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Abstract

We propose using the Normalized Cut method for motion tracking (J. Shi and J. Malik .
“Motion Segmentation and Tracking Using Normalized Cuts”. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8), pages 888 - 905, 2000) on regions in frames
that were identified by a Minimum Spanning Tree (MST) method in a pre-proccessing step.
The purpose of the pre-proccessing step is to reduce the spatial resolution without losing
important image information. An energy function, based on some selected properties of
regions, is then calculated for each pair of regions in a fixed number of consecutive frames.
This energy function represents the similarity of two regions. Based on this similarity, the
Normalized Cut method is used to identify salient groups of regions. Finally, corresponding
salient groups of regions of neighbouring sets of consecutive frames are found. We show
on different experiments, how pre-segmentation can help to reduce computation time by
reducing the spatial resolution of the input frames. We tested different methods to reduce
temporal resolution to gain an additional speedup.



1 Introduction

Universal methods of motion segmentation aim at partitioning a sequence of images into
regions that match an intuitive partitioning of the sequence as done by a human observer
as close as possible, even though only limited information is available. This problem is
one of the central problems of computer vision and several methods have been proposed
to tackle this difficulty. An additional difficulty is that motion segmentation usually needs
to consider large amounts of information making runtime a major issue in applications
that have to process many frames per second. Various methods have been proposed to
cope with those difficulties, usually falling into two main categories:

• feature-based methods, and

• region-based methods

Feature based methods use a template object and try to match it to regions in the
sequence (e.g. [1]). Region-based approaches usually use intensity, colour, texture and
motion information or a combination of those. This information can either be used in an
sequential or integrative process. Sequential approaches use multiple stages each using
one type of information and iteratively refine the result [2] while integrative approaches
combine all available information in one step [3]. In this document we propose a two step
region-based approach. The first step uses only local information to reduce the complexity
of the problem by removing redundant information, the second one being an integrative
step combining all available information in an energy function (called similarity function).

Work related to our proposed method includes [4], [5] and [6]. In [4] motion information
is used to compute a prediction template which is then corrected using static watershed
segmentation. In [5] colour segmentation is used to determine stable segments which
are then merged using motion information. In [6] Gelgon et.al. propose to use spatial
segmentation to construct an initial region adjacency graph and to merge vertices using
motion information. The resulting graph is then used to predict the partition of the next
frame.

Another method for image segmentation proposed by Shi and Malik is a method based
on the Normalized Cut (Ncut) criterion. Normalized Cuts was originally used for image
segmentation [7] only, but in the paper [8] Shi and Malik proposed a method for using
normalized cuts for video segmentation. Using a motion profile which shows the motion
probability distribution of each pixel the regions with similar movement can be identified.
The computation time and storage requirements of comparing the motion profiles of pairs
of pixels make real-time application (multiple frames per second) of the method difficult.
To reduce the number of vertices in the graph, Shi and Malik [8] propose subsampling
every image before processing it. When subsampling to a very low resolution this gives
great performance improvement but a lot of information is lost. Balancing performance
versus information loss may be difficult.

We propose a combination of the original Ncut algorithm with a pre-processing step
to reduce the spatial resolution without losing important information. This combination
results in a speed-up of the entire algorithm. Usually in most images there are large regions
of pixels that belong to the same salient region and have only small interior intensity
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variations and are thus easily identified. To combine these pixels into one region a cautious
segmentation algorithm is necessary. We will argue that pre-segmentation is a good
method for achieving such a reduction of the spatial resolution. In our implementation,
which we will call MSTNcut1, we use Minimum Spanning Tree (MST) method proposed
by Felzenszwalb et.al. in [9]. Also, in videos without rapid motion it is not necessary
to segment each frame we therefore propose a reduction of temporal resolution. We will
discuss the effects of several methods to reduce the temporal resolution.

The document is organised as follows. Section 2 briefly explains the original Ncut
method. Section 3 describes our slightly modified version of the Ncut method. In Section
4 we detail our implementation. In section 5.1 we present the results of our experiments.
We conclude in Section 6. Terms we introduced in this document are defined in Appendix
A.

1.1 Breakdown

Section 1 to 5.1 is done jointly by Paul Guerrero and Stefan Fiel. Section 5.2.1 is done
by Paul Guerrero and Section 5.2.2 by Stefan Fiel.

2 Normalized Cut

The following section is a short summary of the Normalized Cut criteria proposed by Shi
and Malik in their papers [7] and [8].

w1
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w4w4

w5

weighted,
fully connected graph

image pixels

Each pixel is a graph node,
pixel similarities are edge weights.

Figure 1: Constructing the graph from an image.

Images can be represented as graphs G = (V, E) (see Figure 1) with each pixel being a
vertex v ∈ V and edges e ∈ E connecting pairs of neighbouring vertices (e.g. using 4- or
8-neighbourhood). A weight function wsim : E → R+ is defined assigning each edge the
similarity between the two corresponding pixels. For example function of the intensity
difference of two pixels can be taken as edge weights

wsim(v1, v2) = exp
−|Iv1−Iv2 |2

δ

1Ncut with MST pre-segmentation step.
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where Iv1 and Iv2 are the intensities of the two pixels. For the δ parameter we usually
use 0.1. We assign a weight of 0.0 to pairs of pixels that are not neighbours. of the pixels
in an image using the similarity function, like the distance weighting function described
by Shi and Malik in [7]. The vertices of this weighted graph can then be partitioned
into two disjoint sets, such that A, B, A ∪ B = V and A ∩ B = ∅, by cutting the edges
connecting the two sets. The total weight of the cut edges is an indicator for the quality
of the partition.

cut(A, B) =
∑

u∈A,v∈B

w(u, v)

This criterion tends to result in small partitions since the amount of edges connecting the
two resulting sets is usually minimal [7]. To make the partitions more independent of the
size Shi and Malik proposed the Normalized Cut criterion which is defined as follows [7]:

Ncut(A, B) =
cut(A, B)

asso(A, V )
+

cut(A, B)

asso(B, V )

Where asso is the total weight of all connection of all vertices from A to all vertices in V.

asso(A, V ) =
∑

u∈A,t∈V

w(u, t)

Ncut(A, B) is less biased with respect to the region size than cut(A, B) [7].

