in
an alloy and in medical image processing [16] in analyzing
blood vessels. In higher dimensional problems (e.g. beating
heart represented in 4D) the importance of homology
groups and generators becomes clear in analyzing objects
(their number of connected components, tunnels, holes, etc)
in these spaces, because of the nice and clean formulations
which hold in any dimension.

Moreover, if Betti numbers (rank of homology groups)
provide the number of “p-dimensional” holes, a set of gen-
erators allows to locate them. In [18], it is shown that differ-
ent parameters influence the geometry of the generators i.e.
a generator can surround a ’p-hole” more or less closely. A
new method for computing homology groups and their gen-
erators is introduced in [19]. It uses a hierarchical structure
based on a graph pyramid which is build by using two opera-
tions: contraction and removal. The main goal of this paper
is to show that the generators build by the method in [19]
are on the borders of the regions. We show this property
by experimenting using 2D images and conjecture that this
properties will hold also for higher dimensional data.

The paper is structured as follows. Basic notions of ho-
mology and irregular graph pyramids are recalled in Sec. 2
and 3. The new method to compute homology groups and
their generators is presented in detail in Sec. 4. We finally
show some experimental results on 2D images in Sec. 6.

2 Homology

In this part, the basic homology notions of chain, cycle,
boundary and homology generator are recalled, interested
readers can find more details in [15, 23, 6].

The homology of a subdivided object X' can be defined

UIn this work we only consider CW-complexes i.e. each cell is homeo-
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Figure 1: (a) : a triangulation of the torus. (b) : a simplicial complex made of 1 connected component and containing one 1—dimensional

hole.

in an algebraic way by studying the incidence relations of
its cells. Within this context, a cell of dimension p is called
a p—cell and the notion of p—chain is defined as a sum
Z;L:bf?_ce”‘g a;c;, where c¢; are p—cells of X and «; are co-
efficients assigned to each cell in the chain. Homology can
be computed using an abelian group 2 for the coefficients
«;. Anyway, the theorem of universal coefficients [15] en-
sures that all homological information is obtain by choosing
2 = Z. It is also known [15] that for nD objects embedded
in R the homology information can be computed consid-
ering simply chains with moduli 2 coefficients (2 = Z/27.).
Note that is this case, a cell that appears twice on a chain
vanishes, because ¢ + ¢ = 0 for any cell ¢ when using mod-
uli 2 coefficients. On the following, only chains with coeffi-
cients over Z /27 will be considered.

Note that the notion of chain is purely formal and the cells
that compose a chain do not have to satisfy any property. For
example, on the simplicial complex illustrated on Fig.1(b)
the sums: a1 + a4, a3z and as + a7 + a4 are 1—chains.

For each dimension p = 0, ..., n, where n = dim(X),
the set of p—chains forms an abelian group denoted C),.
The p—chain groups can be put into a sequence, related
by applications 0, describing the boundary of p—chains as
(p — 1)—chains:

0, On—1
C, 20, 22

2 o 20,
which satisfy 0,0,—1(c) = 0 for any p—chain ¢, p = 1..n.
This sequence of groups is called a free chain complex.

The boundary of a p—chain reduced to a single cell is
defined as the sum of its incident (p — 1)—cells. The bound-
ary of a general p—chain is then defined by linearity as
the sum of the boundaries of each cell that appears in the
chain e.g. in Fig.1(b), 9(f1 + f2) = O(f1) + 0(f2) =
(a1 + a2 + a7) + (a7 + a3 + ag) = a1 + az + a3 + ag.
Note that as mentioned before, chains are considered over
7./27 coefficients, any cell that appears twice vanishes.

For each dimension p = 0. . . n, the set of p-chains which
have a null boundary are called p-cycles and are a subgroup
of Cp, denoted Z, e.g. a1 +az+a7 and ay+as+as+as are
1—cycles. The set of p-chains which bound a p-+ 1-chain are
called p-boundaries and they are a subgroup of C}, denoted
Bpeg. ai+as+a; =0(fi)and a1 + ag +as + az =
O(f1 + f2) are 1—boundaries.

morphic to a ball [15].
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According to the definition of a free chain complex, the
boundary of a boundary is the null chain. Hence, this implies
that any boundary is a cycle. Note that according to the
definition of a free chain complex, any 0—chain has a null
boundary, hence every 0—chain is a cycle.

