

Connected Filters

Michael H. F. Wilkinson

Institute for Mathematics and Computing Science University of Groningen The Netherlands

SSIP, Vienna, July 11, 2008

Vienna, 1899

- Filters by Reconstruction
- Attribute filters
- Max-trees:
 - Data structure
 - Use in attribute filtering
 - Shape filters and distributions
 - Computing multi-variate pattern spectra
- Adapting the Max-tree:
 - Iso-surface browsing
 - Splatting
 - Parallel computation
 - Other work

An Example

Lenna with noise (left) structural open-close with square S.E. (middle) area open-close (right)

- \checkmark Let E be some universal set and $\mathcal{P}(E)$ the set of all subsets of E.
- Solution For a binary image $X \subseteq E$ a connected foreground component C is a connected subset of X of maximal extent.
- If C is a connected foreground component of X we denote this as $C \Subset X$.
- A connected backround component of X is a connected foreground component of the complement X^c of X.
- A partition of E is a set $A \subset \mathcal{P}(E)$ of sets α_i for which

$$\bigcup_{i} \alpha_{i} = E, \quad \text{and} \tag{1}$$

$$i \neq j \Rightarrow \alpha_i \cap \alpha_j = \emptyset.$$
 (2)

• The set A_X of all connected foreground and background components of X form a partition of E.

- Let $A = \{\alpha_i\}$ and $B = \{\beta_j\}$ be partitions.
- A is said to be *finer* than B *iff* for every α_i there exists a β_j such that $\alpha_i \subseteq \beta_j$.
- \blacksquare If A is finer than B then B is coarser than A.
- Let $\Psi : \mathcal{P}(E) \to \mathcal{P}(E)$ be a binary image operator, and $A_{\Psi(X)}$ be the partition of E consisting of all foreground and background components of $\Psi(X)$.
- Ψ is a *binary connected operator* if for any image X the partition A_X is finer than $A_{\Psi(X)}$.
- \checkmark The connected opening Γ_x is defined as

$$\Gamma_x(X) = \begin{cases} C: C \Subset X \land x \in C & \text{if } x \in X \\ \emptyset & \text{otherwise.} \end{cases}$$

(3)

Reconstruction

original f marker $g = \gamma_{21} f$ reconstruction of f by g

The edge preserving effect of openings-by-reconstruction compared to structural openings

Reconstruction

- The basis of an opening by reconstruction is the reconstruction of image f from an arbitrary marker g.
- $m{ imes}$ This is usually defined using geodesic dilations $ar{\delta}_f$ defined as

$$\overline{\delta}_f^1(g) = f \wedge \delta(g). \tag{4}$$

• This operator is used iteratively until stability, to perform the reconstruction ρ i.e.

$$\rho(f|g) = \lim_{n \to \infty} \bar{\delta}_f^n g = \underbrace{\bar{\delta}_f^1 \dots \bar{\delta}_f^1 \bar{\delta}_f^1}_{\text{until stability}}(g).$$
(5)

• In practice we apply $\bar{\delta}_f^n$ with n the smallest integer such that

$$\bar{\delta}_f^n g = \bar{\delta}_f^{n-1} g. \tag{6}$$

- What this process does in the binary case is reconstruct any connected component in f which intersects some part of g.
- An opening-by-reconstruction $\bar{\gamma}_X$ with structuring element (S.E) X is computed as

$$\bar{\gamma}_X(f) = \rho(f|\gamma_X(f)),\tag{7}$$

in which γ_X denotes an opening of f by X.

- Reconstructing from this marker preserves any connected component in which X fits at at least one position.
- Closing-by-reconstruction $\overline{\phi}_X$ can be defined by duality, i.e.

$$\bar{\phi}_X(f) = -\bar{\gamma}_X(-f) \tag{8}$$

Structural Openings vs. Reconstruction

X

 $X \circ B$

 $\rho(X|X \circ B)$

- The structural opening $X \circ B$, with $B = 7 \times 7$ square, yields the union of all 7×7 squares which fit into X. Clearly this distorts the connected components and is not a connected filter.
- The opening-by-reconstruction $\rho(X|X \circ B)$ preserves all connected components of X into which at least one 7×7 square fits. This can be considered an attribute filter.

