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Abstract

This report considers using a non-rigid coordinate system to find corresponding points in
different poses of the same articulated 2D shape. The shape-centered coordinate system
is mapped on top of the eccentricity transform of the shape, which uses maximal geodesic
distances and is bounded under articulation. The isolines of the eccentricity transform
are used as one of the coordinates, the radial-like, and the other one, the angular-like, is
stretched to compensate for changes in the widths of parts. The polar-like coordinate system
is first computed on inter-pixel isolines and then mapped to the pixels. The angular-like
coordinates are aligned using the 1D signals of the eccentricity values along the boundaries
of the two shapes. Correspondences between points are established by minimizing the
difference of their coordinates. Detecting failed correspondences is done using an adaptive
threshold which adjusts to the changing local variation of the coordinates. Experimental
results are shown on a set of hand poses, ranging from minor movement to touching or
missing fingers.
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Figure 1: Shapes of elephants and deers (taken from MPEG7 CE Shape-1
Part B).

1 Introduction

Shape as well as other perceptual properties such as depth, motion, speed,
and color, are important for object detection and recognition. What makes
shape a unique perceptual property is its sufficient complexity to make object
recognition possible, often without any additional cues [24]. For example,
the mammals in Figure 1 can be easily recognized by humans based only on
their shape. Motivated by the discriminating power of shape, the problem of
shape matching has received a lot of attention [20, 3, 29, 10, 22]. Given two
shapes, the task is to compute a similarity measure that has a higher value
if the shapes belong to objects of the same class, and a lower one otherwise.
Shapes can appear at different scales and orientations, different articulated
poses, etc. Based on labeled examples, shape matching can be used to predict
the class of a query shape or find similar looking ones.

Assume we are given two shapes of the same class, or two shapes corre-
sponding to different poses of the same transformed object (scaled, rotated,
articulated). If we are interested in finding correspondences between their
points a shape similarity value does not help. While some matching methods
produce correspondences of the used signature, usually border points/parts
(e.g. [20, 3, 29]), finding all point-correspondences based on the obtained in-
formation is in most cases not straightforward or even impossible. In [9] a
triangulation of the shape is used as a model, which could be used to find
corresponding points, but an a priori known model is still needed.

Motivated by observations like: “one might change his aspect, alter his
pose, but the wristwatch is still located in the same place on the hand”,
we address the problem of mapping a coordinate system to an articulated
shape, with the purpose of addressing the corresponding point or a close one
in other instances of the same shape. We study the case where only the two
shapes are known, and except one optional boundary pixel, the coordinate
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systems are mapped independently to each shape1.
Our 2D polar-like coordinate system is mapped on top of the Euclidean

eccentricity transform [16]. Each pixel of a shape is uniquely identified by
a pair of coordinates, a “radius” and an “angle” like coordinate. The coor-
dinate system is first computed on inter-pixel isolines and then mapped to
the pixels, which avoids a discretization related problem in a previous ap-
proach [15]. The zero of the angular-like coordinates are aligned in advance
using the 1D signals of the eccentricity values along the boundaries of the
two shapes. A locally determined threshold which adjusts to the changing
local variation of the coordinates is used to detect failed correspondences.

The task of finding correspondences of all points of the shape is similar
to the non-rigid registration problem used in the medical image processing
community [8]. In this work, gray level information is used to compute the
deformation and to register (in most cases) a whole image. In our approach
we consider the registration of all pixels (the interior) of a binary, simply
connected 2D shape. In the surface parametrization community a coordinate
system for shapes is defined, but articulation is not considered [6]. In [18],
for small variations, correspondences between points of 3D articulated shapes
are found.

A preliminary version of this work was presented in [14], which was ex-
tended with the coordinate system for continuous shapes, the method to
align the zeros of the angular-like coordinate, the detection of failed corre-
spondences, and additional experimental evaluation.

The organization of the report is as follows. Section 2 recalls the ec-
centricity transform and its properties relevant for this report. Section 3
briefly recalls the concept of coordinate system and the problem of finding
correspondences between points. In Section 4 we give the definition of the
proposed coordinate system in the case of continuous shapes, and discuss
discretization options, alignment, and failed correspondences in Section 5.
We show experiments in Section 6, followed by discussion in Section 7, and
conclude the report in Section 8.

2 The Eccentricity Transform

The definitions and properties follow [16, 19]. Let the shape S be a closed
set in R

2 (a 2D shape). A path π in S is the continuous mapping from the

1As opposed to also having a number of point-correspondences uniformly covering the
two shapes, where for example interpolation could be used to estimate the correspondence
for any point.
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interval [0, 1] to S. Let ΠS(p1,p2) be the set of all paths within the set S,
between two points p1,p2 ∈ S.

The geodesic distance dS(p1,p2) between p1,p2 is the length λ(π) of the
shortest path π ∈ ΠS(p1,p2):

dS(p1,p2) = min{λ(π(p1,p2)) | π ∈ ΠS} (1)

where λ(π) =

∫ 1

0

|π̇(t)|dt ,

π(t) is a parametrization of the path from p1 = π(0) to p2 = π(1), and π̇(t)
is the differential of the arc length. A path π ∈ ΠS(p1,p2) with λ(π) =
dS(p1,p2) is called a geodesic.

Definition 2.1. (eccentricity) The eccentricity of a point p ∈ S is defined
as:

ECC(S,p) = max{dS(p,q) | q ∈ S}. (2)

Definition 2.2. (eccentricity transform) The eccentricity transform2 ECC(S)
associates to each point of S the value ECC(S,p) i.e. to each point p it as-
signs the length of the geodesic path(s) to the point(s) farthest away.