The p** homology group, for p = 0...n, denoted Hy,
is defined as the quotient group Z,/B,,. Thus, elements of
the homology groups H,, are equivalence classes and two
cycles z1 and 25 belong to the same equivalence class if their
difference is a boundary ( i.e. z; = z2 + b, where b is a
boundary). Such two cycles are called homologous e.g. let
z1 = as+as+as+ar, zo = as+as+ag and z3 = a1 +az+
as ; z1 and 23 are homologous (21 = 29 + 9(f3)) but z; and
29 are not homologous to z3. Let H, be an homology group
generated by ¢ independent equivalence classes C1, - - - ,Cq,
any set {h1,--- ,hg | hi € C1,--- ,hq € Cg} is called a
set of generators for H,,. For example, either {21}, {22} can
be chosen as a generator of H; for the object represented in
Fig.1(b).

Note that some notions mentioned above can be confus-
ing with similar notions in the graph theory field. Tab.1 asso-
ciates these homology with notions classically used in graph
theory.

3 Irregular Graph Pyramids

In this part, basic notions of pyramids like receptive field,
contraction kernel, and equivalent contraction kernel are in-
troduced, for more details see [8].

A pyramid (Fig. 2(a) describes the contents of an image at
multiple levels of resolution. A high resolution input image
is at the base level. Successive levels reduce the size of the
data by reduction factor A > 1.0. The Reduction window
relates one cell at the reduced level with a set of cells in
the level directly below. The contents of a lower resolution
cell is computed by means of a reduction function the input
of which are the descriptions of the cells in the reduction
window. Higher level descriptions should be related to the
original input data in the base of the pyramid. This is done
by the receptive field (RF) of a given pyramidal cell ¢;. The
RF(c;) aggregates all cells (pixels) in the base level of which
¢; is the ancestor.

Each level represents a partition of the pixel set into cells,
i.e. connected subsets of pixels. The construction of an ir-
regular pyramid is iteratively local [14]. On the base level
(level 0) of an irregular pyramid the cells represent single
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Table 1: Translation of homology notions in the graph field.

’ Homology theory \

Graph theory

[ 0-cell, 1-cell, 2-cell

vertex, edge, face

] 0-chain, 1-chain, 2-chain \ set of vertices, set of edges, set of faces

’ O-cycle, 1-cycle, 2-cycle

set of vertices, closed path of edges, closed path of faces

|
|
|
|

o (] ! %\

RF(c;) reduction window

a) Discrete levels

(Go, Go)

b) Image to dual graphs

Figure 2: (a) pyramid concept, and (b) representation of the cells and their neighborhood relations by a dual pair of plane graphs at the level

0 and k of the pyramid.

pixels and the neighborhood of the cells is defined by the
4(8)-connectivity of the pixels. A cell on level k + 1 (par-
ent) is a union of some neighboring cells on level & (chil-
dren). This union is controlled by so called contraction ker-
nels (CK) [13], a spanning forest which relate two succes-
sive level of a pyramid. Every parent computes its values
independently of other cells on the same level. Thus local
independent (and parallel) processes propagate information
up and down and laterally in the pyramid. Neighborhoods
on level k + 1 are derived from neighborhoods on level k.
Higher level description are related to the original input by
the equivalent contraction kernels (ECK). A level of the
graph pyramid consists of a pair (G, G}) of plane graphs
G, and its geometric dual G}, (Fig. 2(b). The vertices of G,
represent the cells on level k and the edges of G}, represent
the neighborhood relations of the cells, depicted with square
vertices and dashed edges in Fig. 2(b). The edges of G},
represent the borders of the cells on level &, solid lines in
Fig. 2(b), including so called pseudo edges needed to repre-
sent neighborhood relations to a cell completely enclosed by
another cell. Finally, the vertices of G}, (circles in Fig. 2(b)),
represent junctions of border segments of G, The sequence
(Gk,Gy), 0 < k < his called irregular (dual) graph pyra-
mid For simplicity of the presentation the dual G is omitted
afterward.