- Openings-by-reconstructions are anti-extensive, and closings-by-reconstructions are extensive, removing bright or dark image details respectively.
- Meyer (J.Math. Imag. Vis. 2004) proposed levelings as an auto-dual extension of reconstruction filters.
- In this case a marker is used which may lie partly above and partly below the image.
- We can compute a leveling of $\lambda(f|g)$ of f from marker g as

$$(\lambda(f|g))(x) = \begin{cases} (\rho(f|g))(x) & \text{if } f(x) \ge g(x) \\ -(\rho(-f|-g))(x) & \text{if } f(x) < g(x), \end{cases}$$
(9)

Levelings allow edge-preserving simplification of images, by simultaneously removing bright and dark details.

Example: Levelings

original

blurred by Gaussian

leveling

Leveling using a Gaussian filter to simplify the image in an auto-dual manner.

Example: Leveling Cartoons

original

texture channel

Leveling cartoons for texture/cartoon decomposition.

Attribute Filters I

- Introduced by Breen and Jones in 1996.
- Examples: area openings/closings, attribute openings, shape filters
- How do they work?

Binary image :

- 1. compute attribute for each connected component
- 2. keep components of which attribute value exceeds some threshold λ

Attribute Openings: Formally

- ▶ Let $T : \mathcal{P}(E) \to \{false, true\}$ be an increasing criterion, i.e. $C \subseteq D$ implies that $T(C) \Rightarrow T(D)$.
- A binary *trivial opening* $\Gamma_T : \mathcal{P}(E) \to \mathcal{P}(E)$ using T as defined above is defined as

$$\Gamma_T(C) = \begin{cases} C & \text{if } T(C), \\ \emptyset & \text{otherwise.} \end{cases}$$
(10)

• A typical form of T is

$$T(C) = (\mu(C) \ge \lambda) \tag{11}$$

in which μ is some increasing scalar attribute value (i.e. $C \subseteq D \Rightarrow \mu(C) \leq \mu(D)$), and λ is the attribute threshold.

• The binary attribute opening Γ^T is defined as

$$\Gamma^{T}(X) = \bigcup_{x \in X} \Gamma_{T}(\Gamma_{x}(X)), \qquad (12)$$

in other words it is the union of all connected foreground components of X which meet the criterion T.

SSIP, Vienna, July 11, 2008

Attribute Openings: Examples

 $T = A(C) \ge 11^2$

 $T = I(C) \ge 11^4/6$

- An area opening is obtained if the criterion $T = A(C) \ge \lambda$, with A the area of the connected set C.
- A moment-of-inertia opening is obtained if the criterium is of the form $T = I(C) \ge \lambda$, with I the moment of inertia.

X

Other Attribute Filters

If criterion T is non-increasing in (10), Γ_T becomes a trivial thinning, or trivial, anti-extensive grain filter Φ_T :

$$\Phi_T(C) = \begin{cases} C & \text{if } T(C), \\ \emptyset & \text{otherwise.} \end{cases}$$
(13)

• Using a trivial thinning rather than a trivial opening in (12), Γ_T becomes an *attribute thinning* or *anti-extensive grain filter* Φ^T :

$$\Phi^T(X) = \bigcup_{x \in X} \Phi_T(\Gamma_x(X)), \tag{14}$$

• The extensive dual of the atribute opening Γ_T is the *attribute closing* Ψ_T , which is defined as

$$\Psi_T(X) = (\Gamma_T(X^c))^c.$$
(15)

The extensive dual of the attribute thinning is the attribute thickening, which is defined as above, but with a non-increasing criterion.