An eccentric point of a point p ∈ S is a point e ∈ S s.t. dS(p, e) =
ECC(S,p). An eccentric point of a shape S is a point e ∈ S that is eccentric
for at least one point p ∈ S i.e. ∃p ∈ S such that ECC(S,p) = dS(p, e).

The geodesic center C ⊆ S is the set of points with the smallest eccen-
tricity i.e. c ∈ C iff ECC(S, c) = min{ECC(S,p) | ∀p ∈ S}.

2.1 Properties of the eccentricity transform

The eccentricity transform is part of a greater class of shape transforms,
associating to each point/pixel a function of the distances to other points
of the shape. Examples include the distance transform [26, 4], the Poisson
equation [12], and the global geodesic function [2].

For a shape S simply connected and planar, the geodesic center C is a
single point which is the global minimum of ECC(S) ([13], Property 23).
Otherwise it can be a disconnected set of arbitrary size (e.g. for S being the
points on a circle, all points are eccentric and they all make up the geodesic
center).

Definition 2.3. (level set) The level set of a function f : Rn → R, corre-
sponding to a constant value h, is the set of points p ∈ R

n such that f(p) = h.

2Also known as the propagation function [30].
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For S ∈ R
2, the level sets of ECC(S) can be a closed curve or a set of

disconnected open curves.

Definition 2.4. (isolines) The connected components of the level sets are
called isolines.

Figure 3 shows an example of isolines.
A reference point of a point p ∈ S is a point m on the boundary of S,

m 6= p s.t. m is on the geodesic from p to its eccentric point e, and d(p,m)
is minimal (m is closest to p in terms of the geodesic distance d). Reference
points have the property that π(p,m) is a line segment and all points at
the same distance to e that have m as a reference point, will lie on a circle
centered at m. As a result, the isolines of ECC(S) are made out of circular
arcs, corresponding to different reference points.

For S simply connected and planar, the shapes Pk = {p ∈ S|ECC(S,p) 6
k} for k ∈ [min(ECC(S)),max(ECC(S))] are geodesically convex in S [13] 3.
As a result, the isolines corresponding to k have ’the smaller angle’ on the
inside of Pk (the unit normal vector points towards the inside of Pk).

Due to using geodesic distances, the variation of ECC is bounded under
articulated deformation to the width of the “joints” [20]. The positions of
eccentric points and geodesic center are robust w.r.t shape distortion [19].

2.2 Discrete shapes and their eccentricity transform

In this report, the class of 4-connected, planar, and simply connected4 dis-
crete shapes S defined by points on the square grid Z

2 are considered.
Geodesics in S are contained in the area S ′ ⊂ R

2 enclosed by the polygon
connecting the centers of the boundary pixels of S. The distance between any
two pixels whose connecting segment is contained in S ′ is computed using
the ℓ2-norm.

The eccentricity of a pixel of the discrete shape S is:

ECC(S,p) = max{dS
′

(p,q) | q ∈ S}. (3)

i.e. the only points considered are the ones of S but the geodesics are con-
tained in S ′, thus ECC(S) is a regular sampling from the corresponding
continuous eccentricity transform ECC(S ′).

3A subset P of S is said to be geodesically convex if for every p1,p2 ∈ P , the geodesic
π(p1,p2) is contained in P [23].

4The continuous shape in R
2 obtained by the union of the squares of size one, centered

at the points of Z2 belonging to the shape is simply connected.
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•◦ •◦

eccentricity values (extract)

Figure 2: Left: Eccentricity transform of two shapes from the hand class
(gray values are the eccentricity value modulo a constant). Geodesic center
marked with ’•◦’. Right: for the first hand (straight thumb), extract of
eccentricity values around the geodesic center – discrete isoline with ECC
values in [60.87, 61.87) emphasized, the geodesic center has ECC 60.37.

Definition 2.5. (discrete level set and isoline) The discrete level sets of the
ECC(S) are the sets given by:

h− o 6 ECC(S) < h+ 1− o

for h = ⌊min(ECC(S))⌋, ⌊min(ECC(S))⌋+1, . . . , and a fixed offset o ∈ [0, 1)
which is used to control the thickness of the discrete level set containing the
geodesic center. The 8-connected components of the discrete level sets are
called discrete isolines and correspond to isolines in the continuous domain
S ′.

As the continuous isolines are made of circular arcs defined by the Eu-
clidean distance to the corresponding reference points, selecting pixels in a
distance interval of the form [h, h+1) produces 8 connected discrete curves [1].

Figure 2 shows two hand shapes (taken from the Kimia99 database, [27])
their eccentricity transform and one table with the eccentricity values around
the center. Note the articulation of the thumb.

2.3 Computation

The geodesic distance function [30] DS(p) with a starting point p, computes
the geodesic distance of all points of a shape S to the point p, and is the main
tool used for computing ECC(S). For 2D shapes DS(p) can be efficiently
computed using discrete circles [16] or the fast marching algorithm [28]. Effi-
ciently estimating ECC(S) using evaluations of DS(p) is discussed in [16].
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3 Coordinate System: definition, point cor-

respondences

A system of curvilinear coordinates is composed of intersecting surfaces. If all
intersections are at angle π/2, then the coordinate system is called orthogonal
(e.g. the polar and Cartesian coordinate systems). If not, a skew coordinate
system is formed. Two classes of curves are needed for a planar system of
curvilinear coordinates, one for each coordinate.

The problem of mapping a coordinate system to a shape S is equivalent
with defining the following mapping:

Definition 3.1. (Coordinate map) A 2D coordinate map, is an injective map
coord(p) : S → R×R that associates to each point a pair of coordinates i.e.

1. (defined) ∀p ∈ S, coord(p) is defined;

2. (distinct) ∀p,q ∈ S, p 6= q, we have coord(p) 6= coord(q);

3. (single) ∀p ∈ S, coord(p) returns a single pair of coordinates.

