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An Example

Lenna with noise (left) structural open-close with square S.E. (middle) area
open-close (right)
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Definitions I

Let E be some universal set and P(E) the set of all subsets of E.

For a binary image X ⊆ E a connected foreground component C is a connected
subset of X of maximal extent.

If C is a connected foreground component of X we denote this as C b X.

A connected backround component of X is a connected foreground component of
the complement Xc of X.

A partition of E is a set A ⊂ P(E) of sets αi for which⋃
i

αi = E, and (1)

i 6= j ⇒ αi ∩ αj = ∅. (2)

The set AX of all connected foreground and background components of X form a
partition of E.
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Definitions II

Let A = {αi} and B = {βj} be partitions.

A is said to be finer than B iff for every αi there exists a βj such that αi ⊆ βj.

If A is finer than B then B is coarser than A.

Let Ψ : P(E)→ P(E) be a binary image operator, and AΨ(X) be the partition of
E consisting of all foreground and background components of Ψ(X).

Ψ is a binary connected operator if for any image X the partition AX is finer
than AΨ(X).

The connected opening Γx is defined as

Γx(X) =

{
C : C b X ∧ x ∈ C if x ∈ X
∅ otherwise.

(3)

SSIP, Vienna, July 11, 2008 5 of 73



Reconstruction

original f marker g = γ21f reconstruction of f by g

The edge preserving effect of openings-by-reconstruction compared to structural
openings
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Reconstruction

The basis of an opening by reconstruction is the reconstruction of image f from
an arbitrary marker g.

This is usually defined using geodesic dilations δ̄f defined as

δ
1

f(g) = f ∧ δ(g). (4)

This operator is used iteratively until stability, to perform the reconstruction ρ i.e.

ρ(f |g) = lim
n→∞

δ̄n
f g = δ̄1f . . . δ̄

1
f δ̄

1
f︸ ︷︷ ︸

until stability

(g). (5)

In practice we apply δ̄n
f with n the smallest integer such that

δ̄n
f g = δ̄n−1

f g. (6)

SSIP, Vienna, July 11, 2008 7 of 73



Openings-by-Reconstruction

What this process does in the binary case is reconstruct any connected component
in f which intersects some part of g.

An opening-by-reconstruction γ̄X with structuring element (S.E) X is computed
as

γ̄X(f) = ρ(f |γX(f)), (7)

in which γX denotes an opening of f by X.

Reconstructing from this marker preserves any connected component in which X
fits at at least one position.

Closing-by-reconstruction φ̄X can be defined by duality, i.e.

φ̄X(f) = −γ̄X(−f) (8)
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Structural Openings vs. Reconstruction

X X ◦B ρ(X|X ◦B)

The structural opening X ◦B, with B a 7× 7 square, yields the union of all 7× 7
squares which fit into X. Clearly this distorts the connected components and is
not a connected filter.

The opening-by-reconstruction ρ(X|X ◦B) preserves all connected components
of X into which at least one 7× 7 square fits. This can be considered an attribute
filter.
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Levelings

Openings-by-reconstructions are anti-extensive, and closings-by-reconstructions
are extensive, removing bright or dark image details respectively.

Meyer (J.Math. Imag. Vis. 2004) proposed levelings as an auto-dual extension of
reconstruction filters.

In this case a marker is used which may lie partly above and partly below the
image.

We can compute a leveling of λ(f |g) of f from marker g as

(λ(f |g))(x) =

{
(ρ(f |g))(x) if f(x) ≥ g(x)
−(ρ(−f | − g))(x) if f(x) < g(x),

(9)

Levelings allow edge-preserving simplification of images, by simultaneously
removing bright and dark details.
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Example: Levelings

original blurred by Gaussian leveling

Leveling using a Gaussian filter to simplify the image in an auto-dual manner.
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Example: Leveling Cartoons

original cartoon texture channel

Leveling cartoons for texture/cartoon decomposition.
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Attribute Filters I

Introduced by Breen and Jones in 1996.