Non-Increasing Attributes

- Attribute thinnings can be defined using the usual form $T(C) = (\mu(C) \ge \lambda)$ if μ is non-increasing, e.g.:
 - Perimeter length P
 - Circularity (or boundary complexity) P^2/A
 - Concavity: (H A)/A, with H the convex hull area
 - Elongation (non-compactness): I/A^2
 - Any of Hu's moment invariants
- Alternatively, increasing attributes (i.e. $C \subseteq D \Rightarrow \mu(C) \leq \mu(D)$) can be used if the form of T is changed:
 - $T = (\mu(C) = \lambda)$
 - $T = (\mu(C) \le \lambda)$
 - 🧕 etc.

The Grey-scale Case

- In the case of attribute openings, generalization to grey scale is achieved through threshold decomposition.
- A threshold set X_h of grey level image (function) f is defined as

$$X_h(f) = \{ x \in E | f(x) \ge h \}.$$
 (16)

• The grey scale attribute opening γ^T based on binary counterpart Γ^T is given by

$$(\gamma^T(f))(x) = \sup\{h \le f(x) | x \in \Gamma^T(X_h(f))\}$$
(17)

• Closings ψ^T are defined by duality:

$$\psi^T(f) = -\gamma^T(-f). \tag{18}$$

The non-increasing case will be dealt with after discussing the algorithms.

(Semi) Auto-dual filtering

• A filter is auto-dual (or self-dual) if it is invariant to inversion:

$$\psi(f) = -\psi(-f) \tag{19}$$

- An approximation is offered by alternating sequential filters (ASFs), which consist of an alternating sequence of openings and closings of increasing scale (e.g. radius of structuring element).
- ▶ Let γ_{λ}^{a} be a area opening of attribute threshold λ , and ϕ_{λ}^{a} the corresponding area closing.
- The area N-Sieve ψ_{λ}^{N} is given by

$$\psi_{\lambda}^{N}(f) = \phi_{\lambda}^{a}(\gamma_{\lambda}^{a}(\dots(\phi_{2}^{a}(\gamma_{2}^{a}(\phi_{1}^{a}(\gamma_{1}^{a}(f)))))\dots))$$
(20)

and is an alternating sequential filter.

• The corresponding M-Sieve ψ^M_λ is just

$$\psi_{\lambda}^{M}(f) = \gamma_{\lambda}^{a}(\phi_{\lambda}^{a}(\dots(\gamma_{2}^{a}(\phi_{2}^{a}(\gamma_{1}^{a}(\phi_{1}^{a}(f)))))\dots))$$
(21)

Grey Scale Example

 $\phi^a_{256}(f)$

 $\psi^N_{256}(f)$

• A level set \mathcal{L}_h of image f is defined as

$$\mathcal{L}_h(f) = \{ x \in E | f(x) = h \}$$
(22)

- A flat zone or level component L_h at level h of a grey scale image f is a connected component of the level set $\mathcal{L}_h(f)$.
- peak component P_h at level h is a connected component of the thresholded set $X_h(f)$.
- A regional maximum M_h at level h is a level component no members of which have neighbors larger than h. A
- At each level *h* there may be several such components, which will be indexed as L_h^i, P_h^j and M_h^k , respectively.
- Any regional maximum M_h^k is also a peak component, but the reverse is not true.

Definitions for Grey Scale

One-dimensional example of level components, peak components and regional maxima.

- Naive computation of these filters in the grey-scale case can be done by threshold decomposition. This is SLOW!
- Three faster algorithms have been proposed
 - A priority-queue based approach (Vincent, 1993; Breen & Jones, 1996): low memory cost, time complexity $O(N^2 \log N)$.
 - A union-find approach (Meijster & Wilkinson 2002): low memory cost, time complexity $O(N \log N)$, fastest in practice, only for increasing filters.
 - The Max-tree based approach (Salembier *et al.*, 1998): high memory cost, time complexity O(N), most flexible.
 - The Max-tree method was combined with the union-find method by Najman and Couprie (2003), and extended floating point (Geraud et al. 2007).
 - A variant of the Max-tree for second-generation connectivity was developed (Ouzounis and Wilkinson 2005, 2007)
 - A parallel variant has been developed recently (Wilkinson et al, 2008).