To segment video sequences with this method, the naive approach would be to add the
pixels of all frames to one graph but this is clearly not practicable. A video sequence
consisting of 100 frames with a size of 320 × 240 pixel would consume approximately 54
terabyte of memory (using a fully connected graph with 1 byte per edgeweight). The other
extreme, to process each frame separately lacks important information of how frames con-
nect to each other. Instead Shi and Malik propose in [8] to only consider a frame window
in every step which is moved over the whole sequence to incorporate information across
several frames without overly stressing resources.

3 Dendogram of Normalized Cuts with Pre-segmentation

A disadvantage of the method described by Shi and Malik in [8], when using a fully
connected graph, is the prohibitive space and computation time requirement. They stem
from the fact that the incidence matrix of the fully connected graph has to be constructed
and evaluated. To reduce the number of vertices in the graph, vertices can be used to
represent disjoint regions covering the image instead of single pixels. These regions are
constructed in a pre-segmentation step. The several methods for finding these regions
will be discussed in section 5.2.1.

Figure 2 illustrates the method we propose for region-based tracking. Since we have
three segmentation steps we use a specific name for each type of segment resulting from
one of the segmentation steps. The segments resulting from the pre-segmentation will be
called elements, the segments resulting from the Ncut dendogram will be called initial
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segments and the segments resulting from the merge step will be called final segments. In
the following, we describe each step in detail. Pseudo code for dendogram construction
and the merge step is available in Appendix B.

original frames
pre-segmentation of
the original frames (elements)

frame t
frame t-1

frame t+1

calculate element
similarity

full similarity matrix

Calculate the similarity of each
pair of elements in the active time window.

Matrix containing the similarity
of each pair of elements.

construction of
region graph G

initial segments Initial segments with slight oversegmentation,
resulting from the fixed dendogram depth.

construct ncut
dendogram

Construct ncut dendogram with fixed depth
and use leaf nodes as segments.

merge initial
segments

Iteratively merge pairs of most similar
segments until minimum number of segments
or stopping criteria is met.

Final segments of the current time window.final segments

current frame window

Figure 2: Flowchart illustrating each step of the method.

All following steps consider only the information of one frame window. A frame
window consists of three consecutive frames of the sequence.

As result of the pre-segmentation we get the segmentation of each of the frames of the
current frame window into regions (called elements). All elements of the current frame
window form the vertices v ∈ V of an undirected, fully connected graph without self-loops
G = (V, E). The weights of the edges e ∈ E between two vertices represent the similarity
of the two elements. This graph will later be used to calculate bipartitions using the Ncut
criterion as described above. To determine the weight of an edge connecting two vertices
we define a similarity function wsim : E → R+ that assigns a value to each edge depending
on information collected from the element, such as intensity, colour, intensity variation,
etc. represented by the vertex. No special calculations are done for regions belonging
to different frames. It should be noted that one problem of using pre-segmentation is
that the elements in oversegmented regions will vary widely with small image variations.
Therefore properties like shape, size, roundness, convexity, etc. can not be used as a
measure of similarity of two elements. The similarity of each pair of vertices is stored in
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a weighted incidence matrix, the similarity matrix.
The Ncut is calculated on the graph G to find a bipartition of the image. For finding

the Ncut one can use the method described by Shi and Malik which involves calculating
the eigenvalues of the slightly transformed weighted incidence matrix (for details of the
eigenvalue method for calculating Ncut we refer to [7]). The eigenvector with the smallest
eigenvalue has eigenvalue 0 and cannot be used for partitioning the graph. The remaining
eigenvectors are indicator vectors for separating the vertices of the graph G into two
groups. Figure 3 gives an example of an eigenvector with dimension 85. Each component
of this 85-dimensional Vector is plotted along the x-axis, the value of each component is
shown on the y-axis. Since the eigenvectors usually take on continuous values, a splitting
point, that separates vector component values indicating one half from values indicating
the other half, has to be found. Zero is usually a good value for the splitting point,
but to achieve better results, the splitting point with the best Ncut value of a range
of possible splitting points is used. The eigenvectors are approximation for the optimal
Ncut solution, the second smallest one being the closest approximation. With second
smallest eigenvector one can divide vertices of the graph G into two groups to form two
new subgraphs G1 and G2. The edges from vertices in G1 to vertices in G2 are removed.
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Figure 3: An example of one of the eigenvectors used to bipartition a region.

The third, forth, etc. smallest eigenvectors represent alternative partitions and can
be used to further partition both halves. Another possibility is to calculate a new Ncut
for each of the subgraphs. The first method requires less computation time since most
eigenvector solvers obtain the n smallest eigenvectors in the process of finding the smallest
one. The second method is more precise because the optimal partition of the remaining
graph is approximated as close as possible.

The recursive partition of the graph G can be represented as a dendogram with G
being the root vertex and G1 and G2 being the child vertices, see Figure 4. The root of
dendogram is the original image of a video used for testing. This image was partitioned
into two halves using the eigenvector with the second smallest eigenvalue. The left branch
contains one half of the original image (background, cup and ball), the right branch the
other one (cup and hand). These halves are further partitioned resulting in four leaves.

The depth of the dendogram depends on the number of partitions required. Some
eigenvectors may lead to partitions that are inadequate but these should not be excluded
as their subgraphs may still contain valid partitions. The final dendogram is a ‘K-way’
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Figure 4: Construction of the Ncut dendogram.

cut of the graph G, representing an oversegmentation of the original image. The leaf
vertices represent the initial segments.