Consider two continuous shapes S1 and S2, and the continuous coor-
dinate maps coord1 and coord2 corresponding to S1 and S2, respectively. S2

can be a translated, rotated, scaled or/and by articulation deformed verison
of S1. Given a point p ∈ S1 its corresponding point in S2 is q ∈ S2 s.t.
coord2(q) = coord1(p).

For two discrete shapes S1 and S2, and the discrete maps dcoord1 and
dcoord2, a point q ∈ S2 with exactly the same coordinates as p ∈ S1 might
not exist. The corresponding point q is defined to be the one that has its
coordinates ’closest’ to dcoord1(p). As the local variation of the two coor-
dinates might be very different and depends on both coordinates of q, just
using the ℓ2-norm ||dcoord1(p)−dcoord2(q)|| to find the ’closest’ coordinates
is not the best solution. For example, for polar coordinates the variation of
the angular coordinate of two neighboring pixels having the same r can be
as large as the variation of the ’radial’ coordinate between e.g. 10 pixels5.

We employ a two step scheme (details follow in Section 5.3): given a point
p ∈ S1 with dcoord1(p) = (rp, θp):

Step 1 use the first coordinate (rp) to find the points q ∈ Q ⊂ S2, dcoord1(q) =
(rq, θq) that minimize |rp − rq|; and

5The modified ℓ2-norm ||(∆r, r ·∆θ)|| which is valid for polar coordinates [17], cannot
be used in our case, as the variation of one coordinate depends on both coordinate values.
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Step 2 use the second coordinate (θp) to choose from the preselected points
Q the point that minimizes the difference in the second coordinate
|θq − θp|,q ∈ Q.

4 Eccentric Polar Shape Coordinates (EPS)

for Continuous Shapes

In the following we define the coordinate system for continuous domains S to
support the understanding of the discrete cases targeted by our work. The
rest of the article considers S to be a discrete shape.

We are interested in a coordinate system that is rotation and scale in-
variant, robust 6 with respect to articulation and changes in the geometry
of parts (e.g. thickening of a finger), and have certain local invariance to
addition/removal of parts (e.g. missing the tip of a finger).

The proposed coordinate system is intuitively similar to the polar coor-
dinate system, but forms a skew coordinate system. It is defined for simply
connected, planar 2D shapes, and has two coordinates denoted by r and θ.
The origin of the coordinate system is taken to be the geodesic center of
the shape S (Figure 2). In the following we introduce the required notions,
followed by the definitions of the two coordinates, r and θ.

4.1 Prerequisites

Let S be a simply-connected planar shape without an isthmus, a narrow part
of the shape, the removal of which disconnects the shape.

Definition 4.1. (descendant/ascendant) An isoline L2 of ECC(S) with
ECC value e2 (i.e. ∀p ∈ L2, ECC(p) = e2) is said to be a descendant of an
isoline L1 of ECC(S) with ECC value e1 < e2 iff there exist p1 ∈ L1,p2 ∈
L2 and a path π ∈ ΠS(p1,p2) such that ECC(S, π(t1)) < ECC(S, π(t2)) for
any 0 6 t1 < t2 6 1. The isoline L1 is said to be an ascendant of L2.

Intuitively L2 is a descendant of L1 if one can travel inside S from L1

to L2 following a path with strictly ascending eccentricity values. E.g. for
the hands in Figure 2 two isolines on different fingers are descendants of the
geodesic center, but none of them is a descendant of the other.

Definition 4.2. (decomposition) Given a shape S and its eccentricity trans-
form ECC(S), the shape S is decomposed into connected regions ∪Pi = S,

6i.e. small changes of the shape will result in a small change in the coordinate system.
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h1

h2

h3

single closed isoline h1

single open isoline h2

many open isolines h3

Figure 3: Level sets made of different configurations of isolines. ECC(p1) <
ECC(p2) < ECC(p3), p1 ∈ h1,p2 ∈ h2,p3 ∈ h3.

Pi ∩ Pj = ∅ such that each isoline is fully included in one of the parts and
any two isolines L1,L2 with ECC values e1 6 e2 are in the same part Pi

iff e1 6= e2, L1 and L2 have the same topology (i.e. they are both closed7 or
both open curves), L2 is a descendant of L1, L1 has no other descendants
with ECC value e2, and all isolines L3 which are descendants of L1 and
ascendants of L2, are in the same part with L1 (and thus with L2).

Intuitively, imagine a wave starting from the geodesic center of the shape
and traveling in S s.t. its position at any given time corresponds to a level
set of ECC(S). Whenever a connected component of the wavefront opens
or breaks into several connected components, the current part region “ends”
and new ones are started, one for each created component. Figure 3 shows
example level sets of the ECC. The isolines of the level sets drawn belong
to different regions.

The obtained decomposition can be related to the Reeb graph [25] of
ECC(S). The Reeb graph associates a point to every isoline8 of ECC(S).
Points having exactly two neighbors are joined to form arcs. Points not
belonging to arcs form nodes. The proposed decomposition associates one
region Pi to every arc of the corresponding Reeb graph. Except for the
geodesic center, the isolines corresponding to the nodes of the Reeb graph
are added to the region corresponding to the incident arc with smaller eccen-
tricity values. The geodesic center is added to its only incident arc. Figure 4
shows an example.

Definition 4.3. (center region) Given a shape S and its decomposition into
part regions Pi, the region Pi that contains the geodesic center c ∈ Pi is
called the center region.

7The single point forming the geodesic center of a simply connected shape is considered
as a closed isoline.

8also called component.
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Figure 4: Reeb graph of ECC(S) and shape decomposition based on the
ECC(S). Left: shape with ECC(S), gray value equals eccentricity value
modulo a constant. Center: Reeb graph with isolines corresponding to nodes
in dark gray. Right: decomposition based on ECC(S) (the colors are chosen
to allow differentiation of adjacent regions and have no special meaning).