4 Computing Homology Generators

There exists a general method for computing homology
groups. This method is based on the transformation of
incidence matrices [15] (i.e. which describe the boundary
homomorphisms) into their reduced form called Smith
normal form. Agoston proposes a general algorithm, based
on the use of slightly modified Smith normal form, for
computing a set of generators of these groups [1]. Even if
Agoston’s algorithm is defined in any dimension, the main
drawback of this method is directly linked to the complexity
of the reduction of an incidence matrix into its Smith
normal form, which is known to consume a huge amount
of time and space. Another well known problem is the
possible appearance of huge integers during the reduction

of the matrix. A more complete discussion about Smith
normal algorithm complexity can be found in [11]. Indeed,
Agoston’s algorithm cannot directly be used for computing
homology generators and different kinds of optimisations
have been proposed.

Based on the work of [4] and [21], an optimisation for
the computation of homology generators, based on the
use of sparse matrices and moduli operations has been
proposed [18, 17]. In particular, this method avoids the
possible appearance of huge integers. The authors also
observed an improvement of time complexity dropping
from O(n?) to O(n®/?), where n is the number of cells of
the subdivision.

An algorithm for computing the rank of homology groups
i.e. the Betti numbers have been proposed in [10]. The main
idea of this algorithm is to reduce the number of cells of an
initial object in order to obtain an homologically equivalent
object, made of less cells. In some special cases (orientable
objects), Betti numbers can directly be deduced from the
resulting object. However, this method cannot directly pro-
vide a set of generators. Based on this work, an algorithm
for computing a minimal representation of the border of a
3D voxel region, from which homology generators can di-
rectly be deduced have been defined in [3].

4.1 Homology Computation using Pyramids (HCP)

The HCP method proposed in [19] follows the same idea
as the methods of Kaczynski and Damiand [9, 5]: reducing
the number of cells of an object for computing homology.
Moreover, we keep all simplifications that are computed dur-
ing the reduction process by using the pyramid. In this way,
homology generators can be computed at the top level of the
pyramid, and can be used to deduce generators of any lower
level of the pyramid. The generators of the higher level can
be directly down-projected on the desired level (using equiv-
alent contraction kernels).

Starting from an initial image, an irregular graph pyramid
is build. This method is valid as long as the algorithm used
for the construction of the pyramid preserves homology.

3
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In particular, it is shown in [19] that the decimation by
contraction kernels, described in section 3, preserves
homology. Indeed, homology of the initial image can thus
be computed in any level of the pyramid, and in particular
on the top level where the object is described with the
smallest number of cells.

The HCP method is summarized into the following steps:

1 Starting from labeled image, a graph pyramid
{Go,G1,...,G} is built using contraction kernels
of cells with the same label.

2 Homology group generators are computed for G, using
Agoston’s method.

3 Homology generators of any level ¢ can be deduced from
those of level 7 + 1 using the contraction kernels. In par-
ticular, we obtain the homology generators of the initial
image.

Fig.3 illustrates the general method that we propose for
computing homology generators of an image.

S Controlling the Geometry of the
Generators

When computing homology generators with Agoston’s
method, directly on the initial image, we cannot have any
control of their geometry. More precisely, the aspect of the
obtained generators is directly linked to the construction of
incidence matrices, which is determined by the scanning
of each cell of the initial image (see [18] for a first study
of the influence of different parameters on the geometry of
generators).

We prove in this section that for 2D images, the HCP
method provides a set of generators that always fit on the
borders of a region R. In the following, an edge on the bor-
der of a 2D region is called a border edge.

First, we show that any 1—cycle in the top level of the
pyramid computed with HCP method contains only bor-
der edges. Second, we show that the down-projection of
a 1—cycle composed of border edges, is still a cycle com-
posed of border edges.

Property 1 Any 1—cycle in the top level of the pyramid
computed with HCP method contains only border edges

Proof: On the top level, a region is represented by a unique
2D cell. Hence each edge of the top level is either a border
edge or an edge linking two different borders of R (we call
it a pseudo edge).

Let z be a 1—cycle on the top level, if z contains any
pseudo edge e = (v1, v2), where v; and vo are two vertices
that stand on two different borders of R, then R is made of
at least two 2D-cells, which is not possible as any region on
the top level is made of only one cell. Hence, any 1—cycle
on the top level of the pyramid contains only border edges.
]

Let us consider Fig. 4(b), which represents the top level
of the pyramid built from the initial image represented in
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Figure 4: (a) Bottom level, and (b) top level of the pyramid.