It should be noted that the initial segments may encompass elements from every frame
of one frame window. The dendogram does not take the frame number of each element
into account.

To reduce the oversegmentation of the image an additional post-processing step to
merge the affected initial segments into final segments is needed:

1. Simple Merge: In this naive approach (based on the “greedy pruning” of Shi and
Malik [8]) the similarity of every segment to every other segment is calculated and
pairs are iteratively merged until a minimum number of segments is reached or until
the maximum similarity of each pair is smaller than a specified threshold.

2. Subtree Merge: In this approach, we merge only segments of one half of an inad-
equate bi-partition with segments of the other half. The criterion for determining
whether a partition is inadequate depends on the application. This method prevents
segments from being merged if a valid Ncut bi-partition in the dendogram identified
them as belonging to different segments, therefore strengthening the influence of the
Ncut step on the final segmentation.

It should be noted that the larger the oversegmentation, the larger the influence of the
merge step on the final segmentation (and the smaller the influence of the Ncut step). To
achieve the best results, one should try to keep the oversegmentation as low as possible
while still segmenting all relevant image regions.
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4 Implementation of Dendogram of Normalized Cuts

using Pre-segmentation

In our implementation we use a MST segmentation method propsed by Felzenszwalb et.al.
[9] in the pre-segmentation step (Figure 5 shows an image and its MST segmentation).
We chose this method because only few frames showed undersegmentation and the low
computation time needed. Any method could be used in this step, as long as the frames
will be oversegmented rather than undersegmented. This is important, since the following
steps are not able to split up segments resulting from this pre-segmentation.

Figure 5: An image and the result of segmenting it with the MST algorithm [9].

To segment the complete video sequence using Ncut, only ± 1 frames centred on the
current time step t are considered for computing the graph partitions. For the next time
step t+1, the first frame t−1 is dropped and the frame t+2 is incorporated in the frame
window as shown in Figure 2.

As described in the last section, we use the segments (as mentioned, we call these
elements) found by the MST method in all the frames of the frame window, as vertices for
a fully connected, undirected graph without self-loops since the similarity of an element to
itself is alway the maximum value. To determine the edge weights, we define a similarity
function that assigns a positive value to each pair of elements. While developing our
MSTNcut algorithm , we experimented with different similarity functions. First we tried
using the RGB colour space distance which showed poor performance on the videos we
worked with. The colour space distance between objects and their background was in
most cases larger than the distance between two regions belonging to the same object
(e.g. shadowed regions), resulting in the MSTNcut algorithm not being able to find the
correct partition. Next, we experimented with comparing intensity variation and colour
histograms of the elements. This approach showed better results, but shadowed regions
were still split from the object in many frames.

Since shadowed regions have soft transitions to brighter object regions and objects
usually have sharper transitions to the background, we tried to use an edge detector to
solve the problem with the shadows. The edges of the elements from pre-segmentation
do not coincide with the real object borders, usually there is a small element covering the
real object border. Figure 6 shows a pre-segmentation of an image. The white lines are
the element borders. The small elements covering the real object borders are encircled.
Additionally this method was sensible to noise and video compression artifacts and since
the edges in the video were blurry the results were unreliable.
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Figure 6: Elements covering object borders make edge detection difficult.

Element 1
midpoint

Element 4
midpoint

Element 2
midpoint

Element 3
midpoint

Element 5
midpoint

Figure 7: A problem when using midpoint distances.

A criterion, originally used by Shi and Malik [7], used in conjunction with colour
space distance for calculating the similarity of two elements is the distance between the
midpoints of these two elements. This criterion acts on the assumption that elements that
are close to each other are more likely to belong to the same object. Figure 7 illustrates
the problem that occurs when using midpoint distance of the elements resulting from
pre-segmentation. As one can see, the midpoint positions depend on size and shape of
the elements, e.g. the distance between element 1 and element 2 in Figure 7 is large even
though they are adjacent and belong to the same object. Element 4 and 5 are clearly two
different objects, but the distance between them is smaller. Midpoint position distance is
inadequate for elements with varying shapes and sizes.

The discrete Hausdorff distance [10] can be used to get a more accurate measure of
the proximity of two elements. But the Hausdorff distance is not well suited for our
implementation, since two elements may belong to different objects and still be close to
each other (e.g. the two cups shown Figure 5) and this measure would keep them from
being separated.

This lead us to consider the direct neighbourhood of an element instead. Based on the
assumption that elements sharing a relatively long, smooth border are likely to belong
to the same object, we experimented with another criterion, using the sum of the colour
space differences along the border between the two elements relative to the element’s pixel
area. This measure increases as the length of the border relative to the element’s area
increases. We intended to use this criterion to keep the elements covering the borders
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of the objects (the same elements causing problems with the edge detector) from being
treated as separate objects. Problems occurred when dealing with small elements attached
to large ones as the similarity between those objects is always low, even when belonging
to the same object.

In our final implementation, the similarity function only uses the colour information
of each element and calculates the IHLS [11] colour space distance. We transform every
pixel to the IHLS colour space and calculate the mean IHLS colour space coordinates for
each element. We define the final similarity function as follows:

wsim(v1, v2) = |xv1 − xv2|2 (1)

where xv1 and xv2 are the IHLS colour space coordinates of the elements v1 and
v2. The coordinates consist of lightness and the two-dimensional hue vector. For better
results, we enhance the saturation before calculating the similarity function. Optionally,
the saturation is stretched according to a specific function (see Figure 8), which keeps
unsaturated regions and enhances the saturation in more saturated regions. Any function
with similar effects can be used.
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Figure 8: The saturation stretching function.

The similarity values are stored as weights in the adjacency matrix of the graph, the
similarity matrix.

