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Abstract. To find corresponding points in different poses of the same
articulated shape, a non rigid coordinate system is used. Each pixel of
each shape is identified by a pair of distinct coordinates. The coordinates
are used to address corresponding points. This paper proposes a solution
to a discretization problem identified in a previous approach. The polar
like coordinate system is computed in a space where the problem cannot
occur, followed by mapping the computed coordinates to pixels.
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1 Introduction

Shape as well as other perceptual properties such as depth, motion, speed and
color are important for object detection and recognition. What makes shape a
unique perceptual property is its sufficient complexity to make object detection
and recognition possible [1]. In many cases object recognition is possible even
without taking other perceptual properties into account. The animals in Fig. 1
can be recognized by humans without the need of other perceptual properties.

Object recognition has to be robust against scaling, rotation, and translation,
as well as against some deformation (e.g. partial occlusion, occurrence of tunnels,
missing parts etc). In order to recognize objects based on their shape we assume
that shapes have enough ’complexity’ to allow the discrimination between dif-
ferent objects. This ’complex’ measure has to be small for intra-class shapes (eg.
shapes of an elephant), and big for inter-class shapes (e.g. shapes of elephants vs
deers). Usually, the measure is not computed on the shapes directly, but on the
result of an image transformation. One class of image transforms that is applied
to shapes, associates to each point of the shape a value that characterizes in
some way its relation to the rest of the shape. This value can be the distance
to other points of the shape (e.g. landmarks). Examples of such transforms in-
clude the distance transform [2, 3], the Poisson equation [4], the global geodesic
function [5], and the eccentricity transform [6].
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Fig. 1. Shapes of elephants and deers (taken from MPEG7 CE Shape-1 Part B).

Having a measure for the shapes, matching methods can be employed to
decide which shapes are ’similar’. Many matching methods use a similarity value
to ’find similar shapes’ (e.g. [7–9]). Similarity values are well suited to find the
class of a shape, like the elephant class, based on labeled examples.

Assuming that we already have a shape class (e.g. elephants), and we are
interested in finding correspondence between parts/points in shapes of the same
class (e.g. trunk of an elephant), similarity values cannot be used. Some match-
ing methods produce correspondences of the used signature, usually border
points/parts (e.g. [10–12]), but finding all point correspondences based on the
obtained information is in most of the cases not straightforward or even impossi-
ble. In [7], a triangulation of the shape is used as a model, which could be used to
find corresponding points, but an a priori known model is still needed. The task
of finding correspondences of all points of the shape, is similar to the non-rigid
registration problem used in the medical image processing community [13]. Dif-
ferences include the usage of gray scale information to compute the deformation
vs. the usage of a binary shape and, the registration of a whole image (in most
cases) vs. the registration of a (in this approach) simply connected 2D shape.
In the surface parametrization community [14] a coordinate system for shapes
is defined, but articulation is not considered. In [15], for small variations, corre-
spondences between points of 3D articulated shapes are found. Recently shape
matching has also moved toward decomposition and part matching, e.g. [9],
mainly due to occlusions, imperfect segmentation or feature detection.

The approach presented in this paper is similar in concept with the one in [16],
but can handle cases where the method in [16] is not defined. We are interested
in finding point correspondence of binary shapes of objects of the same class.
It is mainly motivated by observations like: ’one might change his aspect, alter
his pose, but the wristwatch is still located in the same place on the hand’ (i.e.
shapes under an articulation create a class). We map a coordinate system to an
articulated shape, with the purpose of addressing the corresponding point (or a
close one) in other instances of the same shape. Our 2D polar like coordinate
system is created on the Euclidean eccentricity transform [6]. Each pixel of each
shape will be uniquely identified by a pair of coordinates, a ’radius’ and an ’angle’
like coordinate. Discretization results in the problems encountered in [16], where
for some pixels the coordinates cannot be computed as intended. In this paper



we propose a solution to this problem, and identify each pixel by a distinct pair
of coordinates.

