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Abstract. The traveling salesperson problem (TSP) is difficult to solve
for input instances with large number of cities. Instead of finding the
solution of an input with a large number of cities, the problem is approx-
imated into a simpler form containing smaller number of cities, which is
then solved optimally. Graph pyramid solution strategies, in a bottom-up
manner using a Bor̊uvka’s miniman spanning tree (MST), convert a 2D
Euclidean TSP problem with a large number of cities into successively
smaller problems (graphs) with similar layout and solution until the num-
ber of cities is small enough to seek the optimal solution. Expanding this
tour solution in a top-down manner to the lower levels of the pyramid
approximates the solution. The new model has an adaptive spatial struc-
ture and it simulates visual acuity and visual attention. The model solves
the TSP problem sequentially, by moving attention from city to city with
the same quality as humans. Graph pyramid data structures and process-
ing strategies are a plausible model for finding near-optimal solutions for
computationally hard pattern recognition problems.

1 Introduction

Traveling salesperson problem (TSP) is a combinatorial optimization task of
finding the shortest tour of n cities given the intercity costs. When the costs
between cities are Euclidean distances, the problem is called Euclidean TSP
(E-TSP). TSP as well as E-TSP belongs to the class of difficult optimization
problems called NP-hard and NP-complete if posed as decision problem [1]. The
straightforward approach by using brute force search would be using all possible
permutations for finding the shortest tour. It is impractical for large n since the

number of permutations is (n−1)!
2 . Because of the computational intractability of

TSP, researchers concentrated their efforts on finding approximating algorithms.
Good approximating algorithms can produce solutions that are only a few per-
cent longer than an optimal solution and the time of solving the problem is a
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low-order polynomial function of the number of cities [2–4]. The last few percent
to reach optimality are computationally the most expensive to achieve.

Interestingly, humans are known to produce close-to-optimal solutions to
E-TSP problems in time that is (on average) proportional to the number of
cities [5–7]. A simple way to present E-TSP to a subject is to show n cities as
points on a computer screen and ask the subject to produce a tour by clicking on
the points. In Fig. 1a a E-TSP example of 10 cities is shown and in c the solution
given by the human. The tours produced by the subjects are, on average, only a
few percent longer than the shortest tours (in Fig. 1c and d the cross depicts the
starting position and the arrow the orientation used by the subject). The solu-
tion time is a linear function of the number of cities [5, 6]. Two main attempts to
emulate human performance by a computational model were undertaken in [5, 6].
In [5], authors attempt to formulate a new approximating algorithm for E-TSP
motivated by the failure to identify an existing algorithm that could provide a
good fit to the subjects’ data. The main aspect of model in [5] is its i) (multires-
olution) pyramid architecture, and ii) a coarse to fine process of successive tour
approximations. They showed that performance of this model (proportion of op-
timal solutions and average solution error) is statistically equivalent to human
performance. Pyramid algorithms have been used extensively in both computer
and human vision literature (e.g. [8]), but not in problem solving. The work of [5,
9] was the first attempt to use pyramid algorithms to solve the E-TSP. One of
the most attractive aspects of pyramid algorithms, which make them suitable
for problems such as early vision or E-TSP, is that they allow to solve (approx-
imately) global optimization tasks without performing global search. A similar
pyramid algorithm for producing approximate E-TSP solutions with emphasis
on trade-off between computational complexity (speed) and error of the solution
(accuracy) and not on modeling human performance in formulated [4, Chap.5].

In this paper we present a human computational model for solving E-TSP

approximately based on the multiresolution graph pyramid. The accent is on
emulating human performance, and not in finding an algorithm for solving E-

TSP as optimal as possible. Our goal is to show that the results of the introduced
model are well fitted to the results of the humans, and the quality and speed
are comparable to human subjects. The next section presents a short overview
of the pyramid representations (Sec. 2). In Sec. 3 the solution of the E-TSP

using a minimum spanning tree (MST) based graph pyramid is introduced. The
bottom-up simplification of the input data is shown in Sec. 3.1, and in Sec. 3.2
the top-down approximative solution is described. Psychophysical experiments
on E-TSP are presented in Sec. 4.