In the center region all isolines except the one representing the geodesic
center (which is a single point) are closed curves. In all other parts they are
open curves. The closed isolines in the center region are assigned counter-
clockwise orientation. All other isolines have the same orientation as their
ascendant with highest eccentricity value. For the isolines outside the center
region this orientation labels the two end-points as first and last: pf , pl.

4.2 The first coordinate: r

The coordinate r(p) is a linear mapping from ECC(S,p) to the interval
[0, 1]:

r(p) =
ECC(S,p)−min(ECC(S))

max(ECC(S))−min(ECC(S))
. (4)

As a result, the level sets of r correspond to the level sets of ECC(S) and
can be a closed curve or a set of disconnected open curves. Where ECC(S)
is smooth dECC(S)/dr = 1/(max(ECC(S))−min(ECC(S))).

4.3 The second coordinate: θ

The coordinate θ is mapped to the isolines of r as follows (Figure 5):

• the values of θ are in the domain [0, 1) and have period 1;

• for the geodesic center θ(c) = 0;

• the θ values of closed isolines cover the whole domain [0, 1);

• the domain [θst, θen] of θ values of open isolines is the same for all
isolines in the same part region Pi;
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a) b)

↓↓

↓↓

pf

pl

θst

θen

c)
θst

θst

θen

θen

Figure 5: a) θ = 0 in the center region is set using the zero-path (straight
blue line), orientation of isolines shown with arrows. For isolines outside the
center region: b) each region gets θst, θen from the neighboring region with
smaller ECC, c) θst, θen kept constant in the same region.

• except for the center region the θst, θen values associated to each part
region Pi are assigned using the adjacent region Pj with smaller eccen-
tricity. The θ values of the points p′

f ,p
′
l ∈ Pj closest to the end points

pf ,pl of the isoline in Pi with the smallest eccentricity are taken;

• for each closed isoline L in the center region

θ(p) = λ(L(p0,p))/λ(L) (5)

where p0 ∈ L is the point with θ = 0, L(p,p0) is the part of L traversed
when going from p0 to p in counter-clockwise orientation, and λ(L) is
the length of L. The points with θ = 0 are at the intersection between
the closed isoline and a path, called the zero-path. Further discussion
on choosing the zero-path follows in Section 5.2;

• for each isoline L in other parts than the center region

θ(p) = mod

(

λ(L(pf ,p))

λ(L)
· (θ′en − θst), 1

)

(6)

where mod(x, 1) is the value of x modulo 1, L(pf ,p) is the part of L
from pf to p, θ′en = θen if θen > θst or θ′en = 1 + θen otherwise, and
θst, θen are the start and end θ values associated to the part. Since we
exclude an isthmus of the shape θen 6= θst

• dividing by the length of the isolines assumes that the shape has a
width larger than one point. In the case of the outer-most isolines that
have no ascendants, if they are made of a single point, θst is assigned.

Proposition 4.1. Let r(p) be defined by Equation 4 and θ(p) be defined by
Equations 5 and 6, then (r, θ) is a 2D coordinate map.
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Proof. 1. r(p) is defined by ECC (Equation 2). θ(p) is defined if p0 is
defined and the shape does not contain isthmuses.

2. All points with different eccentricity are distinguished by r(p). Equa-
tions 5 and 6 assign different values in [0, 1) to all points with the same
r(p). Hence, (r, θ) distinguishes all points of S.

3. Every point p in S has unique eccentricity value r(p). For the center
region θ(p) measures the normalized arc length from p0 along the closed
isoline, thus it is unique. In other parts (non center region) θst and θen
are projected to isolines with smaller eccentricity until reaching a closed
isoline, with monotonic values of θ. Let Pi and Pi+1 be two neighboring
segments. Thus θen of Pi is smaller than θst of the neighbor part Pi+1.

From the definition it follows that where ECC(S) is smooth dECC(S)/dθ =
0.

The eccentricity transform is invariant to rotation of the shape. Map-
ping the coordinate values to the fixed domains [0, 1] respectively [0, 1) gives
invariance to uniform scaling. As ECC(S) uses geodesic distances, the val-
ues ECC(S,p) and implicitly of r(p) are robust w.r.t articulation. Keeping
θst, θen constant in each part region and setting them depending on the “as-
cendant part” (with lower ECC values) results in the robustness of θ to
changes in the geometry of other parts with the same or higher eccentricity,
and certain local invariance to addition/removal of parts (e.g. thinning the
tip of a finger will not affect the coordinates in the other fingers). The last
aspect relies on the property of ECC that its value in a point remains un-
changed if the corresponding eccentric point and the geodesic distance to it
remain the same.

5 The Proposed Coordinate System for Dis-

crete Shapes

In the following we discuss mapping the coordinate system described in the
previous section to discrete shapes S.

The Pixel Mapped Coordinate System A first option to map the co-
ordinate system to a discrete shape S is to extract discrete level sets as in
Definition 2.5 using an offset o = 0, and directly compute the coordinate
system on them [15]. The shape is decomposed into regions based on the
topology of the discrete level sets.
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A B
← hole

Figure 6: Example case with discretization problem. Left: elongated shape,
gray values are the eccentricity values modulo a constant. The shape has two
eccentric points marked A,B. The eccentricity of the points in the left and
in the right half of the shape, equals the distance to B,A, respectively. The
isolines are made of arcs centered at the corresponding eccentric point. Right:
zoom-in on a ’discrete level set’ corresponding to a closed isoline (rotated).

For mapping the θ values, the length of a discrete isoline part is computed
as the length of the polygonal line connecting the centers of its pixels.