The structure of the paper is as follows. In Section 2 we define the coordinate
system and describe shortly the problem of finding correspondence of points.
Section 3 recalls the eccentricity transform and its properties relevant for this
paper. In Section 4 we recall the coordinate system directly mapped to the pixels
of the shape [16]. Section 5 describes the proposed solution, with the experiments
given in Section 5.2. Section 6 concludes the paper.

2 Coordinate System: Definition, Point Correspondences

Coordinate System: a system of curvilinear coordinates [17] is composed of
intersecting surfaces. If all intersections are at angle π/2, then the coordinate
system is called orthogonal (e.g. polar coordinate system). If not, a skew coor-
dinate system is formed. Two classes of curves are needed for a planar system
of curvilinear coordinates, one for each coordinate.

The problem of mapping a coordinate system to a shape S is equivalent with
defining the following mapping:

Definition 1. (Coordinate map) A 2D coordinate map, is an injective map
coord(p) : S → R × R that associates to each point a pair of coordinates, i.e.

1. (defined) ∀p ∈ S, coord(p) is defined;
2. (distinct) ∀p,q ∈ S, p 6= q, we have coord(p) 6= coord(q);
3. (single) ∀p ∈ S, coord(p) returns a single pair of coordinates.

Finding point correspondences: consider the continuous shapes S1 and
S2, and the continuous coordinate maps coord1 and coord2 corresponding to S1

respectively S2. Given a point p ∈ S1 its corresponding point in S2 is q ∈ S2 s.t.
coord2(q) = coord1(p).

For S1 and S2 two discrete shapes, and the discrete maps dcoord1, dcoord2,
a point q ∈ S2 with the exact same coordinates as p ∈ S1 might not exist. The
corresponding point q is defined to be the one that has its coordinates ’closest’ to
dcoord1(p). As the local variation of the two coordinates might be very different
and also depend on both coordinates of q, just using the ℓ2-norm ||dcoord1(p)−
dcoord2(q)|| to find the ’closest’ coordinates is not the best solution. For example,
for polar coordinates the variation of the angular coordinate of two neighboring
pixels having the same r can be as large as the variation of the ’radial’ coordinate
between e.g. 10 pixels (the modified ℓ2-norm ||(∆r, r · ∆θ)|| cannot be used in
our case, as the variation of one coordinate depends on both coordinate values).

We employ a two step scheme (Section 4 gives details): given a point p ∈ S1

with dcoord1(p) = (c1, c2):

1. use the first coordinate to find points q ∈ S2 that have ’approximately’
the same ’first’ coordinate dcoord2(q) = (c1, c); and

2. use the second coordinate to select from the above the point that mini-
mizes the difference in the second coordinate |c − c2|.



3 The Eccentricity Transform

The definitions and properties follow [6, 18]. Let the shape S be a closed set in
R

2 (a 2D shape) and ∂S be its boundary1. A path π is the continuous mapping
from the interval [0, 1] to S. Let Π(p1,p2) be the set of all paths within the set
S, between two points p1,p2 ∈ S.

The geodesic distance d(p1,p2) between p1,p2 is defined as the length λ(π)
of the shortest path π ∈ Π(p1,p2), more formally:

d(p1,p2) = min{λ(π(p1,p2)) | π ∈ Π} (1)

where λ(π) =

∫
1

0

|π̇(t)|dt , (2)

π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1), and π̇(t) is
the differential of the arc length. A path π ∈ Π(p1,p2) with λ(π) = d(p1,p2) is
called a geodesic.

The eccentricity of a point p ∈ S is defined as:

ECC(S,p) = max{d(p,q) | q ∈ S}. (3)

The eccentricity transform ECC(S) associates to each point of S the value
ECC(S,p) i.e. to each point p it assigns the length of the geodesic path(s) to
the points farthest away.

In this paper, the class of 4-connected, planar, and simply connected discrete
shapes S defined by points on the square grid Z

2 are considered. Paths are
contained in the area of R

2 defined by the union of the support squares for the
pixels of S. The distance between any two pixels whose connecting segment is
contained in S is computed using the ℓ2-norm.

Fig. 2 shows two hand shapes (taken from the Kimia99 database [19]) and
their eccentricity transform. Note the differences on the fingers of the shapes.