Priority-Queue Algorithm I

- Create a list of all regional maxima M_h^k .
- Select a seed pixel p_h^k from each maximum M_h^k .
- For each seed p_h^k do
 - push p_h^k in priority queue, with grey level as priority.
 - start flood-filling the peak component $P_{h'}^j$ around the regional maximum

Stop if either

- ${\scriptstyle ullet}$ the flooded area is equal to λ , or
- a pixel is retrieved from the priority queue with grey value h'' > h'. In this case the region grown so far is not a peak component $P_{h'}^j$ at level h'.
- Flood the region with grey value λ .
- The algorithm terminates when all maxima have been processed.

The Core of the Priority-Queue Algorithm

```
/* List F contains the local maximum components */
while (F not empty) do
  {
     extract C from F;
     area = A(C);
     curlevel = grey level of component;
     while (area < lambda)
       { n = neighbor of C with I[n]
             is maximum of all neighbors;
         if (I[n] > curlevel)
           break;
         else { add n to C;
                curlevel = I[n];
              }
       }
     for all p in C do
       { I[p] = curlevel;
          L[p] = PROCESSED;
       }
  }
```


$O(N^2 \log N)$ Complexity

- (a) Original 1-D signal on which the priority-queue algorithm shows its $O(N^2 \log N)$ behaviour.
- (b)-(f) Processing sequence for each maximum, indicating pixels scanned before the next maximum is found.
- (g) 2-D counterpart of (a).

- We start from an observation that the partition of E induced by the connected components or level components of an image consist of disjoint sets.
- Tarjan's union-find algorithm for keeping track of disjoint sets can be used to implement merging in an efficient way.
- For each set (component) an arbitrary member is chosen as representative for that set.
- The algorithm uses rooted trees to represent sets, in which the root is chosen as the representative.
- Each non-root node in a tree points to its parent, while the root points to itself.
- Two objects x and y are members of the same set if and only if x and y are nodes of the same tree.
- This is equivalent to saying that they share the same root of the tree they are stored in.

- There are four basic operations.
 - MakeSet(x): Create a new singleton set {x}. This operation assumes that x is not a member of any other set.
 - FindRoot(x): Return the root of the tree containing x.
 - Union(x,y): Form the union of the two sets that contain x and y.
 - Criterion(x,y): a symmetric criterion which determines whether x and y belong to the same set.

Union-Find III

For flat zone labeling the algorithm becomes:

```
for all pixels p do
  { MakeSet(p);
   for all neighbors n
```

Note that in this context the condition n < p means that n is a pixel which has been processed before p.

- This part finds the flat zones
- A second resolving phase is needed to assign labels.

- Pointers are replaced by integer indices referring to the location of the parent.
- Instead of letting the root point to itself, we set it to -A(C), with A(C) the area of the component gathered so far.
- We have to process the pixels in descending grey-scale order to be sure we process peak components from the top down.
- We do this by sorting the pixels first (counting sort O(N)), pixels of the same grey level are processed in lexicographic order.
- We link pixels p and q if:
 - ${\scriptstyle \bullet } \ f(p) = f(q) \ {\rm or} \$
 - $(f(p) > f(q) \text{ and } \text{parent[findroot[}p]] < \lambda)$ or
 - $(f(p) < f(q) \text{ and } \text{parent[findroot[q]]} < \lambda).$
- We always choose the pixel with the *lowest* grey level as the root of a region.
- Resolving consists of assigning the root grey level to each pixel in a tree.