The dendogram of recursive cuts is constructed with fixed depth. In every vertex of
the dendogram we divide the graph by calculating a new Ncut on the similarity matrix
of the graph and using the second smallest eigenvector as an indicator vector for the
bi-partition. The leaf vertices of the fully constructed dendogram represent the initial
segments. For solving the eigenvalue problem we use the ARPACK open source library
[12], which is available for download on the website of the RICE University, Houston,
Texas. The matrix supplied to ARPACK should not contain too many zeros which are
not in band format, otherwise the Arnoldi iterations [13] will take too long to converge,
or not converge at all.

As mentioned above, some eigenvectors obtained in the process of constructing the
dendogram result in partitions leading to oversegmentation. Since we use a dendogram
with fixed depth, most of these eigenvectors are calculated when trying to split a homoge-
nous region in the deeper levels of the dendogram. To avoid splitting these regions, we
search for a stopping criterion. We experimented with the eigenvalues belonging to the
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eigenvectors, but found out, that there were always frames were the quality of the cut
and the magnitude of the eigenvalue were not related. Next we tried to calculate the
Ncut value of each bipartition and tried to find a threshold to discard partitions with
high value. We noted, that Ncut values of partitions of different image regions are not
comparable.

Since eigenvectors leading to inadequate partitions may be followed by eigenvectors at
deeper levels leading to sound partitions, we chose to use the Simple Merge as described
in Section 3. Partitions are removed by iteratively merging the most similar segments (by
the similarity measure wsim(v1, v2) in Formula 1) until a minimum similarity threshold
is reached. Optionally, the saturation can be stretched while calculating the segment
similarity, as shown in Figure 8. For our implementation, we assume that all objects
are spatially connected in every frame; only taking colour and position information into
account, it is not possible to distinguish between two unconnected elements belonging to
the same objects and two elements belonging to different objects. Segments consisting
of multiple unconnected components are split up. No effort is done to separate occluded
and occluding object of similar colour.

To identify the corresponding segments in consecutive frame windows fwt and fwt+1,
we calculate the area of overlapping pixels of segments of window fwt and segments of
window fwt+1 (see Figure 2). Segments of fwt+1 are considered corresponding those
segments of fwt, to which they have the maximum percentage of pixel overlap. This
can be done efficiently, we only need to sum the area of every element. Elements in
corresponding frames of the successive frame windows must be identical. The number of
frames passed since a segment has first been recognized (called age of the segment in our
implementation) is also used in the calculation. The longer a segment exists, the more
likely it is that a segment from a new frame window is assigned to it:

nop(segi, segj) =
2 ∗ |psegi

∩ psegj
|

|psegi
|+ |psegj

|
(2)

fwsim(segi, segj) =


nop(segi, segj) (age(segj) ≥ adultAge)

nop(segi, segj) ∗ (age(segj) < adultAge)(
1− age weight ∗ (1− age(segj)

adultAge
)
)

with segi ∈ fwt and segj ∈ fwt+1

psegi
is the set of pixels in segment i, psegj

the set of pixels in segment j, nop(segi, segj)
is the number of overlapping pixels of segments of consecutive frame windows fwt and
fwt+1 relative to the pixel area of both segments (Figure 9). This value is then weighted
with the age of the segment from fwt to get the frame window similarity fwsim(segi, segj)
of these segments. adultAge is a constant describing the age after which segments should
not be lost if possible, it can be any positive integer. age weight specifies the influence
of the age on the overall frame window similarity and takes on values from 0.0 to 1.0 (for
the parameter values used in our experiments refer to Table 2).
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Figure 9: Regions in different frame windows through area of pixel overlap

Since we make no assumptions as to the shape and size constancy of elements, finding
corresponding elements in consecutive frame windows is too unreliable to be of use. Thus,
it is not possible to use the motion information of an element.

5 Experiments

Three videos were used to evaluate the MSTNcut algorithm with respect to

• spatial resolution

• temporal resolution

A simple synthetic video showing two cups [14] (Figure 10(a)), a ball and a hand moving
the cups, the same movie with real objects [15] (Figure 10(b)) and another synthetic
video of a person moving down a corridor (Figure 10(c)), a part of a video taken from
the muscle benchmarking project [17]. The synthetic video has 201 frames with a size of
400 × 275 pixels. Pre-segmentation is necessary when using this video material, taking
every pixel of a video with a frame size of 400 × 275 pixels as vertex of fully-connected
graph would result in 110 000 vertices per image, 330 000 vertices per frame window and
about 109 ∗ 109 edges. For the other videos see Table 1.

Videos Synthetic Cup Corridor
size 400× 275 352× 288 640× 480
number of frames 201 796 356
elements per frame 4− 6 65− 90 200− 230

Table 1: Some properties of the videos.

We chose the first Video 10(a) to benchmark the MSTNcut algorithm on an optimal
pre-segmentation. The second video 10(b) illustrates difficulties encountered with many
motion segmentation algorithms: large areas of homogenous colour, dark, shadowed areas,
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(a) Synthetic Video

(b) Cups Video

(c) Corridor Video

Figure 10: Some frames of the tested videos.

soft transitions between objects and bright highlights. The third video contains motion
towards and away from the camera, as well as non-rigid objects.

All videos used were compressed causing degraded video quality (e.g. blurry edges,
motion artifacts, etc.).

12



5.1 Results

We applied our implementation of the Ncut segmentation, with MST [9] as pre-segmentation
and no reduction of the temporal resolution, to the three videos in Table 1.

First we calculated the center of gravity midpoints of each final segment then we
evaluated the videos by calculating the difference of these midpoints to the midpoints
of the reference objects. For the first and third video ground truth was available. In
the second video (Cups Video) reference midpoints were created by manually defining a
bounding box for each object and calculating the trajectory of the center of gravity of
each object by using [18].