•◦ •◦

Fig. 2. Eccentricity transform of two shapes from the hand class. Geodesic center
marked with ’•◦’. (gray values are the eccentricity value modulo a constant.)

1 It can be generalized to any continuous and discrete space.
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Fig. 3. Level sets made of different configurations of isolines.

Terminology: An eccentric point of a point p ∈ S is a point e ∈ S s.t.
d(p, e) = ECC(S,p). An eccentric point of a shape S is a point e ∈ S that is
eccentric for at least one point p ∈ S i.e. ∃p ∈ S such that ECC(S,p) = d(p, e).

The geodesic center C ⊆ S is the set of points with the smallest eccentricity
i.e. c ∈ C iff ECC(S, c) = min{ECC(S,p) | ∀p ∈ S}.

Properties: If S is simply connected, the geodesic center C is a single point.
Otherwise it can be a disconnected set of arbitrary size (e.g. for S = the points
on a circle, all points are eccentric and they all make up the geodesic center).
Also, for S simply connected and planar, ECC(S) has a single local/global
minimum which is C [20], and the shapes P = {p ∈ S | ECC(S,p) 6 k} for
k ∈ [min(ECC(S)), max(ECC(S))] are geodesically convex in S (proof in [20]).

Definition 2. (Level Set [17]) The level set of a function f : R
n → R, corre-

sponding to a value h, is the set of points p ∈ R
n such that f(p) = h.

For S ∈ R
2, the level sets of ECC(S) can be a closed curve or a set of dis-

connected open curves. The connected components of the level sets are called
isolines (Fig. 3).

Due to using geodesic distances, the variation of ECC is bounded under
articulated deformation to the width of the ’joints’ [10]. The transform is robust
with respect to salt & pepper noise, and the positions of eccentric points and
geodesic center are stable [18].

Computation: In [6] different methods to compute ECC(S) are presented.

4 The Pixel Mapped Coordinate System

This section recalls the method in [16] and shows the cases where it fails to
produce results.

The proposed coordinate system is intuitively similar to the polar coordinate
system, but forms a skew coordinate system. It is defined for simply connected,
planar 2D shapes, and has two coordinates denoted by r and θ.



The origin of the coordinate system is taken to be the geodesic center of the
shape S and has r = 0 (Fig. 2). r is a linear mapping from ECC(S) and increases
as ECC increases. The isolines of r correspond to the isolines of ECC(S). Closed
isolines of r have corresponding θ values of [0, 360) mapped along the isoline. For
each pixel of S the ’second’ coordinate θ is mapped as described in the following.
Note that θ is not really an angle, just denoted intuitively so.

The coordinate system is computed as follows:

1. extract ’discrete level sets’ of the ECC of S, made out of at least 8 connected
components, using:

h 6 ECC < h + 1,

for h = ⌊min(ECC)⌋, ⌊min(ECC)⌋ + 1, ..., ⌊max(ECC)⌋ (Fig. 4a);
2. map the value

r = (h − ⌊min(ECC)⌋)/(⌊max(ECC)⌋ − ⌊min(ECC)⌋),

to each ’discrete level set’;
3. decompose S into simply connected regions s.t.:

– in each region there is at most one connected component of the ’discrete
level sets’ of ECC(S);

– all isolines in the same region are either closed or all are open;
– the number of regions is minimal.

This decomposition produces regions R where ’discrete level sets’ correspond
to all ECC values from some e1, e1 + 1, ..., e2, with min(ECC(S)) 6 e1 6

e2 6 max(ECC(S)), and for each e, e1 6 e 6 e2, the pixels in R corre-
sponding to e form a single at least 8 connected set;
The region that contains the geodesic center and where all isolines are closed
paths is called the center region.
For example, the isolines of the level sets drawn in Fig. 3 belong to different
regions.

4. use a precomputed geodesic, called the zero path, that connects the geodesic
center with the border of the shape, to choose the pixel with θ = 0 on
each isoline of the center region i.e. the region where all isolines are closed
(Fig. 4b). This geodesic can for example connect the geodesic center with a
point having maximum eccentricity (Fig. 9), but could also use corresponding
border points obtained by a matching method (e.g. [10]), or can be chosen
to maximize the number of matched pixels between two given shapes S1,S2.

