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Abstract. In this paper we describe modifications of irregular image
segmentation pyramids based on user-interaction. We first build a hier-
archy of segmentations by the minimum spanning tree based method,
then regions from different (granularity) levels are combined to a final
(better) segmentation with user-specified operations guiding the segmen-
tation process. Based on these operations the users can produce a final
image segmentation that best suits their applications. This work can be
used for applications where we need accuracy in image segmentation and
in annotating images and ground truth among others. Keywords: interac-
tive, hierarchical image segmentation, irregular combinatorial pyramid,
image annotation

1 Introduction

Image segmentation cannot produce a perfect final segmentation, only by using
low-level visual cues. The reason is the intrinsic ambiguity in the exact location
of region boundaries in digital images. In general, homogeneity of low-level cues
will not map to the semantics [12], and the degree of homogeneity of a region is
in general quantified by threshold(s) for a given measure [6]. To avoid problems
with the automatic segmentation methods one can use human help to guide seg-
mentation methods, producing results acceptable by users/practitioners. Most
interactive or semi-automatic segmentation algorithms found in literature make
use of this external knowledge, some of them e.g. Snakes [11], Live Wire (or Intel-
ligent Scissors) [15] and recent approaches based on the Graph Cuts formalism [1,
16, 2] are well known. They are often used in e.g. medical image segmentation,
image or video object extraction and to refine or improve results from automatic
methods.

But the notion of ’interactive’ is ambiguous and not very well defined. Some
of the methods are initialized (e.g. statistic shape models, rule sets, training
sets) others use seed points or strokes for guiding and limiting a segmentation
process [9]. Besides initialization, existing methods can also be categorized ei-
ther as optimizing (manually guided, influenced) or post-processing methods
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(manually corrected, modified) [10]. The work presented in this paper is located
between the last two categories. It uses user-interaction to guide the minimum
spanning tree (MST) based pyramid segmentation [8]. The MST-based segmen-
tation method produces a stack of (dual) graphs (a graph pyramid) [8] on each
level of the pyramid (Fig. 2). Each level of this hierarchy corresponds to one
image segmentation. Regions from different levels of the segmentation pyramid
are combined by user interaction resulting in a modified pyramid containing
the ’final good’ segmentation at top. In the regions where the user did not set
any operation of modification, the algorithm will be guided automatically by a
pairwise comparison of region similarity [5].

Meine et al [14] use the topological GeoMap representation and user inter-
action to guide a segmentation method in the medical image analysis. The use
of a topologically correct representation has a major impact on the processing
and its results. This motivated us to use combinatorial maps, as a topological
representation. The authors in [13] interactively modify a hierarchical watershed
segmentation, which is similar to our user modification(s) of the MST based
segmentation hierarchy. In our case we can, if needed, access each pixel, which
is not the case in the work of [13].

The paper is structured as follows. We first give a short overview of the
combinatorial maps and combinatorial pyramids (Section 2). After that the op-
erations that a user can set are presented in Section 3.1, in Section 4 we show
some results and conclude the paper.

2 Combinatorial Image Pyramids

In this section a short overview of the most important concepts of combinatorial
image pyramids are given. Combinatorial maps and generalized combinatorial
maps define a general framework which allows to encode any subdivision on nD
topological spaces orientable or non-orientable with or without boundaries [3].
Using 2D images, combinatorial maps may be understood as a particular encod-
ing of a planar graph, where each edge is split into two half-edges called darts.
Since each edge connects two vertices, each dart belongs to only one vertex. A
2D combinatorial map is formally defined by the triplet G = (D, σ, α) [4] where
D represents the set of darts and σ(d) is a permutation on D encountered when
turning clockwise around each vertex. Finally α(d) is an involution on D which
maps each of the two darts of one edge to the other one. Given a combinatorial
map G = (D, σ, α), its dual is defined by G = (D, ϕ, α), with ϕ = σ ◦ α. The
cycles of permutation ϕ encode the faces of the combinatorial map. In what it fol-
lows, the cycles of α, σ(d) and ϕ contain g a dart d will be respectively denoted by
α∗(d), σ∗(d) and ϕ∗(d) (an example of a combinatorial map is shown in Fig. 1).
Thus all graph definitions used in irregular pyramids are analogously defined.
A combinatorial pyramid is a stack of combinatorial maps successively reduced
by the set of contraction and removal operations, that is, (G0, ..., Gk), where k
represent the levels of the pyramid. Each map k+ 1 is build from the one below,
k, by selecting a set of contraction kernels Kk,k+1 and applying it to a given
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Fig. 1: An example of a combinatorial map. The image of the house and its
relations are described with permutations on the dartset D. The infinite face
f∞ϕ is encoded with the orbit ϕ∗(−2) = (−2, 1).

combinatorial map Gk to get the reduced Gk+1 = C[Gk,Kk,k+1] = Gk \Kk,k+1.
More on removal of the redundant edges can be found in [3].