An 8-connected path that connects the geodesic center with a pixel on
the border of the shape is used to choose the pixel with θ = 0 for each isoline
of the center region. This path is obtained by following a steepest descent
on the geodesic distance from the boundary pixel to the geodesic center. We
choose only the boundary pixel with the maximum eccentricity.

Problem due to discretization Depending on the position and distance
to the reference points, the circular arcs making up the isolines of ECC(S)
can meet under very sharp angles. In the case of the center region, isolines
are closed in the continuous domain. The pixels of the corresponding discrete
level sets are 8-connected, but an 8-connected closed path, where each pixel
would be passed through only once might not exist (Figure 6 right). In
this case an ordering cannot be made between the pixels and computing the
length of the discrete isoline required to map the θ coordinate is not possible.

Figure 6 shows an example. The points A and B are the eccentric points
of the opposite side of the shape, respectively. As the shape is convex all
geodesics are straight line segments, and the isolines of the eccentricity trans-
form are circular arcs centered at one of the two eccentric points.

5.1 The Inter-Pixel Coordinate System

To avoid the discretization problem, instead of directly mapping the coor-
dinate system to the discrete level sets made out of pixels, as mentioned in
Section 5, we extract “inter-pixel” isolines and map the coordinate system
on them, followed by mapping the computed coordinates to the pixels.
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5.1.1 Inter-pixel isolines

To extract inter-pixel isolines we use marching squares, the 2D version of
the classical marching cubes [21]. The produced isolines are polygonal lines
defined by points on the line segments that connect the pixel centers. The ec-
centricity of points on the line segments connecting pixel centers is estimated
by linear interpolation. All vertices of an inter-pixel isoline have the same
eccentricity value. The inter-pixel isolines are constructed such that they do
not self-intersect and the number of connected components is minimal (e.g.
in the case of a 2x2 checker board, one single isoline surrounding both pixel
centers and not self-intersecting). The extracted inter-pixel isolines are less
constrained than the boundaries defined on the half-integer plane and more
constrained than the inter pixel Euclidean paths, both of them preserving
the topology [5].

We extract inter-pixel isolines of the ECC of S for the eccentricity values:

min(ECC) + 0.5,min(ECC) + 1.5, ...

Inside the center region the extracted inter-pixel isolines will be non self-
intersecting, convex polygonal lines. Outside the center region, where level
sets may become disconnected, each inter-pixel isoline will be a polygonal line
with all angles on the side with smaller ECC, less or equal to 180 degrees
Figure 7 shows examples.

The inter-pixel isolines are connected paths where the ordering of the
points is unambiguous and their length is the sum of the lengths of the
straight polygonal segment. After extracting inter-pixel isolines, we can map
the proposed coordinate system as follows:

1. map the EPS coordinate system on the inter-pixel isolines;

2. map the r, θ values from the isolines to the pixels (discussed below).

5.1.2 Mapping r and θ values

The EPS coordinate system has been mapped to the inter-pixel isolines. All
vertices of the isolines correspond to points with the same r, and each vertex
has a unique θ value. The next step is to map r and θ values to the pixels of
the shape based on the r and θ values on the inter-pixel isolines.

We can identify all pixels located between inter-pixel isolines correspond-
ing to two consecutive r values with one of the following relations (Figure 7a):

e < ECC(S) 6 e+ 1 (7)

e 6 ECC(S) < e+ 1 (8)
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Figure 7: Inter-pixel isolines. Mapping of r, θ from the isoline to the pixels.

where e, e + 1 are the eccentricity values corresponding to two consecutive
r values r1, r2. The values of r are obtained from the values e using linear
interpolation as mentioned in Section 4. The choice between Equations 7
and 8 depends on the method chosen to compute the θ value for each pixel and
is discussed below. All pixels satisfying the chosen equation are considered
to have the same r coordinate.

Inter-pixel isolines are extracted for eccentricity values with difference
one. Thus for each pixel the number of inter-pixel isolines crossing any of
the incident line segments that connect pixel centers, is maximum four and
at least one.

To compute the θ value for a pixel we consider the inter-pixel isolines that
bound the pixel center and identify the following options (Figure 7 illustrates
the used notation):

higher: assign θ of the closest point(s) of the isoline with higher ECC value;

lower: assign θ of the closest point of the isoline with lower ECC value;

both: assign a function of θ of the closest points of both isolines.

Linear interpolation is used to compute the value of θ corresponding to the
closest point(s) on the inter-pixel isolines.

Recall that the inter-pixel isolines are polygonal lines, and that the angles
at their vertices are less or equal to 180 degrees when measured on the side
with the smaller ECC values. We can state the following about each option:

higher: one pixel can get more than one θ value (Figure 7.b);
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lower: more than one pixel can get the same θ value (Figure 7.c);

both: could produce smoother results, but uniqueness of θ values is not
guaranteed (Figure 7.d).

In addition, option ’higher’ cannot compute θ values for the border pixels
that have no higher eccentricity isolines, and option ’lower’ cannot compute
θ values for the geodesic center.

Going back to the definition of the coordinate system, the proposed
method to find correspondences, and the 3 requirements for the coordinate
map (Section 3) we can state that properties ’defined’ and ’distinct’ from
Definition 3.1 are required to be able to find a corresponding point. We can
relax the requirements and give up property ’single’, and if a pixel would get
more than one θ value, consider only the smallest one or the average.

Following this reasoning, option ’higher’ is chosen, as it assigns dis-
tinct θ values to all pixels having the same r.

5.2 The Zero Path

Property 5.1. Any geodesic π(q, c) where c is the center point and q ∈ ∂S
is a boundary point of the shape S, can be used as a zero path.