2 Irregular Graph Pyramid

In our framework, the input to TSP is represented by graphs where cities are
represented with vertices, and the intercity neighborhood with edges (in Fig. 1b
the Delauney graph is shown). Each vertex of the constructed input graph must
have at least two edges for the TSP tour to exist. A level (k) of the graph pyramid



a) input instance b) graph G0 c) human solution d) optimal solution
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Fig. 1. E-TSP and solutions given by human and optimal solver.

consists of a graph Gk. Moreover the graph is attributed, G = (C,N,wv, we),
where wv : C → R

+ is a weighted function defined on vertices and we : N →
R

+ is a weighted function defined on edges. For the E-TSP the weights we are
Euclidean distances. The weight of a vertex can be thought of as the position of
the city in the Cartesian coordinate system. Finally, the sequence Gk, 0 ≤ k ≤ h

is called irregular graph pyramid.
In a regular image pyramid, the number of pixels at any level k is λ times

higher than the number of pixels at the next (reduced) level k + 1. The so
called reduction factor λ is greater than one and it is the same for all levels
k. The number of new levels on top of an image I amounts to logλ(|I|). This
implies that an image pyramid is build in O[log(diameter(I))] parallel steps [8].
However, regular image pyramids are confined to globally defined sampling grids
and lack shift invariance [11]. In [12, 13] it is shown how these drawbacks can be
avoided by adaptive irregular pyramids.

The model in [5] is based on regular pyramid representation, whereas the
model in [7] on quad trees, thus by shifting the input different solutions are
produced. Recently, [14], introduced an adaptive model trying to overcome this
drawback, by adaptive partitioning the plane along the axis of Cartesian system
and using the quad trees to represent the hierarchy. Our model uses graphs as
representation, therefore it is invariant to shifting and rotation of the input city
constellation. Moreover, using graph contraction [16] we create a pyramid that
adapts its structure to the input data.

3 Solving E-TSP by a Graph Pyramid

Let G0 = (C,N,wv, we) be the input graph, with weights on edges given as
distances in L2 space. The goal of TSP is to find the nonempty sequence of
vertices and edges {v0, e1, v1, ..., vk−1, ek, vk, ..., v0} over all vertices of G0 such
that all of the edges and vertices are distinct, except the start and the end
vertex v0, called the tour τopt such that the sum of edge weights is minimal,
i.e.

∑
e∈τ we → min. We use local to global and global to local processes in the

graph pyramid to find a good solution τ∗ approximating the E-TSP. The main
idea is to use



Algorithm 1 – Approximating E-TSP Solution by a MST Graph Pyramid

Input : Attributed graph G0 = (C, N, wv, we), and parameters r and s

1: partition the input space by preserving approximate location:
create graph G0

2: reduce number of cities bottom-up until the graph contains p vertices:
build graph pyramid Gk, ∀k = 0, ..h, where p = |Gk|

3: find the optimal tour τa for the graph Gh

4: refine solution top-down until all vertices at the base level are processed:
refine τa until level 0 is reached

Output : Approximate TSP solution τ∗.

– bottom-up processes to reduce input size, and
– top-down refinement to find an (approximate) solution.

The size of the input (number of vertices in the graph) is reduced such that
an optimal (trivial) solution can be found by the combinatorial search, e.g. for
the 3 city instance there is only one solution, not needing any search, and this is
the optimal one. For the 4 city input (not all colinear) there are three solutions
from which two are non-optimal since they cross edges. A pyramid is used to
reduce the size of the input in the bottom-up process. The (trivial) solution is
then found at the top of the pyramid and refined in a process emulating fovea
by humans using lower levels of this pyramid, i.e. the vertical neighborhoods
(parent-children relations) are used in this process to refine the tour. The final,
in general non-optimal, solution is found when all the cities at the base level
of the pyramid are in the tour. The steps needed to find the E-TSP solution
are shown in Alg. 1. Partitioning of the input space is treated in Sec. 2. In the
Subsections 3.1 and 3.2 steps 2 and 4 of Alg. 1 are discussed in more details.

3.1 Bottom-up Simplification using an MST Pyramid

The main idea is that cities being close neighbors are put into a cluster, and
thus reducing the resolution of the input. We are driven to use this closeness
concept since it seems that humans use this cue heavily when they solve the
E-TSP. Since the whole input instance is not in the visual field of view in the
same resolution (in general) and the time needed for the problem to be solved
by humans is (near) linear, seems that there might be some organization of the
input data during the E-TSP solving process.

There are many different algorithms to make hierarchical clustering of cities
[17]. We choose for this purpose the MST principle, especially Bor̊uvka’s algo-
rithm [18] since it hierarchically clusters neighboring vertices. The time complex-
ity of Bor̊uvka’s algorithm is O(|E| log |V |). It can be easily shown that MST can
be used as the natural lower bound and for the case of the TSP with the triangle
inequality, which is the case for the E-TSP, it can be used to prove the upper
bound as well [19]. The first step in Christofides heuristics [2] is finding an MST

as an approximation of TSP. Christofides shows that it is possible to achieve
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Fig. 2. Building the graph pyramid and finding the first TSP tour approximation.

at least 1 1/2 times of the optimal solution of TSP i.e. Christofides heuristics
solution of TSP ≤ 3/2 of the optimal solution.