Region adjacency graphs (RAG), dual graphs [8], combinatorial maps [7],
and GeoMap [14] have been used before [3] to represent the partitioning of 2D
space. From these structures, we use the combinatorial maps because RAGs
cannot correctly encode multiple boundaries and inclusions. Dual graphs lack
the explicit encoding of edge orientation around vertices, which is present in a
combinatorial map [3](e.g. Fig. 1). Moreover with combinatorial maps, its dual
must not be explicitly represented because one combinatorial map is enough to
fully characterize the partition and can be easily deduced.

3 Interactive Operations on Pyramids

Usually, automatic segmentation methods will not be able to deliver a final seg-
mentation that is acceptable by the users (see Fig. 3). Thus there is a need to
perform a user interaction such that one can produce a better image segmenta-
tion. We have chosen a (hierarchical) pyramid based segmentation method where
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Fig. 2: Left: Hierarchical Segmentation of person; Right: Discrete levels with the
merging tree. Interactive operations combine regions from different segmenta-
tions in different levels of the pyramid. Green vertex represent a region inhibited
from merging in further processing, and red vertices are chosen to get merged.
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Fig. 3: Image segmentation with automatic segmentations method [8]; a) Due to
lack of contrast bird is merged with meadow; b) Due to the thin structure the
Danube river disappears.

we define user operation which will guide the merging and division by using re-
gions in different level of the pyramid to a final acceptable image segmentation.
The irregular (combinatorial) pyramid [7] produces automatically a stack of
image segmentations (only some levels are shown in Fig. 3). The segmentation
results are produced automatically by merging processes that take low-level cues
(in this example RGB color values) into consideration [5]. At the beginning, the
user will choose one of the levels of the pyramid called working-level that suits
her requirement the best, and start the process of manually changing the image
segmentation by merging and/or division operations. Note that in our pyramid
all these manual operations will change the merging tree. In this work the user
can set focus on region(s) lying in different levels of the pyramid (having differ-
ent granularities). On these regions the user can define modifying operation(s)
that will guide the processes in changing the merge tree in the pyramid . This
results in a stack of segmentation images where the final (wished) segmentation
is at top of the pyramid. Because we keep the hierarchy it is always possible to
decompose the object into its subparts or restart the process for further refine-
ment. Instead of doing this with unpredictable result (e.g. effect of a stroke in
Graph Cuts) we explicitly can address each region in the merging tree (up to
the pixel level if needed) while non restricting the flexibility of the algorithm in
merging (other) non selected (not in the focus) regions automatically.

3.1 Modifying Operations

The manual image segmentation process consists of two parts:

– building the irregular pyramid based on the MST [8, 7], and
– a user interface where the user places its modification operations.



a) Brush mode b) Merge mode c) Explore mode

Fig. 4: User interactions. a) Using brush mode (red line) for effectively applying
operations (encircle bird), b) Merging regions by selection (yellow - first selected
region, violet - region to be selected), c) Dividing the region into its component
and restoring the birds beak (indicated with yellow).

The framework uses as input the original image, its stack of automatically
generated segmented images at different levels (e.g. images in Fig. 3), their label-
ing and the hierarchical information (merging tree) of the regions. Images and
its structure are represented as (attributed) combinatorial maps.

Modifying relations between regions, requires the creation of a correspon-
dence between the user-operations based on regions in the user interface (visual
representation) and their combinatorial map correspondent. This information is
given by the structural description of the image relations, inherently encoded
in its primal and dual combinatorial maps. To get the interpixel-boundary e.g.
between the roof (region 1) and the wall (region 2) in Fig. 1 in the primal or
the edge representing the adjacency in its dual is calculated through permuta-
tions on the darts in D. Each region is represented in the primal by a dart ∈ D
and its orbit ϕ∗ describing the boundary. These darts (aligned around a vertex
corresponding to this region) encode also the links to the neighbouring regions
in the dual. Therefore the joining edge for e.g. merging two regions is calculated
through iterating the ϕ∗ permutations each until both darts are on the same
edge ∈ α. This transformation from regions to edges is necessary because the
operations placed in the user interface implicitly describe what to do with the
available region information (labeling). The representation in terms of combi-
natorial maps explicitly defines what to be modified. In the presented work we
need only the concept of regions’ boundary in order to define the user opera-
tions. Thus, the idea is general and can be implemented also on other topological
representations like region adjacency graphs, dual graphs [8] etc. Therefore this
approach is not limited to the image representation with combinatorial maps
even though it strongly benefits from them.