Proof. The zero path is used only in the center region (Section 4). The
requirement is that it intersects all isolines of the center region, to allow
setting the point with θ = 0 on each isoline. By definition all isolines of
the center region are closed. Any path π(p,q) for p a point located in the
space enclosed by the closed isoline and q a point outside it, will intersect
the isoline. The center point c is located on the isoline corresponding to
the smallest ECC values and is in the space enclosed by all other isolines in
the center region. Any boundary point q is either part of the closed isoline
corresponding to the largest ECC values in the center region, or outside the
center region.

For obtaining a zero path, we identify the following cases:

independent computation: the zero path is chosen by knowing only the
current shape.

best alignment : both shapes for which corresponding points will be
computed are known.
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Figure 8: Alignment of zero paths using correlation between boundary eccen-
tricity signals. Top row: shapes and their eccentricity transform, and bound-
ary eccentricity signals (vertical axis: eccentricity values). Bottom row: zero
paths for q1 a pixel with maximum eccentricity, and correlation between the
two signals for all possible offsets (vertical axis: correlation value).

Independent computation In the case of independent computation one
can consider obtaining the boundary point by using one of the existing shape
orientation methods (e.g. [31]): first orient the shape, then choose a point
with a fixed relative position e.g. top-left most. By definition shape orienta-
tion methods consider rigid transforms and will thus probably be less optimal
for larger non-rigid deformations like part articulation.

Best Alignment As the coordinate system is used for finding correspond-
ing points between two articulated shapes (of the same object/class), we
can also assume knowing both shapes at the time the coordinate system is
mapped.

Some shape matching methods (e.g. [3, 20]) use features computed at
boundary points to match two shapes. The computation of the matching
“score” includes correspondences between the considered points (so called
“aligning of the feature points”). If the classification/matching of the shapes
was done using such a shape matching method, then the computed boundary
point correspondences can be used to compute the zero path (e.g. choosing
one of the corresponding boundary points with the highest eccentricity).
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Aligning based on ECC For the cases where no additional information
is given, just the two shapes, we present an approach that relies on the
(already computed) eccentricity transform to align boundary points of the
two given shapes and obtain the corresponding boundary point required for
the computation of the zero path.

A boundary pixel of the shape S is a pixel p ∈ S s.t. ∃q ∈ S̄ a 4-
connected neighbor of p, with S̄ the set of pixels not contained in S (the
background). The (discrete) boundary B(S) of a discrete, simply connected
shape S, is the ordered 8-connected set formed by the boundary pixels of S
by traversing the boundary of S in clockwise order. Every 4-connected region
is surrounded by a closed 8-connected Freeman chain code [11] which imposes
an order on the visited boundary pixels. In case of a part of width one the
same pixel may be visited twice and contributes also twice to the boundary
signal. Figure 8 shows two hand shapes and their eccentricity transform
(second hand is rotated and with the thumb bent). The eccentricity value
corresponding to a boundary pixel can be used as a feature to create a one
dimensional signal. This signal will be called the boundary ECC signal and is
obtained by taking ECC(S,q) for all q ∈ B(S) in clock-wise order. Figure 8
shows the boundary ECC signals for the two shapes.

To find correspondences between boundary points of two shapes S1,S2

we align their boundary ECC signals. The signal with a smaller number of
values is linearly scaled to the length of the other one. The correlation of the
two signals is computed for all possible offset values and the offset that gives
the largest correlation is taken. Figure 8 shows the correlation value between
the two signals for all possible offsets (bottom right), and example zero paths
resulting from this approach (bottom left). The zero paths for S1,S2 are the
geodesics π(q1, c1) and π(q2, c2) where q1 ∈ S1 is a boundary pixel of S1, c1
the center of S1, q2 ∈ S2 is the boundary pixel of S2 corresponding to q1 as
given by the offset with the maximum correlation, and c2 is the center of S2.

The initial choice for q1 was a pixel having the maximum eccentricity
as this is a stable location. But this location might be far away from the
center region and depending on the deformations of S1,S2 it can lead to
significantly different zero paths in the center region. The boundary pixels
with the minimum eccentricity lie on the outer most isoline of the center
region, providing more control over the location of the zero-path inside the
center region.

5.3 Reconstruction of image coordinates

Recall the situation of Section 3. To find the pixel q ∈ S given the coordi-
nates (rp, θp) we proceed as discussed (see Figure 9):
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a) b)

→

Figure 9: Find pixel given coordinates (rp, θp): a) select the discrete level
set corresponding to rp; b) find the pixel of the level set with the closest θ.

1. L = discrete level set containing rp;

2. find argminq∈L{|θq − θp|}, where θq is the θ value associated to q,

where the discrete level sets have been extracted with o = 0 in Definition 2.5
for the approach in Section 5 and with o = −0.5 for the proposed inter-
pixel mapping (corresponds to selecting the pixels between two consecutive
inter-pixel isolines).

The coordinate r is chosen as the ’first coordinate’ (see Section 3) because
it has a constant variation and the obtained discrete level set does not contain
more than one pixel with the same θ. Due to its non-constant variation,
choosing θ as the ’first coordinate’ could produce many pixels with the same
r (thick discrete level sets) or have r values for which no pixel was selected
(disconnected level sets).

5.4 Finding pixel correspondences between two shapes

Consider two hand shapes where one shape has a missing finger to simulate
a segmentation error (see Section 6 for an example). Given any ’query’
coordinates (rq, θq) the presented two-step method will always return a pixel,
even if its coordinates (rr, θr) differ considerably from the query coordinates
(rq, θq). This results in corresponding points being found even for the pixels
corresponding to the ’missing’ finger.

To check whether the returned pixel is a good ’match’ we look at the
difference between the query coordinates and the ones of the returned pixel.
A small difference indicates a successful correspondence and a larger one a
failed one. Keeping in mind the change in local variation of the θ coordinate
(Section 4), thresholding the difference between (rq, θq) and (rr, θr) with a
constant will not work.
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Figure 10: Zero paths for the two hand shapes from Kimia 99 [27].