For a given graph G0 = (C,N,wv, we) the vertices are hierarchically grouped
into trees (clustered) as given in Alg. 2. The idea of Bor̊uvka is to do greedy
steps like in Prim’s algorithm [15], in parallel over the graph at the same time.
The size of trees (clusters) are not allowed to contain more than r ∈ N

+ cities.
These trees must contain at least 2 cities, due to the fact that the pyramid must
have a logarithmic height [20], since the reduction factor λ is 2 ≤ λ ≤ r. This
parameter can be related also to the number of ’concepts’ that humans can have
in their ’memory buffer’, and is usually not larger than 10.

The parameter s ∈ N
+, the number of vertices in the top level of the pyramid,

is chosen such that an optimal tour can be found easily ( usually s = 3, or s = 4)
Note that larger s means shallow pyramid and larger graph at the top, which
also means higher time complexity to find the optimal tour at the top level.
Thus r and s can be used to control the trade off between speed and quality
of solution. An example of how the Alg. 2 builds the graph pyramid (only the
last two levels) is shown in Fig. 2. Each vertex (black in Gh−1) finds the edge
with the minimal weight (solid lines in Gh−1). These edges create trees (e.g. the

Algorithm 2 – Reduction of the TSP Input by an MST Graph Pyramid

Input : Attributed graph G0 = (C, N, wv, we), and parameters r and s

1: k ← 0
2: repeat

3: ∀vk ∈ Gk find the edge e′ ∈ Gk with minimum we incident into this vertex
4: using e′ create trees T with no more than p vertices
5: contract trees T into parent vertices vk+1

6: create graph Gk+1 with vertices vk+1 and edges ek ∈ Gk \ T

7: attribute vertices in Gk+1

8: k ← k + 1
9: until there are s vertices in the graph Gk+1.

Output : Graph pyramid – Gk, 0 ≤ k ≤ h.
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Fig. 3. Refining the TSP tour by a graph pyramid.

tree enclosed in the figure) of no more than r (= 4) cities. These trees are then
contracted to the parent vertices (enclosed white vertices in Gh−1). The parent
vertices together with edges not touched by the contraction are used to create
the graph of the next level (parallel edges and self loops can be removed, since
they are not needed for the clustering of vertices). The dotted lines between
vertices in different levels represent the parent-child relations. The new parent
vertex attribute can be the gravitational center of its children vertices, or by
using the position of the vertex near this gravitational center. The algorithm
iterates until there are s vertices at the top of the pyramid, and since s is small
a full search can be employed to find the optimal tour τa quickly.

3.2 Top-down Approximation of the Solution

The tour τa found at level h of the graph pyramid is used as the first approxi-
mation of the TSP tour τ∗. This tour is then refined using the pyramid structure
already built. In this paper we have chosen to use the most simple refinement,
the one-path refinement. The one-path refinement process starts by choosing
(randomly) a vertex v in the tour τa. Using the parent-child relationship, this
vertex is expanded into the subgraph G′

h−1 ⊂ Gh−1 from which it was created
i.e. its receptive field in the next lower level. In this subgraph a path between
vertices (children) is found that makes the overall path τ ′

a the shortest one (see
Fig. 3a). Since the number of vertices (children) in G′

h cannot be larger than
r, a complete search is a plausible approach to find the path with the smallest
contribution in the overall length of the tour τ ′

a. Note that edges in the τ ′

a are
not necessary the contracted edges during bottom-up construction.

The refinement process then choses one of the already expanded vertices in
G′

h−1, say v′ and expands it into its children at the next lower level G′

h−2, and
the tour τ ′′

a is computed. The process of tour refinement proceeds similarly until
there are no more parent-children relationships (graph G0, Fig. 3b) vertices of



the receptive field of c, RF (c)), i.e. the vertices at the base of the pyramid at the
same branch are reached. E.g. in Fig. 3b, the tour is refined as the shortest path
between the begin vertex b and end vertex e and all the vertices (children of c)
of the RF (c) . After arriving at the finest resolution, the process of refinement
continues by taking a vertex in the next upper level in the same cluster (see
Fig. 3 vertex b or e), and expanding it to its children and computing the tour.
Note that the process of vertex expansion toward the base level emulates the

fovea in the human visual system. The tour is refined to fine resolution in one
part whereas other parts are left in their coarse resolution. The process converges
when all vertices in the pyramid have been ’visited’3. More formally the steps
are depicted in Alg. 3, and Prc. 1, and 2.

Other refinement approaches can be chosen as well, just by changing Prc. 1
and 2. One can use different approaches of refinement for e.g. one can think of
using many vertices and expand them in parallel (multi-path refinement), or use
the one-path refinement until a particular level of the pyramid and continuous
with the multi-path refinement afterward. Note that there is a randomness in
choosing which of the vertices to refine, which is well associated to the ’random’
decision of humans in choosing from which vertex to start the tour.