5. map angle values [0, 360) to each closed isoline in the center region: θ = 0 was
computed before, the other values are given proportional to the arc length,
along the same orientation (Fig. 4b);

6. for each region:
– the ’start’ and ’end’ θ of the isolines (θst, θen) in the region are obtained

by projecting the end points of the isoline with the smallest ECC to
the isoline with the highest ECC in the adjacent region with θ already
computed (Fig. 5a).

– map angle values [θst, θen) to each isoline: θst and θen is given to the end
points of each isoline, the other values are given proportional to the arc
length (Fig. 5b);
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Fig. 4. Map the coordinate system: a) discrete isolines, b) zero θ in the center region.
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Fig. 5. Start and end theta θst, θen for isolines outside the center region: a) project
from neighboring region, b) keep constant inside region.

Finding point correspondences: To find the point q ∈ S given the coordi-
nates (cr, cθ) we proceed as discussed in Section 2 (Fig. 6):

1. L = ’discrete level set’ corresponding to r;

2. find arg minq∈L{|c
′
θ
− cθ|}, where c′

θ
is the θ value associated to q.

r is chosen as the ’first coordinate’ (see Section 2) because it has a constant
variation and the obtained ’discrete level set’ does not contain more than one
pixel with the same θ. Due to its non-constant variation, choosing θ as the ’first
coordinate’ could produce many pixels with the same r (’thick’ discrete level
sets) or have r values for which no pixel was selected (disconnected level sets).

a) b)

→

Fig. 6. Finding point correspondences: a) identify level set, b) find ’closest’ point.
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a) closed isoline problem b) example shape

Fig. 7. Discretization problem.

4.1 Problems due to discretization

A reference point is a point m ∈ ∂S s.t. m ∈ π(p, e), where e is an eccentric
point of p, m 6= p, π(p, e) is a geodesic from p to e, and d(p,m) is minimal.
Reference points have the property that π(p,m) is a line segment and all points
at the same distance to e that have m as a reference point, will lie on a circle
centered at m.

The isolines of ECC(S) are made out of circle arcs, corresponding to different
reference points. Depending on the position and distance to the reference points,
these circle arcs can meet under very sharp angles. In the case of the center
region, isolines are closed in the continuous domain. For the ’discrete level set’ the
pixels are at least 8 connected, but an 8 connected closed path, where each pixel
would be passed through only once might not exist. Fig. 7 shows an example.
In this case an ordering cannot be made between the pixels, and mapping the θ
coordinate as mentioned before is not possible.

5 The Inter-Pixel Coordinate System

Instead of extracting ’discrete level sets’ made out of pixels, as mentioned in
Section 4, we propose to extract ’inter-pixel’ isolines. These isolines are polygonal
lines made out of points on the line segments that connect the pixel centers. The
inter-pixel isolines can be efficiently extracted using marching squares, the 2D
version of the classical marching cubes [21]. The eccentricity of the points on
these line segments is estimated by linear interpolation. We extract inter-pixel
isolines of the ECC of S for the eccentricity values:

min(ECC) + 0.5, min(ECC) + 1.5, ...

Inside the center region the extracted inter-pixel isolines will be non self-
intersecting, convex polygonal lines. Outside the center region, where level sets
get disconnected, each inter-pixel isoline will be a polygonal line with all angles on
the side with smaller ECC, less or equal to 180 degrees. Fig. 8 shows examples.

The inter-pixel isolines can be seen as connected paths where the ordering of
the points is given and unique, and thus we can map the new coordinate system
as follows:

1. extract inter-pixel isolines with marching squares;
2. map coordinate system as in Section 4 on the inter-pixel isolines extracted;
3. map the θ values from the isolines to the pixels (discussed below).
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Fig. 8. Inter-pixel isolines. Projection of r, θ from the isoline to the pixels.