Table 2 shows which parameters were used to segment each video. “Dendogram depth”
is the maximum depth of the dendogram. “Merge threshold” is the minimum similarity
two segments must have to be merged. The larger the value the more segments are
merged resulting in less final segments. Possible merge threshold range from 0 to 500,
recommended values are around 25 - 40. “Similarity saturation stretch” and “Merge
saturation stretch” indicate whether the saturation was stretched when calculating the
similarity matrix and respectively whether the saturation was stretched in the merge step.
“Segment age weight” defines the percentage of the influence of the segment age on the
frame window similarity. Possible values are in the interval 0.0 to 1.0. We used the value
0.5 for the corridor video, because the elements constituting the person are not stable
and the age weight provides a means to increase the constancy of the final segments over
time.

parameter Synthetic Cup Corridor
Dendogram depth 4 4 3
Merge threshold 30 30 35
Similarity saturation stretch on on off
Merge saturation stretch off off on
Segment age weight (age weight) 0.0 0.0 0.5

Table 2: Parameters used for segmenting the videos

The first two videos were segmented with a dendogram depth of 4. Since the third
video contains less objects the depth was reduced to 3. Only the second smallest eigen-
vector was used for the segmentation of all videos and a new Ncut was calulated at every
dendogram vertex. As a pre-processing step we enhanced the saturation of the sequences
before calcuating the similarity function. Additionally, the saturation was stretched ac-
cording to the function illustrated in Figure 8. To keep shadows from separating from
the objects, the saturation was stretched when calculating element similarity in the cups
video. Shadows have the same hue as their objects and by stretching the saturation, the
influence of lightness on the similarity decreases. The corridor video has more textured
regions. These regions have widely varying hues. To keep the Ncut step from producing
heavy oversegmentation in the textured regions, the saturation was not stretched while
calculating element similarity. The merge threshold was adapted for each video. Only
connected segments are considered objects.
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Figure 11: The results of the segmentation of the pictures above. The black lines are the
midpoint position trajectories.

Figure 11 shows one frame of the resulting segmentation of each video. The black
lines are trajectories of the objects obtained by calculating the center of gravity of each
final segment. The Synthetic Video (Figure 10(a)) shows straight and smooth trajecto-
ries. Object outlines are sharp in this video, so pre-segmentation does not distort object
outlines and midpoint position estimation is accurate (exact percentages are given later
in this section). Item number 1 in Figure 10(a) is the trajectory of the Hand object, item
2 the trajectory of the Cup object, item 3 the trajectory of the Background object (which
shifted its center of mass as a result of the objects in the foreground moving) and item 4
the trajectory of the second Cup object, which has not moved yet.

The trajectories in the Cups video (Figure 11(b)) are more distorted, as can be seen in
item 1, 2 and 4. In this video, object outlines are blurry, resulting in less stable segment
borders (see item 3). Item 4 marks the trajectory of the second cup which has not moved
yet. The enclosed region results from the bright highlight on the cup. Figure 11(c) shows
a zoomed-in view of the Ball object. There are two midpoints close together, one midpoint
of the Ball object and one of the Background object.

The oversegmentation seen in the frame of the Corridor Video (Figure 11(d)) is caused
by the textured background of this sequence (see items 1,2,6 and 7). The black line in item
5 is the Background object trajectory. Item 4 shows the trajectory of the Person object.
Its distortion is caused by the Person consisting of multiple unconnected components.

The plots of Figure 12 show how close the positions of the tracked regions correspond
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(a) Synthetic Video
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(b) Cups Video
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Figure 12: Midpoint distance of the tracked regions to the reference midpoints in per-
centage of number of frames of the whole sequence.

15



to the reference positions. On the y-axis they show the percentage of frames in the video
with midpoint distance smaller than a specific value on the x-axis in pixels. Only frames
where the objects are recognized correctly were used in this plot. In the synthetic video
and the cups video, only few frames (2%, respectively 5%) have a midpoint tracking error
of more than 30 pixels. Pre-segmentation distorting the object outlines are the main
cause for the midpoint tracking errors. In the corridor video, 97.6% of the frames have
a midpoint tracking error of less than 100 pixels. The only object in this video, the
person, consists of three unconnected components. The midpoint of only one component
is tracked, which results in this tracking error.

Cups Video (total frames: 796)
tracking percentage number of frames

Hand 99.854% 795
Ball 88.426% 704
Cup1 93.401% 743
Cup2 94.275% 750

Table 3: Percentage of frames where objects are recognized correctly.

In the synthetic video the objects are recognized in every frame. Because of unhandled
occlusions and slight undersegmentation in the cups video, in few frames objects are lost,
see Table 3. The table shows the percentage of frames in which the object is recognized
correctly. Cup1 and Cup2 are affected by these occlusions, so their recognition percentage
is not optimal. The Ball’s recognition percentage is lowest because it is lost in the last
frames because of soft transitions and reflections of the ball on the table. In the corridor
video, the person is recognized in 96.7% of the frames.

The MSTNcut algorithm shows good results with untextured objects although tex-
ture may cause oversegmentation since the algorithm only takes colour space distance in
account, for this reason objects with high colour difference are preferable. The velocity of
moving objects must be low enough so that the objects overlap in consecutive frames (see
section 5.2.2). This method does not loose objects if they become static. Since elements
from the pre-segmentation step will never be split the choice of the pre-segmentation al-
gorithm strongly influences the final result. In our implementation the pre-segmentation
algorithm had problems with soft blurry edges mostly caused by video compression and
could not handle partial occlusions of objects with similar colour. Strong, pronounced
shadows are difficult to handle because of their high contrast with the object. Objects
consisting of multiple parts that are not touching are split up into the parts as well as
objects with sharp colour edges between parts.