4 Psychophysical Evaluation of Solutions

Four subjects (BSL, OSK, ZL, and ZP) have solved E-TSPs of different sizes: 6,
10, 20, and 50 cities [7]. Some qualitative results of the tours made by human
and the model introduced are presented in Fig 4. The crosses depict the starting
point chosen by the subjects and the method. BSL, OSK, and ZP chose the clock
wise tour, whereas ZL the counter clock wise tour. The MST based pyramid
model choses randomly the orientation of the tour. To test the model how well
fits to the subject data, the algorithm is run 15 times with different parameter
r. The results of the best model fitting (as well as the standard deviation) to the
subject data is shown in Fig. 5.

For larger instances (> 50 cities) data with human subjects are difficult
to obtain, thus we tested the results of the Alg. 1 with the state-of-the-art

3 A demo is given in http://www.prip.tuwien.ac.at/Research/twist/results.php.

Algorithm 3 – TSP Solution by a MST Graph Pyramid

Input : Graph pyramid Gk, 0 ≤ k ≤ h and the tour τa

1: τ∗ ← τa

2: v ← random vertex of τ∗

3: repeat

4: refine(τ∗, v) /* refine the path using the children of v. See Prc. 1 */
5: mark v as visited
6: v ← nextVertex(Gk, v, τ∗) /* get next vertex to process. See Prc. 2 */
7: until v = ∅

Output : Approximation TSP tour τ∗.



Procedure 1 refine(τ∗, v): refine a path τ∗ using the children of v

Input : Graph pyramid Gk, 0 ≤ k ≤ h, the tour τ∗, and the vertex v.

1: (c1, . . . , cn)← children of v /* vertices that have been contracted to v */
2: if n > 0 /* v is not a vertex from the bottom level */ then

3: vp, vs ← neighbours of v in τ∗ /* predecessor and successor of v */
4: p1, . . . , pn ← argmin{length of path {vp, cp1 , . . . , cpn

, vs}} such that p1, . . . , pn is
a permutation of 1, . . . , n /* optimal order of new vertices in the tour */

5: replace path {vp, v, vs} in τ∗ with path {vp, cp1 , . . . , cpn
, vs}

Output : refined TSP tour τ∗.

Procedure 2 nextVertex(Gk, v, τ∗): get next vertex to process

Input : Graph pyramid Gk, 0 ≤ k ≤ h, the vertex v, and the tour τ∗

1: repeat

2: if v has unvisited children then

3: v ← first unvisited child of v in τ∗ /* given an orientation */
4: else if v has unvisited siblings then

5: v ← first unvisited sibling of v in τ∗ /* given an orientation */
6: else if v has a parent i.e. v is not a vertex of the top level then

7: v ← parent of v

8: else

9: v ← ∅
10: until (v not visited)

∨
(v = ∅)

Output : new vertex to process v.

Concorde TSP solver4 with respect to time and with other pyramid algorithms
used in human problem solving, adaptive pyramid [14] and quad pyramid [7],
with respect to the solution error. The test is done with respect to the quality
of results, and the time needed to solve input examples with 200, 400, 600,
800, and 1000 cities. The error values are shown in Fig. 6a and in b the time
performance. The time plot is normalized with the time needed for methods
to solve the 200 city instance in one second. We have fixed the values of the
parameter r = 7 and s = 3 for these experiments. Since in our current software
implementation we use the fully connected graph to represent the input instance,
as expected the algorithm has O(|E|2) time complexity (as shown in Fig. 6b).
This time complexity can be reduced if instead of the fully connected graph one
uses a planar graph e.g. Delaunay triangulation. We show that the results of
MST-based model are comparable to humans in quality and speed, and scales
well with large input instances. This solution strategy emulates human fovea by
moving attention from city to city.

4 http://www.tsp.gatech.edu/concorde/index.html
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Fig. 4. E-TSP solutions by humans subjects and the MST pyramid model.

5 Conclusion

Pyramid solution strategies in a bottom-up manner convert a 2D Euclidean TSP

problem with a large number of cities into successively smaller problems with
similar layout and solution until the number of cities is small enough to seek the
optimal solution. Expanding this solution in a top-down manner to the lower
levels of the pyramid approximates the solution. The introduced method uses a
version of Bor̊uvka’s MST construction to reduce the number of cities. A top-
down process is then employed to approximate the E-TSP solution of the same
quality and at the same speed as humans do. The new model has an adaptive
spatial structure and it simulates visual acuity and visual attention. Specifically,
the model solves the E-TSP problem sequentially, by moving attention from city
to city, the same way human subjects do. We showed that the new model fits
the human data. Pyramid data structures and processing strategies are a plau-
sible model for finding near-optimal solutions for NP-hard pattern recognition
problems, e.g. matching.
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