Basic Operations for Area Openings

```
void MakeSet ( int x )
{ parent[x] = -1;
}
int FindRoot ( int x )
{ if (parent[x] \ge 0)
    { parent[x] = FindRoot( parent[x] );
      return parent[x];
    }
  else return x;
}
boolean Criterion ( int x, int y )
{ return ( (I[x] == I[y]) ||
            ( -parent[x] < lambda ) );</pre>
}
```


Basic Operations for Area Openings

```
void Union ( int n, int p )
{ int r=FindRoot(n);
    if ( r != p )
        { if ( Criterion(r, p) )
            { parent[p] = parent[p] + parent[r];
            parent[r] = p;
        }
        else
            parent[p] = -lambda;
    }
}
```


Area Opening by Union Find

```
/* array S contains sorted pixel list */
for (p=0; p<Length(S); p++)</pre>
  ſ
    pix = S[p]; MakeSet(pix);
    for all neighbors nb of pix do
      if (([[pix] < I[nb]) ||
          (([[pix] == I[nb]) && (nb<pix)))
        Union(nb,pix);
 }
/* Resolving phase in reverse sort order */
for (p=Length(S)-1; p>=0; p--)
  ſ
    pix = S[p];
    if (parent[pix] >= 0)
        parent[pix] = parent[parent[pix]];
    else
        parent[pix] = I[pix];
  }
```


- Because peak components at different grey levels are nested within eachother, it is possible to represent the entire component structure as a tree.
- In Max-trees (Salembier et al., 1998) the nodes represent peak components.
- In Min-trees the nodes represent valley components (peak components of the inverted image).
- Level-line trees are built by computing a Min-tree and a Max-tree and merging these in such a way that the leaves of the tree are both minima and maxima in the image.
- Removing nodes in the Max-tree is leads to anti-extensive filtering
- Removing nodes in the Min-tree is leads to extensive filtering
- Removing nodes in the Level-line tree leads to auto-dual filtering.

Max-Tree representation

Filtering Rules

Different rules exist for removal of nodes:

The first two are "pruning" rules, the second two "non-pruning". These different rules have an impact on the way "top-hat" equivalents of grey-scale shape filters work.

The Difference between Filtering Rules

- Very often in image analysis, we want our methods to be invariant to certain transforms.
- Most, if not all filters are shift invariant
- Rotation invariance can be obtained in structural filtering by:
 - Using a rotation invariant structuring element (SE), or
 - Using a non-rotation invariant SE at all possible rotations.
- In attribute filtering invariance properties of the attribute carry over in the filter if the connectivity is also invariant.
- Example: area is a rotation invariant attribute, and so is the area opening.
- Scale invariance is easily achieved in attribute filtering: use scale-invariant attributes: I/A^2 .
- This leads to so-called shape-filters.

- Shape extraction is required whenever the objects of interest are characterized by shape, rather than scale.
- The common approach to this problem is by using multi-scale processing techniques.
- One example is finding elongated structures (vessels) is by using successive top-hat filters to obtain features of different width, followed by selection of sufficiently long features at each width scale by area openings.
- Multi-scale operators usually require multiple applications of filters to a single image.
- It may be more economical to design filters select for shape directly, in a single filter step.

If we filter a grey-scale image f using shape criteria, we want the following properties to hold:

- All connected components of any threshold set of the filtered image $\phi_r^T(f)$ satisfy the shape criterion used.
- None of the connected components of any threshold set of the difference between the filtered image and original image $\phi_r^T(f) f$ satisfy the shape criterion used

More formally we have

$$\Phi_r^T(X_h(\phi_r^T(f))) = X_h(\phi_r^T(f))$$
(23)

and

$$\Phi_r^T(X_h(f - \phi_r^T(f))) = \emptyset$$
(24)

for all h.

Grey-Scale Image Decomposition by Shape

Original image f

Explicit Multiscale Approach

final

original

Shape filters: formal description

 $\textbf{ Let us define a scaling } X_{\lambda} \text{ of set } X \text{ by a scalar factor } \lambda \in \mathbb{R} \text{ as }$

$$X_{\lambda} = \{ x \in \mathbb{R}^n | \lambda^{-1} x \in X \},$$
(25)

9 An operator ϕ is said to be *scale invariant* if

$$\phi(X_{\lambda}) = (\phi(X))_{\lambda} \tag{26}$$

for all $\lambda > 0$.