The operations for the purpose of modifying the relations between the regions
are placed in the user interface either by separate selection or brushing over them
(e.g. Fig. 4). The two fundamental operations that can be applied on adjacent
regions r1 and r2 for guiding the segmentation process are:

– mrg(r1, r2): merging regions r1 and r2



– imrg(r1): inhibition of merging r1 with other regions in the segmentation
levels above

One can define other operations as a combinations of these two basic mod-
ifying operations. Since we exert influence on the merging tree, merging solely
does not implicate that the resulting region will be inhibited automatically since
the algorithm can decide to merge it in higher levels of the pyramid. Through
nesting other combinations of operations are possible:

– imrg(mrg(r1, r2)): merge and inhibit the resulting region,
– imrg(r1, r2): inhibit both from merging with other regions, etc.

Since we use a hierarchical representation, it is also possible to select re-
gions at different granularity from multiple levels. The basic way of doing this is
traversing through all the pyramid, the other one is the so called ’explore’ mode,
intended to traverse down only within the receptive field of a single region. This
can be used as a way of applying operations in higher levels on previously merged
regions (at lower level of granularity). Its main purpose is splitting them up again
while e.g. inhibiting the current state (Fig. 4, right). It is also possible that some
regions (or their receptive fields) overlap which can lead to conflicts e.g. merging
two regions and one of them is inhibited at the same time, which is not possible
to achieve. We resolve these conflicts by analyzing the combinatorial map and
the relations of region(s) under operation i.e. the affected edges (see Section 3.2
for more details). Thus we avoid cases where an edge must be deleted because
of merge operation of two regions and at the same time preserved by inhibition
operation.

Some more combination of operations and input methods are possible (see
Section 5), but the listings above should be understood as an outline of the
versatility of the framework. Finally a set of operations, each entry looking like
the pattern Lv., Op., R1[, R2] describes Level, Operation, affected Region 1 and
Region 2 and is passed on to the segmentation framework.

3.2 Building Segmentation

To make the operations take effect on the merging tree it is fundamental to
explain that they are not simply propagated upwards. The pyramid is recalcu-
lated including the changes and therefore we need to start from a level where the
candidate-edges for a contraction are determined. In the automatic run (without
user operations) we always start from the input image and at the base level. In
the segmentation framework first the smallest weighted edges are collected for
building a Minimum Spanning Tree (using Bor̊uvka’s algorithm) [8]. The deci-
sion whether two components (vertices connected by edge) are merged is guided
by comparison of region similarity [5].

For retrieving the edges affected by the interactive operations this selection
level mentioned before is determined by the lowest one among all operation levels.
Reason for that is because everything above in the pyramid (each combinatorial
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Fig. 5: The combinatorial map from a segmentation in a lower level (than Fig. 1)
of the hierachy.

map and level in the hierarchy) has to be recalculated and therefore deleted.
As a consequence of this, the affected regions of the operations placed in levels
above the starting level in the merging tree have to be processed be equal.

This in turn implies because of former contractions within the receptive field
of the original region that it may split up again into smaller parts (Fig. 5).
The recalculation of the operations to an equivalent instruction set is achieved
with the hierarchical information, through permutations on D with ϕ and set
operations and shown in the following example:

By comparison between Fig. 1 representing a higher level in the hierarchy
and Fig. 5 the common starting level below the wall of the house region 2 splits
up again into region 2 and 3 whereas the boundary of the roof remains the
same. When applying e.g. the operation imrg(mrg(1, 2)), meaning ’merge region
1 (roof) and 2 (wall) in Fig. 1 and inhibit the resulting region from merging’ we
can see that this operation leads to a different/non corresponding result when
applied on the combinatorial map in Fig. 5.