The videos were segmented on a AMD Athlon 64 bit processor 3000+ with 512
MB ram, gcc 3.3.6 (with full compiler optimization) on Ubuntu amd64 Linux. The
synthetic video took 26.16 seconds (approximately 0.13 seconds per frame). The cups
video took 206.8 seconds (approximately 0.26 seconds per frame) and the corridor video
626.28 seconds (approximately 1.75 seconds per frame). These times do not include pre-
segmentation.
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5.2 Reduction of the Spatial and Temporal Resolution in a Pre-
processing Step

In each experiment we used pre-segmentation to reduce the number of vertices treated in
the Ncut step. As mentioned in the introduction, our main motivation was to experiment
with methods to reduce the spatial and temporal resolution of the videos before process-
ing them. In the next subsections we will compare pre-segmentation to simple spatial
sub-sampling and explain its advantages and disadvantages, as well as experiment with
different methods to reduce the temporal resolution of the videos and evaluate its impact
on the overall performance of the MSTNcut algorithm. We only present the results of the
interpolation methods that yielded the best results. These are

• bilinear,

• bicubic and

• nearest neighbour

interpolation to reduce the spatial resolution.
To reduce the temporal resolution

• subsampling,

• mean and

• median

interpolation were used.

5.2.1 Spatial Resolution

Since the MSTNcut algorithm uses a matrix storing similarity for each possible pair of
elements, the number of elements in the Ncut step is the main factor for the performance of
the algorithm. Taking every pixel as element is prohibitively time consuming, so reducing
the number of elements in a pre-processing step is necessary. Simple sub-sampling is the
fastest way of doing this. In this section we compare sub-sampling to pre-segmentation
as a method of reducing the number of elements.

Figure 14 shows the results of sub-sampling a small range of representative frames
of the cups video (frames 1-9 and 218-227) before applying the Ncut segmentation. The
original image size was 352× 288 pixels and bicubic sub-sampling was used with rates of
8 × 8, 16 × 16, 32 × 32 and 64 × 64, resulting in image sizes of 44 × 36, 22 × 18, 11 × 9
and 5× 4 pixels. On the y-axis the plots show the percentage of frames in the video with
midpoint distance smaller than a specific value on the x-axis, measured in pixels of the
original image. The same video was used for some of the experiments using MST pre-
segmentation, that are described earlier in this section. Remember that pre-segmentation
resulted in 65-90 elements per frame. To compare results, refer to Figure 12(b).
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(a) sub-sampling (b) MST pre-segmentation

Figure 13: The result of segmenting a frame of the cups video which was sub-sampled
to a size of 22x18 pixels and the result of segmenting the same frame using MST pre-
segmentation.

Sub-sampling down to 44 × 36 pixels results in 1584 elements per frame (4752 ele-
ments per Ncut step), which is more elements than necessary when comparing to pre-
segmentation. At this image size, the midpoint position error (distance of the tracked
midpoint to the reference midpoint) is less than 30 pixels in every frame. Note from
Figure 14(a) that the error is about 10-20 pixels in most frames. This error results from
distorted object outlines (see Figure 13) and increases as the sub-sampling rate increases.
At a size of 11 × 9 pixels (99 elements per frame, 297 per Ncut step), objects are lost
in some frames, since too little of the object colour information remains in the resulting
video. At a size of 5 × 4 pixels (20 elements, 60 per Ncut step) only the Ball object is
tracked in every frame and one Cup object in about 50% of the frames. The other objects
are not recognized.

The experiment has shown three drawbacks of using sub-sampling as a method to
reduce the number of elements. First, segment outlines are distorted because the number
of pixels constituting the outline of a segment decreases as the sub-sampling rate increases
(see Figure 13). Second, at image sizes that yield results comparable to pre-segmentation
(e.g. 44 × 36), the number of resulting elements is larger than the number of elements
obtained when using pre-segmentation. This is only true if there are large connected
regions of similar colour, which can be found in most real-world images. Third, small
or thin objects tend to be lost if they fall in between the sampling points (see Sampling
Theorem [16]).

To clarify how the number of resulting elements and lost regions resulting from sub-
sampling depend on region size and how they compare to pre-segmentation, tests were
made on a synthetic image consisting of fifteen squares, the smallest one having a size of
1× 1 pixel, the largest one a size of 99× 99 pixels (see Figure 15).

Table 4 shows the number of resulting elements, the number of lost squares (the
number of squares that are not recognized by the MSTNcut algorithm anymore, out of a
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(a) subsampling to 44× 36 pixels
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(b) subsampling to 22× 18 pixels
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(c) subsampling to 11× 9 pixels
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(d) subsampling to 5× 4 pixels

Figure 14: Midpoint distance of the tracked regions to the reference midpoints in per-
centage of number of frames of the whole sequence.

Figure 15: The image used for determining minimum object size at a given subsampling
rate. The image size is 500× 300 pixels.

total of 15) and the side length of the smallest recognized square (in number of pixels in
the original image) for each image size and sub-sampling method. Since time and memory
consumption grow quadratically with the number of elements, resolutions above 80× 48
cannot be used as the MSTNcut algorithm would have prohibitive memory consumption.
Already at the lowest sub-sampling rate, some of the rectangles are not recognized by the
MSTNcut algorithm anymore. At 80 × 48 two to five rectangles are lost (depending on
the sub-sampling method), which translates to maximum object diameter of 5 to 9 pixels.
These numbers increase as the sub-sampling rate increases. At a resolution of 20× 12 14
objects are lost and the minimum object diameter is 29 pixels.

Table 5 shows the results of pre-segmenting of the same synthetic image with the
MST method. Although more time-intensive, this method results in a smaller number of
elements while only discarding redundant information. In this synthetic image no objects
are lost during pre-segmentation.