- If an operator is scale, rotation and translation invariant, we call it a shape operator.
- If it is also idempotent it is a shape filter.

An instance of a shape filter

- The binary connected opening Γ_x extracts the connected component to which x belongs, discarding all others.
- The trivial thinning Φ_T of a connected set C with criterion T is just the set C if C satisfies T, and is empty otherwise. Furthermore, $\Phi_T(\emptyset) = \emptyset$.
- The binary attribute thinning Φ^T of set X with criterion T is given by

$$\Phi^T(X) = \bigcup_{x \in X} \Phi_T(\Gamma_x(X))$$
(27)

If T is scale, rotation and translation invariant, Φ^T is a shape filter. An example would be:

$$T(C) = \left(\frac{I(C)}{A^2(C)} \ge \lambda\right).$$
(28)

- In angiography it is often necessary to enhance curvilinear detail before segmentation.
- Standard multi-scale techniques require filtering at multiple scales and orientations.
- Shape filtering using 3D shape criteria can be used instead. Examples:
 - non-compactness: $I/V^{5/3} > \lambda$, in which I is the trace of moment-of-inertia tensor (\propto covariance matrix of the coordinate distribution of the pixels) of the connected set, and V the volume.
 - elongation ϵ_1 : ratio $|e_1|/|e_2|$ of the two largest eigenvalues of the moment-of-inertia tensor
 - flatness f_1 : ratio $|e_2|/|e_3|$ of the two smallest eigenvalues.
 - elongation ϵ_2 : ratio $|e_1|/\sqrt{|e_2e_3|}$
 - flatness f_2 : ratio $\sqrt{|e_1e_2|}/|e_3|$.
- The result can be computed in under 12 s on a Pentium 4 at 1.9 GHz for a 256³ volume.

Vessel Enhancement II

segmentation of filtered set

SSIP, Vienna, July 11, 2008

Problem: Time of Flight MRA

- Aim: Removing objects that are similar enough to a given shape.
- Example: removing objects that are similar enough (ϵ) to the reference shape (letter A).

- A value of $\epsilon = 0$ means only those shapes are removed that are exactly the same as the reference shape.
- To gain more descriptive power we may use more than one attribute per node.

Binary Vector-Attribute Thinning

• A multi-variate attribute thinning $\Phi^{\{T_i\}}(X)$ with scalar attributes $\{\tau_i\}$ and their corresponding criteria $\{T_i\}$, with $1 \le i \le N$, preserves a component C if $\exists i : T_i$, $T_i = \tau_i(C) \ge r_i$:

$$\Phi^{\{T_i\}}(X) = \bigcup_{i=1}^{N} \Phi^{T_i}(X).$$
(29)

● An alternative is the vector-attribute thinning, in which C is preserved if $\vec{\tau}(C) \in \mathbb{R}^D$ satisfies criterion

$$T^{\vec{\tau}}_{\vec{r},\epsilon}(C) = d(\vec{\tau}(C), \vec{r}) \ge \epsilon$$
(30)

in which dissimilarity measure $d : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ quantifies the difference between $\vec{\tau}(C)$ and \vec{r} .

■ A binary vector-attribute thinning $\Phi_{\vec{r},\epsilon}^{\vec{\tau}}(X)$, with *D*-dimensional vectors, removes the connected components of a binary image X whose vector-attributes differ less than ϵ from a reference vector $\vec{r} \in \mathbb{R}^{D}$.

Vector Attribute Thinning

Definition 1. The vector-attribute thinning $\Phi_{\vec{r},\epsilon}^{\vec{\tau}}$ of X with respect to a reference vector \vec{r} and using vector-attribute $\vec{\tau}$ and scalar value ϵ is given by

$$\Phi_{\vec{r},\epsilon}^{\vec{\tau}}(X) = \{ x \in X | T_{\vec{r},\epsilon}^{\vec{\tau}}(\Gamma_x(X)) \}.$$
(31)

Possible choices for d:

- Euclidean distance $d(\vec{u}, \vec{v}) = ||\vec{v} \vec{u}||.$
- Manhattan distance $d(\vec{u}, \vec{v}) = \sum |v_i u_i|$
- Any dissimilarity measure can be used (such as Mahalanobis distance).
- Since the triangle inequality $d(a,c) \le d(a,b) + d(b,c)$ is not required, d need not be a distance.