The local variation of θ along an isoline can be determined when comput-
ing the values of θ for each point and is equal to θen − θst over the length of
the current isoline segment9. The local variation of θ, denoted by θ′, can be
projected from the inter-pixel isolines to the pixels, similar to the projection
of θ. Having (rr, θr, θ

′
r) for the returned pixel, we can formulate the decision

of a successful correspondence as a thresholding of |θq − θr| with a factor t of
θ′r. Assuming that the local variation of θ in a small neighborhood around
the returned pixel is constant, for small values of t, the value of t specifies
a maximum accepted deviation in pixels. Values of t smaller than 1 tend to
produce spurious failed correspondences, due to the fact that the θ sought for
might not exactly match any of the pixels (we work with discrete shapes).
Larger values of t will be more tolerant to wrong correspondences (e.g. a
value of t = 18 which is half of the length of the isolines in the missing finger,
will return no failed correspondences for the finger).

Note that in the case of missing parts, the change in the eccentricity
transform (controlled by the presence of the original eccentric points and the
length of the geodesics to them) as well as the mapping of the θ coordinate
can influence the result (the adjacency graph of the part region Pi is a tree
rooted at the vertex corresponding to the center region, having a change
in a certain vertex will affect only regions corresponding the vertex and its
ancestors).

6 Experiments

Discretization methods We compare the results using inter-pixel isolines
with mapping directly on discrete isolines on the hand shapes used in [15].
The two shapes are from the Kimia99 database [27] and show the same hand
with the thumb bent and the little finger moved. Figure 10 shows the used

9The periodicity of 1 of the θ value has to be correctly handled s.t. differences like
|0.1− 0.9| give 1 + 0.1− 0.9 = 0.2.
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pixel mapped inter-pixel mapped pixel mapped inter-pixel mapped

Figure 11: Isolines of θ for the two shapes, with the two methods (Sec-
tions 5, 5.1).

source shape and texture pixel mapped inter-pixel mapped

Figure 12: Texture mapping experiment. Left column: source shape and
texture. Right two columns: texture mapped by corresponding points found
using the two methods (Sections 5, 5.1).

zero paths, which connect the geodesic center with a boundary pixel having
the maximum eccentricity. In Figure 11 the isolines of the θ coordinates are
shown. The θ values computed with the inter-pixel isolines have a smoother
profile as the computed ECC isoline lengths better approximate the contin-
uous ones. A texture was laid on each hand - the source, and copied to the
other one - the destination, by finding for each pixel pd(rd, θd) of the des-
tination the corresponding pixel ps(rs, θs) in the source. Results are shown
in Figure 12. Notice the smaller perturbation in the palm and the better
mapping on the fingers. Note that for these two shapes, the circular arcs
making the isolines in the center region do not make any sharp angles and
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ECC θ source destination

Figure 13: Correspondences with missing parts. The ’unmatched’ pixels are
drawn in red. (best viewed in color)

Figure 14: Six planar deformed poses of the same hand.

the problem mentioned in Section 5 does not appear. Thus, both methods
could be applied.

6.1 Missing parts

Figure 13 shows the two hands with the second one having part of the ring
finger cut-off. We have used a value of t = 2 (i.e. deviation of maximum 2
pixels) for detecting failed correspondences (Section 5.3).

6.2 Quantitative results

To measure the precision of the produced correspondences we have taken a
set of six pictures of a hand undergoing close to planar deformation on a flat
surface (the thumb had to turn a little in order to articulate). The poses vary
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Figure 15: The positions of the 18 landmarks overlaid on the shape of the
left-most hand.

from relaxed, to different kind of extreme stretching or bending, to touching
respectively two neighboring fingers (Figure 14). The pictures where taken
with a hand-held camera and slight changes in size and out of plane rotation
are present.

We have computed the pixel correspondences between the left-most hand
and each of the other five hands, resulting in five correspondence tests. To
align the zero paths we have used the method in Section 5.2 and took the
boundary pixel with the smallest eccentricity (located between the thumb
and the pointer). We have labeled by hand 18 landmark positions in each of
the 6 images. These landmarks are located in easily distinguishable positions
e.g. base of the nails, birth marks, etc. Figure 15 shows the positions of the
18 landmarks overlaid on the shape of the left-most hand.

As scaling changes appear, an “absolute” scale was computed for each
of the 6 hand shapes as the average of the distances between all pairs of
landmark positions on the same hand. The scales computed for each image
are used to factor out global changes in size, the reported ratios of geodesic
distance between pairs of corresponding points are influenced only by local
deformation and pixel-correspondence computation. To get a feeling of the
amount of deformation present in the test, we give for the five correspon-
dence tests the smallest ratios of the geodesic distances between any pair of
landmarks as measured in both shapes: 0.79, 0.86, 0.83, 0.88, respectively
0.12. The very large change (small ratio) in the 5th test is due to the geodesic
distance changing significantly between the tips of the touched fingers (e.g.
between landmark 3 and 5).

The normalized10 mean geodesic distances from the geodesic centers of
the six hand poses to the 18 landmarks are: 0.61, 0.62, 0.61, 0.60, 0.61,

10The geodesic distances where divided by the computed image scale i.e. the mean
pairwise distances between the ground truth landmark positions.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 38 6 1 27 17 16 25 25 19 19 9 17 19 24 7 15 9 5
2 17 10 5 15 6 6 14 14 6 9 14 11 10 8 7 9 5 7
3 37 9 7 28 17 16 23 17 19 11 14 11 7 71 117 34 177 11
4 6 3 12 3 8 3 3 3 5 5 8 5 16 9 7 39 84 42
5 23 13 12 9 9 7 13 15 8 10 21 8 17 13 132 4 6 8

Table 1: Deviation between the ground truth positions of the 18 landmarks
(Figure 15 and 14) and the positions obtained computing the correspond-
ing pixel using the coordinate system. The shown values are percentage of
geodesic distances over the distance between landmarks 5 and 12 i.e. a value
of 100 means that the computed corresponding pixel is at a distance to its
ground truth position equal with the distance between landmarks 5 and 15.
Columns: landmarks, Rows: correspondence test. (See the text for more
details.)

respectively 0.63. The small variation shows stability of the position of the
geodesic center which is taken as the origin of the coordinate system.