Sub-sampling is the fastest way of reducing the number of elements, but the resulting
region outlines are less accurate and thin or small objects may be lost. Pre-segmentation
is more time-intensive, but results in less elements if applied on a video containing large
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image size sub-sampling method # elements # lost squares min. side length
80x48 bicubic 3840 4 7 pixels
80x48 bilinear 3840 5 9 pixels
80x48 nearest neighbour 3840 3 5 pixels

60x36 bicubic 2160 5 9 pixels
60x36 bilinear 2160 5 9 pixels
60x36 nearest neighbour 2160 4 7 pixels

40x24 bicubic 960 7 17 pixels
40x24 bilinear 960 5 9 pixels
40x24 nearest neighbour 960 4 7 pixels

30x18 bicubic 540 7 17 pixels
30x18 bilinear 540 8 21 pixels
30x18 nearest neighbour 540 7 17 pixels

20x12 bicubic 240 9 29 pixels
20x12 bilinear 240 9 29 pixels
20x12 nearest neighbour 240 9 29 pixels

Table 4: The number of resulting elements, the number of lost squares and the minimum
square side length vs. sub-sampling method and image size in pixel.

image size pre-segm. method # elements # lost squares min. side length
500x300 MST 16 0 1 pixel

Table 5: This table shows the results of pre-segmenting the synthetic image with the MST
segmentation method.

connected regions of similar colour and does not loose small objects. Since the main factor
for the speed of the Ncut algorithm is the number of elements, the overall performance
of the MSTNcut algorithm benefits from using pre-segmentation. When sub-sampling
the cups video spatially to 44 × 36 pixels (1584 elements per frame), the MSTNcut al-
gorithm needs approximately 21 seconds per frame, when sub-sampling to 22× 18 pixels
approximately 1.25 seconds and when using MST pre-segmentation approximately 0.3-0.4
seconds per frame (including the 0.1-0.2 seconds needed for pre-segmentation).

5.2.2 Temporal Resolution

Another way to reduce the amount of video data is the reduction of the temporal reso-
lution. There are several possibilities to do so. Sub-sampling the video by only taking
every n-th frame into account is the most performant variant. A different approach is to
calculate the mean values of each colour channel of n frames. This approach is more time
consuming but information from across the n frames is incorporated into the remaining
frame. Instead of taking the mean it is also possible to take the median to eliminate
outliers.
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To evaluate the performance of the MSTNcut algorithm, experiments were done with
all frames of the cups video. For all experiments tests were made with n = 3, 5 and 9
because for calculating the exact median value uneven numbers have to be used. The
amount of data is reduced to 1/3, 1/5 respectively 1/9 of the original data. The images
in Figure 16 show frames generated with subsampling (which is identically to the original
frame) and frames gained by calculating the mean and the median of every n-th frame.

(a) subsampling n = 3 (b) subsampling n = 5 (c) subsampling n = 9

(d) mean n = 3 (e) mean n = 5 (f) mean n = 9

(g) median n = 3 (h) median n = 5 (i) median n = 9

Figure 16: Sample images with different interpolation methods

Like in Section 5 the performance was measured by calculating the distance of the mid-
point positions and the percentage of the frames where the objects are tracked correctly.
The plots in Figures 17-19 illustrate the results and Table 6 shows the rate of frames
where objects are tracked correctly. The MSTNcut algorithm showed nearly the same
mid-point distances when using subsampling with n = 3 and 5 and with no temporal
reduction except that Ball’s recognition rate dropped because the algorithm was not able
to track it at the end of the video, since the effect of soft transitions and reflections
increased. With n = 9 the objects are lost often because they were moving too fast and
motion blur occurs.

When using the mean value to reduce the temporal resolution the MSTNcut algorithm
showed no good performance. Most of the edges of the regions become very blurry and
the pre-segmentation step was not able to provide the MSTNcut algorithm with a good
segmentation of the images. This effect amplifies with increasing n. Even with n = 5 the
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hand is not tracked and with n = 9 the MSTNcut algorithm is only able to track one
cup. Using the median for temporal reduction the MSTNcut algorithm performed well
with n = 3 and n = 5 and showed pretty good results even with n = 9 for objects with
sharp edges and uniform colour (Cups) but had problems with the Hand, with shadowed
regions and soft edges to the background.

Temporal subsampling and the median value showed the best results, since the images
still contain sharp edges while the mean value makes them blurry. Using the median and
the mean value eliminates outliers, but only the median provides the Ncut step with a
high differences in colour space.

subsampling n = 3 n = 5 n = 9
Hand 100% 100% 44.595%
Ball 57.746% 57.143% 0%
Cup1 95.038% 90.446% 64.368%
Cup2 90.076% 91.667% 58.140%

mean n = 3 n = 5 n = 9
Hand 76.646% 0% 0%
Ball 95.775% 57.143% 0%
Cup1 72.137% 64.968% 26.744%
Cup2 32.824% 85.256% 0%

median n = 3 n = 5 n = 9
Hand 99.558% 100% 60.811%
Ball 57.746% 57.143% 0%
Cup1 95.038% 95.541% 98.851%
Cup2 90.076% 91.667% 75.581%

Table 6: Percentage of frames where objects are recognised correctly using the cups video
and different methods to decrease temporal resolution.

The decrease of the temporal resolution makes objects move faster and the MSTNcut
algorithm will lose them after a certain velocity. To evaluate this effect and the connection
between the velocity and the object size we made an experiment. Seven new synthetic
videos are introduced, each with a circle with a different size and linear acceleration
moving in a circular path. Sample images of the frames are shown in Figure 20. The
circles in the video are solid-coloured. We observed when the MSTNcut algorithm loses
the circle and so we can determine the maximum speed the algorithm can handle with a
given size.