• To select the appropriate vector \vec{r} we can provide a shape in a binary image and compute its vector attributes.

Definition 2. The vector-attribute thinning $\Phi_{S,\epsilon}^{\vec{\tau}}$ of X with respect to a reference shape S and using vector-attribute $\vec{\tau}$ and scalar value ϵ is given by

$$\Phi_{S,\epsilon}^{\vec{\tau}}(X) = \Phi_{\vec{\tau}(S),\epsilon}^{\vec{\tau}}(X)$$
(32)

• More robustness can be obtained using a series of example shapes in a shape family $F = \{S_1, S_2, \dots, S_n\}$:

Definition 3. The vector-attribute thinning $\Phi_{F,\epsilon}^{\vec{\tau}}$ of X with respect to a reference shape family F and using vector-attribute $\vec{\tau}$ and scalar value ϵ is given by

$$\Phi_{F,\epsilon}^{\vec{\tau}}(X) = \bigcap_{S \in F} \Phi_{S,\epsilon}^{\vec{\tau}}(X)$$
(33)

This removes objects if they are similar enough to any of the example shapes

Extension to gray-scale using threshold decomposition:

$$\phi_{\vec{r},\epsilon}^{\vec{\tau}}(f) = \sup\{h \mid T_{\vec{r},\epsilon}^{\vec{\tau}}(\Gamma_x(X_h(f)))\},\tag{34}$$

where threshold set $X_h(f)$ is defined as: $X_h(f) = \{x \in \mathbf{M} | f(x) \ge h\}$. Example: removing letters from image f consisting of nested versions of the letters A, B, and C.

Using vector-attribute thinning with Hu's set of 7 moment invariants as vector-attribute to remove from image X the letters A, B, and C respectively.

Traffic-Sign Recognition

- Using scaling and rotation invariant vector-attribute filters it is possible to detect e.g. traffic signs in natural scenes.
- Using a single filter it is possible to detect multiple targets.

- Visualization of 3-D data sets can be done in a variety of ways.
- One class of rendering methods first extracts some interim representation in terms of graphical primitives from the data
- Once extracted, this representation can be rendered rapidly using standard graphical systems, e.g. through OpenGL.
- The most common example is iso-surface rendering
- Alternatively, we can use *direct volume rendering* in which the 3-D data are projected directly onto the view plane in some way.
- Examples are Maximum Intensity Projection (MIP) and X-ray rendering
- The following techniques can be handled efficiently through Max-trees:
 - Iso-surface rendering
 - Splatting (yielding either MIP or X-ray rendering)
 - Texture-based Volume Rendering (as above and more advanced transfer functions).

Isosurface

- 3-D surface representing locations of constant scalar value within volume
- Standard method: marching cubes

- **Definition:** the *root path* of node C_h^k contains all nodes encountered on the descent from C_h^k to the root
- Consider 26-connected neighborhood, then:
 - 1. all 8 corner voxels of a cell are part of the same root path
 - 2. filtering does not change the grey-level ordering of nodes along a root path
- Therefore:
 - one node $C_{h_1}^k$ defines a cell's minimum
 - another node $C_{h_2}^k$ defines a cell's maximum
- Important: after filtering, the same nodes still define the cell's minimum and maximum

Augmented Max-Tree

original image

label image

 V_{\min}

 $V_{\rm max}$

Augmented Max-tree

Pseudo-code

for all nodes p do p.processed \leftarrow false end for root.processed \leftarrow true for all leaves q do $p \leftarrow q$ while (not p.processed) and $(g(p) \ge t)$ do i ← 0 while (i<p.numEdges) and $(g(V_{\min}(c_i^p)) \leq t)$ do mark c_i^p as active $i \leftarrow i + 1$ end while $p.processed \leftarrow true$ $p \leftarrow p.parent$ end while end for

Visited nodes and cells for t = 0.5.