Starting from the region/subregion relation and its ϕ permutation, the cor-
responding darts (or edges) can be reconstructed this way:
There are three different categories (enumeration below) and two collections

(inhibition and removal) necessary to process the operation correctly:

1. Former Contractions: in each set of R1, R2 some darts are one the same
edge (identified with permutation α and therefore adjacent in its dual graph).
These will be remembered for removal e.g. (7,−7)

2. User Operations:

– all remaining represent the outer borders for each region R1, R2, these
will be remembered for inhibition, e.g. the darts (3,−3)(5,−5),(2,−2)(4,−4)
and (6,−6), (5,−5)

– now take the darts/edges from the outer borders of each region. Again
applying a comparison with α yields again two darts occurring in each
subset and lying on the same edge. This is the one we contract and will
be remembered for removal, e.g. (5,−5)

As observed the edge (5,−5) is assigned to both instruction sets and would lead
to a conflict. Because we intended to merge, a rule decides that this one will be



a) Focus is set on the bird b) Focus is set on the river

Fig. 6: Final segmentation after user interaction on the segmentation hierarchy.

removed. For the other operations the assignment to the collections is also well
defined. On rebuilding the edges marked for removal are processed in separate
levels not to interfere with the existing procedure (MST method) and stepwise
removed by the contraction kernel until the next selection phase is initiated.

The remaining are throughout the levels inhibited from merging. At this
stage it is required to recalculate the remaining inhibition operations since their
region index has changed due to merging or internal renumbering. The upward
propagation and the selection of edges is executed as long as the segmentation
framework decides (based on image data) to remove some.

The resulting segmentation pyramid considers the selected regions and oper-
ations, resulting in a new final segmentation at top. Now a final state is reached,
however this level can also be used to build a new hierarchy e.g. for creating
a nested image annotation, by locking all levels below the top of the pyramid
and iteratively merge the remaining regions. In contrast to other tools (e.g. la-
belme[17]) where each level of abstraction has to be created separately, this is
an enormous simplification.

4 Segmentation Results

We show by means of some images the usage of the framework. We had first to
define what is the focus and which objects are of interest.

To produce the result in Fig. 6a two rebuilds of the pyramid were necessary.
A detailed set of user operations applied are shown in Table 1. The brush was
used to encircle the bird (Fig. 4a) in a level of the pyramid with a fine seg-
mentation. This causes that a limiting boundary is created. Inside of the area
of interest and outside of it the algorithm merges the regions (i.e. removes the
edges) automatically. In the second, the bird region is inhibited from merging,
whereas the rest of the images is merged guided by the automatic segmentation
to get a ’clean’ background. In an aerial image of the Danube river (Fig. 3), we
were looking to segment the river properly. Some parts of the river were correctly
segmented in higher levels, thus these region are inhibited in our first manual
interaction. In the thinner branches correction at pixel level was necessary (Fig.



Image Run Input # Op. Lv.# Clicks Time

1, bird 1. brush 72 imrg(mrg)
1

1
2. select 1 imrg(mrg) 1

2, river 1. select 24 imrg(mrg)
8

48
select 6 imrg 1

2. select 3 imrg 1 1

Table 1: Segmentation results in Fig. 6. Lv. # stands for number of different
levels modified, # Op. is the overall sum of operations.

3). Thus we needed 48 clicks (third entry in Table 1). The final segmentation
result is shown in Fig. 6. The final segmentation delivered by this framework
can be easily annotated with labels. Since we have a hierarchical representation
(the merging tree) one gets a nested annotation tree from the framework very
easily.

5 Discussion

There is no straightforward strategy implied by the framework, on how to pro-
ceed with user-defined modification operations. Depending on the object(s)/region
of interest where the user wants to set the focus on, the following ways can lead
to the same segmentation result:

– select different regions from different levels,
– encircle object of interest with the brush (or selection),
– limit/fill-out object of interest using the brush (or selection),
– start from a coarse segmentation of the object and then split up, etc.

One can choose to combine one of the above to have a hybrid approach.
Explicitly defining what to be done might cause that an object not denoted, but
correctly segmented in the initial fully automatic run, will get lost.

It is also possible to start from or correct an existing segmentation, produced
by other segmentation methods. We need only the border of the regions and
establish a mapping to the corresponding combinatorial edges. A solution for
this problem would be to reconstruct the merging tree with use of the labeling
of the input and segmentation image given by a different segmentation method.
Out of the receptive fields of each region, operations (e.g. imrg(mrg(r1, r2))) can
be created to recalculate the intermediate levels.

The processing takes around a minute on images with 500 × 500 in a PC
(2Gz processor with 2GB memory). We will evaluate this framework in the
terms of user usability. A straightforward comparison with other frameworks is
difficult since each approach is different and intended for different applications.
Nevertheless the framework can be used easily for image/video annotation as
well as for making ground truth.



5.1 Conclusion

The approach of interactively modifying an irregular pyramid by guiding it
with user-specified operations is introduced. In contrast to a post-processing
approach, the presented framework delivers in combination with the operations
guided by the user good final segmentation results. The various strategies of
interactions and the solutions developed for effective processing has been dis-
cussed.
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