Tables 7 - 10 show the results of these experiments. They show the radius of the moving
circle and the maximum velocity (in pixel distance) of the circle the MSTNcut algorithm
can handle before the circle gets lost. Without any reduction of temporal resolution the
maximal pixel distance between the circle in two frames is the double radius (Table 7)
since the objects have to touch each other in the different frames. When using subsampling
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(a) subsampling n = 3
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(b) subsampling n = 5
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(c) subsampling n = 9

Figure 17: Midpoint distance of the tracked regions to the reference midpoints in percent-
age of number of frames of the whole sequence using every n−th frame with subsampling.
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(a) mean n = 3
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(b) mean n = 5
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(c) mean n = 6

Figure 18: Midpoint distance of the tracked regions to the reference midpoints in percent-
age of number of frames of the whole sequence using every n − th frame with the mean
value.
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(a) median n = 3
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(b) median n = 5
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(c) median n = 9

Figure 19: Midpoint distance of the tracked regions to the reference midpoints in per-
centage of number of frames of the whole sequence using every n − th frame with the
median.
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Figure 20: Videos of circles with increasing sizes and speed were used to evaluate the
connection between the velocity and the object size.

circle radius without reduction
radius = 10 20
radius = 20 40
radius = 30 60
radius = 40 80
radius = 50 100
radius = 60 120
radius = 75 150

Table 7: Maximum pixel difference of the mid-points of a moving object in two frames,
with no reduction of temporal resolution,so that it is recognised correctly.

the results are quite good (Table 8). The maximum distance is approximately 2/3 of the
radius, with n = 3 the object is allowed to move 2/3 of the radius per frame to get the
distance of the double radius after subsampling. It has to be mentioned that a synthetic
video has been used without any outliers which are a disadvantage of using subsampling.
Using the mean value for the reduction, the worst results are produced (Table 9). The
circle becomes very blurry and the MSTNcut algorithm is no longer able to follow him.
If the median is used to reduce the temporal resolution the results are comparable with
the ones with subsampling but with the advantage that outliers would be eliminated.
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circle radius subsampling n = 3 subsampling n = 5 subsampling n = 9
radius = 10 7 5 -
radius = 20 14 9 -
radius = 30 21 14 4
radius = 40 28 16 4
radius = 50 35 20 12
radius = 60 35 25 16
radius = 75 53 34 20

Table 8: Maximum pixel difference of the mid-points of a moving object in two frames,
using subsampling to reduce temporal resolution,so that it is recognised correctly.

circle radius mean n = 3 mean n = 5 mean n = 9
radius = 10 8 9 -
radius = 20 10 7 -
radius = 30 14 9 -
radius = 40 18 14 -
radius = 50 22 14 -
radius = 60 26 16 12
radius = 75 34 20 12

Table 9: Maximum pixel difference of the mid-points of a moving object in two frames,
using the mean to reduce temporal resolution,so that it is recognised correctly.

circle radius median n = 3 median n = 5 median n = 9
radius = 10 8 5 -
radius = 20 15 9 -
radius = 30 22 14 4
radius = 40 28 18 12
radius = 50 35 23 12
radius = 60 43 27 16
radius = 75 55 34 30

Table 10: Maximum pixel difference of the mid-points of a moving object in two frames,
using the median to reduce temporal resolution,so that it is recognised correctly.
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6 Conclusion

We have presented a method for segmenting videos using the Ncut method with an addi-
tional pre-segmentation step. First we identify the most salient region of each frame using
the Felzenszwalb et.al. MST method [9]. An energy function, calculating the similarity
between each pair of elements in a frame window, is used to construct a weighted, fully
connected graph. Using the Ncut criterion repeatedly we build up a dendogram. The leaf
nodes of the dendogram identify the initial segments of this frame window. To reduce
the oversegmentation initial segments are merged into the final segments. The MSTNcut
algorithm performs equally well on moving and on static objects. The MSTNcut algo-
rithm has problems with blurry object borders, shadows and objects consisting of multiple
components. We have showed that pre-segmentation is in most cases more reliable than
subsampling, resulting in more accurate elements. This becomes particularly apparent
when using sequences with small objects. Furthermore we tested methods to reduce the
temporal resolution increasing the overall performance. Using the median of a group of
frames yielded at the best performance since it eliminates outliers and does not blur edges.

6.1 Open Problems

Currently our implementation does not handle occlusions. As described above two oc-
cluding objects with similar colour are treated as a single object in the pre-segmentation
step. To overcome this problem it would first be neccessary to chose a pre-processing
algorithm that can handle occlusions since our implementation never splits up regions
formed by the pre-processing algorithm. Another way improving the MSTNcut algorithm
would be to include motion information for example by measuring pixel based motion flow
and including this information in similarity calculation or by using final segment motion
information obtained by observing motion of the final segments in previous frames and
predicting the position in the current frame.
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A Definitions of the used terms

MST Method: Minimum Spanning Tree. A method to segment an image. See [9] for
details
elements: The regions resulting the pre-segmentation.
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initial segments: The regions resulting from applying the Ncut Dendogram method to
elements.
final segments: The regions resulting from merging the initial segments. This is the
output of the MSTNcut algorithm.
frame window: Three consecutive frames of a video sequence. The frame window is
moved over the whole sequence. In each step the MSTNcut algorithm considers only
information of one frame window.
similarity: The measure of the similarity of two elements. In our case the distance in
the IHLS colour space.
similarity function: The energy function calculating the similarity of two elements.
similarity matrix: The adjaceny matrix of the fully connected graph of all elements in
a frame window with the similarity as weights on each edge.

B Pseudo Code

Below, the dendogram construction is shown in pseudo code:

method: initial_segments = ncut(similarity_matrix)

split the similarity matrix using ncut

if not maximum depth is reached then

return ncut(left_half)

return ncut(right_half)

else

elements_segment_left = get_elements(left_half);

elements_segment_right = get_elements(right_half);

return initial_segments.add(elements_segment_left, elements_segment_right);

end /* if */

get elements returns the elements of a given similarity matrix.
The pseudo code below shows how the MSTNcut algorithm merges initial segments

until a given minimum similarty or a minimum number of segments is reached:

method: final_segments = merge(initial_segments)

repeat

(seg_i,seg_j) = find most similar neighbours in initial segments;

if similarity(seg_i, seg_j) > threshold

initial_segments.add( merge(seg_i,seg_j) );

else if number_of_segments =< minimum_segment_count

return inital_segments;

else

return intial_segments;
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