5.1 Mapping θ values

The coordinate system has been mapped to the inter-pixel isolines. All vertices
of the isolines correspond to points with the same r and, each vertex has a unique
θ value. The next step is to map r and θ values to the pixels of the shape based
on the r and θ values on the inter-pixel isolines.

We can identify all pixels located between inter-pixel isolines corresponding
to two consecutive r values with one of the following relations (Fig. 8a):

e < ECC(S) 6 e + 1 (4)

e 6 ECC(S) < e + 1 (5)

where e, e+1 are the eccentricity values corresponding to two consecutive r values
r1, r2. The choice between Equations 4 and 5 depends on the method chosen to
compute the θ value for each pixel and is discussed below. All pixels satisfying
the chosen equation (4 or 5) are considered to have the same r coordinate.

We extract inter-pixel isolines for eccentricity values with difference one.
Thus, for each pixel the number of inter-pixel isolines crossing any of the adjacent
line segments that connect pixel centers, is maximum four and at least one.

To compute the θ value for a pixel we consider the inter-pixel isolines that
bound the pixel center and identify the following options (Fig. 8 illustrates the
used notation):

1. higher: assign θ of the closest point(s) on the isoline with higher ECC value;
2. lower: assign θ of the closest point on the isoline with lower ECC value;
3. both: assign a function of θ of the closest points on both isolines.

Considering that the inter-pixel isolines are polygonal lines with angles less
or equal to 180 degrees on the side with smaller ECC values, we can state the
following about each option above:



Fig. 9. Zero paths used in our experiments.

higher: one pixel can get more than one θ value (Fig. 8b);

lower: more than one pixel can get the same θ value (Fig. 8c);

both: could produce smoother results, but uniqueness of θ values is not guar-
anteed (Fig. 8d).

In addition, option ’higher’ cannot compute θ values for the border pixels that
have no higher eccentricity isolines, and option ’lower’ cannot compute θ values
for the geodesic center.

Going back to the definition of the coordinate system, the proposed method
to find correspondences and the 3 requirements for the coordinate map (Sec-
tion 2) we can state that properties ’defined’ and ’distinct’ are required to be
able to find a corresponding point. We can relax the requirements and give up
property ’single’, and if a pixel gets more than one θ value, consider only the
smallest one.

Following this reasoning, option ’higher’ is chosen, as it assigns distinct
θ values to all pixels having the same r.

5.2 Experiments

Fig. 9 shows the used zero path for the two hands in Fig. 2. In Fig. 10 the
isolines of the θ coordinate mapped with the method in Section 4 and the pro-
posed one (Section 5) is given. The θ values computed by the proposed method
have a smoother profile, due to the inter-pixel isolines better approximating the
continuous isolines.

A texture was laid on each hand - the source, and copied to the other one -
the destination, by finding for each pixel pd(rd, θd) of the destination the corre-
sponding pixel ps(rs, θs) in the source. Results are shown in Fig. 11. Notice the
smaller perturbation in the palm and the better mapping on the fingers.

Note that for these two shapes, the circle arcs making the isolines in the center
region do not make any sharp angles and the problem mentioned in Section 4.1
does not appear. Thus, both methods could be applied.



method [16] proposed method method [16] proposed method

Fig. 10. Isolines of θ for the two shapes, with the two methods.

source shape and texture method [16] proposed method

Fig. 11. Texture mapping experiment. Left column: source shape and texture. Right
two columns: texture mapped by corresponding points found using the two methods.

6 Conclusion

This paper considered using a non-rigid coordinate system to find corresponding
points in different poses of the same articulated shape. To each pixel distinct
coordinates are associated. These coordinates are used to address corresponding
points. A solution to a discretization problem identified in a previous approach
was proposed. Instead of mapping the coordinate system directly to the pixels,
the coordinate system is computed in a space where the problem cannot occur.
The coordinates for the pixels are computed based on the computed coordinate
system. Even smoother coordinates could be obtained by more refined mapping
from the coordinate system in the transformed space to the pixels. Extension to
non-simply connected 2D- and 3D shapes has to consider non-convex isolines,
and connected components of the level sets merging at higher ECC values.
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