Fig. 4(a). The subdivision is made of one 2D-cell R;; four
border edges eq, e9, €3, e4; two pseudo edges es, eg; and
four vertices. The property 1 ensures that for this subdivi-
sion, any 1—cycle can be written as «je; + ages + ages +
ageq, Where ; = 0,1, =1...4.

Property 2 The delineation of a top level 1—cycle that lies
only on borders results in a 1—cycle in the bottom level that
lies only on borders.

Proof: A 1D generator can me made out of more than one
closed path, in this case its downprojection is done sepa-
rately for each of them. The process of generator delineation
(down-projection) presented in [19] requires for each of its
closed paths:

e identifying in the bottom level the surviving edges that
correspond to the given top level edges

e adding paths connecting two identified edges, if their
associated edges from the top level share a vertex (if
two identified edges share a common vertex, no path is
added).

The identified surviving edges are guaranteed to lie on
borders because of their one to one association to their cor-
responding top level edges.

As presented in [19], each path added reconnects two
consecutive surviving edges, and is a sub-path of the equiva-
lent contraction kernel of the common vertex the two surviv-
ing edges share in the top level. Because the equivalent con-
traction kernels are trees, the added paths are unique [22].

Moreover, these paths lie on borders because:

e in the bottom level, for any two vertices of one border
there are exactly two paths that connect them and which
are made only of border edges,

e border edges are never removed [19] (just contracted or
surviving),

we can conclude that the unique path used to reconnect the
vertices of two consecutive surviving border edges is made
only of border edges. [

6 Experiments on 2D Images

We present and discuss some experiments that have been
performed on 2D images. We compute homology genera-
tors, for each region in two different ways: directly on the
initial image (bottom level), and on the top level of the pyra-
mid build on this image. Note that for visualisation purposes
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Figure 3: Computing generators of homology groups using an image pyramid.

each edge of a 1D generator is shown by pixels incident to
it.

One can note that the set of cycles obtained in Fig.5(a)
and Fig.5(b) do not surround the same (set of) 1D —holes of
the shape S. Indeed, these two sets are two different basis of
the same group H1(S): let a, b and ¢ denote the equivalence
class of cycles that surround respectively the left eye, the
right eye, and the mouth. The set of generators in Fig.5(a)
describe H1(.S) in the basis {a+b, ¢, a} whereas in Fig.5(b),
H,(S) is described in the basis {a,a + b + ¢, b}. Note that
in this figure we have put one generator (shown in black) per
image.

In Fig.6 and Fig.7 some real world images are shown. We
have first segmented the images (e.g. one can choose the
minimum spanning tree based pyramid segmentation [7]).
In principle one can build generators on these segmented im-
ages, but for clarity of this presentation we used binary seg-
mentation (Fig.6(a) and 7(a)). In these binary images white
means 1—dimensional hole. Note that for visualization pur-
poses we show with the gray color an island in Fig.6(a) that
is not a 1—dimensional hole since it is not enclosed by the
black region. The basis in Fig.6(b) and in Fig.6(c) are dif-
ferent but they are basis of the same first homology group.
The same holds for images Fig.7(b) and Fig.7(c).

The HCP generators shown in Fig.6(c) and Fig.7(b) are
nicely fitted on the borders of regions (1D —holes). Note that
the generators in Fig.6(b),6(c) and Fig.5(a),5(b) are shown
with white lines, overlaid on the original image.

7 Conclusion

The HCP method for computing homology groups and their
generators of images, using irregular graph pyramids has the
nice property that the built generators always fit on the bor-
ders of the regions in 2D images. Homology generators are
computed efficiently on the top level of the pyramid, since
the number of cells is small, and a top down process (down-
projection) delineates the homology generators of the initial
image. Some results have been shown for 2D binary images.

In future work, we plan to study geometrical properties
of homology generators computed with the HCP method for
3D images. In particular, we expect similar properties for

D :
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Figure 5: Generators overlaid on the image (a): the homology
generators computed on the initial image, (b): HCP generators.

homology generators of dimensions 1 and 2 (i.e. tunnels
and cavities). We also plan to use these "geometrically con-
trolled’ generators for object matching.
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Figure 7: (a): segmented image. Generators overlaid on the orig-
inal image (b): the homology generators computed on the initial
image, (c): HCP generators.
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Figure 6: (a): segmented image. Generators overlaid on the orig-
inal image (b): the homology generators computed on the initial
image, (c): HCP generators.
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