Isosurface result

Splatting: the principle

- In standard X-ray and maximum-intensity projection, visiting zero grey-level voxels wastes time.
- Rather than filtering and rebuilding a volume, extract the non-zero voxels from the Max-tree, and splat these.
- In the orginal Max-tree representation, it was easy to find which node a voxel belongs to, but not the reverse.
- Adding a voxel-list to each node circumvents this problem
- simply scan the Max-tree from the leaves downwards, and splat each voxel of each non-zero node.

Splatting result

- Instead of using the CPU to perform most of the work, we can use the GPU to perform the rendering through texture-based volume rendering
- In the standard approach (STBV), the complete volume is loaded into graphics memory as a 3-D texture
- It can then be rendered using any transfer function, which dictates how grey levels are represented (e.g. through a colour/tranparency LUT)
- *Blending methods* also determine the rendering method (MIP, X-Ray,etc).
- Advantages of the method are:
 - Speed when changing viewpoint
 - Versatility
- Drawbacks are
 - Requires large graphics memory
 - Slow when doing λ -browsing

- We can increase the speed of λ -browsing by using *indirect* texture-based volume rendering.
- In this case the texture data are first sent through a look-up table (LUT), and the LUT value is used to determine the transfer function result.
- \checkmark We can now send a *label* volume to the texture buffer once, as a 3-D texture T_v .
- Each voxel in T_v contains a label corresponding to its Max-tree node C_h^k .
- We use a second (1-D) texture T to encode the grey levels for each node C_h^k .
- Solution Whenever λ is changed, we update T by copying the new grey levels of each node (stored in an array A[i] for convenience), and send only T to the graphics board.
- We can then draw by indirect texture-based rendering, purely on the GPU!

Update()

```
 \{g(p) \text{ denotes current grey value of node } p\} \\ \textbf{for } i \leftarrow 0 \text{ to length}(A) \textbf{ do} \\ T[i] \leftarrow g(A[i]) \\ \textbf{end for} \end{cases}
```

Transfer T to graphics hardware

Draw()

```
for all slice planes s do
for all fragments f in s do
i \leftarrow \text{sample } T_v in point f {Fetch node index}
g \leftarrow T[i] {Fetch current grey value}
f.\text{color} \leftarrow \text{TransferFunction}(g)
end for
Blend s with frame buffer
end for
```


- Parallel computation is desirable because the volume data sets are often hughe $(512^3 = 256 \text{ MB} \text{ for short integer data}).$
- Parallel computation of connected filters is hard, because
 - Connected filters are not local
 - Connected filters are not separable
- We have developed a parallel algorithm for extensive and anti-extensive attribute filters by:
 - dividing the image (or volume) into strips
 - computing a Max-tree for each strip
 - merging the local Max-trees into a single tree
 - performing the filtering strip-wise
- To do this efficiently, we need to merge the Max-tree and union-find approaches.
- The big problem is keeping the attributes correct

Including Union-find

Speed-up

Timings were performed on the 16 CPU Onyx 3400 of the Centre for High Performance Computing & Visualisation of the RuG.

Speed-up II

Timings on a 2 socket dual-core Opteron-based machine.

- Morphological connected hat scale-spaces based on Max-trees have been constructed for contour and texture analysis.
- The C-trees for multi-scale connectivity analysis of binary images as suggested by Tzafestas & Maragos (2003) can be implemented rapidly as Max-trees of opening transforms.
- Derived connectivities (i.e. using openings or closings) can be incorporated into the Max-tree by constructing the tree not from one, but from two images. The second image encodes the altered connectivity.
- Extending the attributes for shape filtering.
- Making shape filters trainable by examples.