Table 1 shows the geodesic distances between the ground truth positions
of the landmarks and the positions obtained computing the corresponding
pixel using the coordinate system. For every pair of shapes two measure-
ments can be done depending on which shape is the source and which the
destination. The numbers shown are the average of mapping in both direc-
tions and are percentage values relative to the distance between ground truth
positions of landmarks 5 and 12, which is one of the most stable distances.
E.g. 100 means a distance between the computed and ground truth position
of the landmark that is equal to the distance between the ground truth po-
sitions of landmarks 5 and 12. As in the experiment with the missing finger
part we have used t = 2 to detect failed correspondences. In case of a failed
correspondence the closest pixel with an existing correspondence is found
and its corresponding pixel taken.

The largest displacement appears for the landmarks 15 and 17, both
located on fingers. This is due to offsets in mapping the theta domains
to neighboring fingers which results in the computed corresponding pixel
shifting along r =const to the neighboring finger (large geodesic distance).
Another landmark with rather high variation is 1, partly due to non-uniform
changes in geodesic distances (the largest one is used to normalize the r
coordinate), partly due to a similar effect as with the fingers.

Scaling To see the effect of discretization on the coordinate system, we
computed correspondences between the first hand in Figure 15 at normal and
double resolution. The different resolutions have produced minor differences

24



Figure 16: Left: the 2D shape of a tool from [7]. Right: zoom-in on the
articulation (marked with a rectangle) with the tool closed respectively open.

in the obtained decompositions, leading to small differences in the computed
theta values. All 18 landmarks had corresponding pixels in the coordinate
systems, with a maximum respectively mean deviation to their ground truth
positions of 10% respectively 5% of the distance between landmarks 5 and
12.

7 Discussion

Except for the zero-path no other point/part correspondences are taken as
input, and once the zero path is given, mapping the coordinate systems is
done independently on each shape. As a result the obtained coordinates
rely strongly on the robustness of the geodesic center, the position of the
zero-path and the points where isolines touch the boundary and break.

Using correlation to align the two boundary ECC signals is fast but
is not very robust with respect to missing parts. In such cases one could
consider dividing the boundary ECC signals into parts, finding candidate
correspondences between boundary parts of the signals and then aligning
those. This concept is similar in spirit to the ’local feature based’ shape
matching methods in [3, 20].

Using a different zero-path induces a fixed offset in the values of theta in
all regions outside the center region. As no part correspondences are used,
the mapping relies solely on the geometry of the isolines (length and closest
points) to distribute the domains for the theta values between parts. This
works well for the shape of a hand, where the size of the joint (finger) is
smaller than the size of the part it is connected to (palm) and the fingers
seem always attached in the same place. On the other hand for certain man
made objects like the tool in Figure 16 the outer parts change the place on
the boundary of the inner part where they are “attached”. In such cases
assignment of the theta domains for the parts is very likely to fail, resulting
in pixel-correspondences between pixels of different parts.
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Design decisions and future options for the coordinate system The
presented coordinate system is a skew coordinate system. Having an orthogo-
nal coordinate system would require that the isolines of the theta coordinate
be orthogonal to the ones of r and go along paths of steepest descent to the
geodesic center of the shape. Many geodesic paths pass through the same
reference point on the inside of an articulation, thus a unique assignment of
the theta values would not be possible.

In the presented approach pixels further away from the center are more
likely to be affected by errors than the ones closer. If giving up the constraint
that the variation of theta on the same isoline is constant, one can consider
mapping the theta values going from the outer-most parts towards the center.
As independent mapping of this type would be more sensitive to missing
parts, one can consider jointly mapping the coordinates for both shapes,
preceded by a robust algorithm to find the corresponding parts (e.g. the
method in [20]).

One could also consider separating the task of finding pixel correspon-
dences from mapping the coordinate systems. Finding all pixel correspon-
dences could be posed as an energy minimization problem of finding a smooth
mapping (minimize local deformation) which covers as many pixels as pos-
sible and neighboring pixels have neighboring correspondences. Once the
mapping is computed, the coordinates can be assigned with a different and
simpler strategy.

Both options require having both shapes when mapping the coordinates,
but they are expected to be more robust to extreme deformations and missing
parts.

8 Conclusion

We addressed the problem of finding all pixel correspondences between dif-
ferent poses of the same articulated shape, in the case where only the two
shapes are known and one optional boundary-point correspondence is given.
To each pixel distinct coordinates are associated. These coordinates are used
to address corresponding pixels. Instead of mapping the coordinate system
directly to the pixels where ordering problems can appear, inter-pixel iso-
lines are extracted and the coordinate system is computed on them. The
coordinates for the pixels are computed based on the computed coordinate
system. Aligning the angular-like coordinate of two coordinate systems is
done by aligning features of boundary pixels. Verifying failed correspon-
dences is achieved by means of an adaptive threshold. The new method is
able to identify missing parts (e.g. all pixels for which corresponding EPS
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coordinates are missing). Even smoother coordinates could be obtained by
more refined mapping from the coordinate system in the transformed space
to the pixels. Extension to non-simply connected 2D- and 3D shapes has
to consider the possibility of non-convex isolines/isosurfaces, and connected
components of the level sets merging at higher ECC values.
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