Examples: area openings/closings, attribute openings, shape filters

How do they work?

Binary image :

1. compute attribute for each connected component
2. keep components of which attribute value exceeds some threshold λ
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Attribute Openings: Formally

Let T : P(E)→ {false, true} be an increasing criterion, i.e. C ⊆ D implies that
T (C)⇒ T (D).

A binary trivial opening ΓT : P(E)→ P(E) using T as defined above is defined
as

ΓT (C) =

{
C if T (C),
∅ otherwise.

(10)

A typical form of T is
T (C) = (µ(C) ≥ λ) (11)

in which µ is some increasing scalar attribute value (i.e.
C ⊆ D ⇒ µ(C) ≤ µ(D)), and λ is the attribute threshold.

The binary attribute opening ΓT is defined as

ΓT (X) =
⋃

x∈X

ΓT (Γx(X)), (12)

in other words it is the union of all connected foreground components of X which
meet the criterion T .
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Attribute Openings: Examples

X T = A(C) ≥ 112 T = I(C) ≥ 114/6

An area opening is obtained if the criterion T = A(C) ≥ λ, with A the area of
the connected set C.

A moment-of-inertia opening is obtained if the criterium is of the form
T = I(C) ≥ λ, with I the moment of inertia.
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Other Attribute Filters

If criterion T is non-increasing in (10), ΓT becomes a trivial thinning, or trivial,
anti-extensive grain filter ΦT :

ΦT (C) =

{
C if T (C),
∅ otherwise.

(13)

Using a trivial thinning rather than a trivial opening in (12), ΓT becomes an
attribute thinning or anti-extensive grain filter ΦT :

ΦT (X) =
⋃

x∈X

ΦT (Γx(X)), (14)

The extensive dual of the atribute opening ΓT is the attribute closing ΨT , which
is defined as

ΨT (X) = (ΓT (Xc))c. (15)

The extensive dual of the attribute thinning is the attribute thickening, which is
defined as above, but with a non-increasing criterion.
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Non-Increasing Attributes

Attribute thinnings can be defined using the usual form T (C) = (µ(C) ≥ λ) if µ
is non-increasing, e.g.:

Perimeter length P

Circularity (or boundary complexity) P 2/A

Concavity: (H −A)/A, with H the convex hull area

Elongation (non-compactness): I/A2

Any of Hu’s moment invariants

Alternatively, increasing attributes (i.e. C ⊆ D ⇒ µ(C) ≤ µ(D)) can be used if
the form of T is changed:

T = (µ(C) = λ)

T = (µ(C) ≤ λ)

etc.
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The Grey-scale Case

In the case of attribute openings, generalization to grey scale is achieved through
threshold decomposition.

A threshold set Xh of grey level image (function) f is defined as

Xh(f) = {x ∈ E|f(x) ≥ h}. (16)

The grey scale attribute opening γT based on binary counterpart ΓT is given by

(γT (f))(x) = sup{h ≤ f(x)|x ∈ ΓT (Xh(f))} (17)

Closings ψT are defined by duality:

ψT (f) = −γT (−f). (18)

The non-increasing case will be dealt with after discussing the algorithms.
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(Semi) Auto-dual filtering

A filter is auto-dual (or self-dual) if it is invariant to inversion:

ψ(f) = −ψ(−f) (19)

An approximation is offered by alternating sequential filters (ASFs), which consist
of an alternating sequence of openings and closings of increasing scale (e.g. radius
of structuring element).

Let γa
λ be a area opening of attribute threshold λ, and φa

λ the corresponding area
closing.

The area N-Sieve ψN
λ is given by

ψN
λ (f) = φa

λ(γa
λ(. . . (φa

2(γ
a
2(φa

1(γ
a
1(f))))) . . .)) (20)

and is an alternating sequential filter.

The corresponding M-Sieve ψM
λ is just

ψM
λ (f) = γa

λ(φa
λ(. . . (γa

2(φa
2(γ

a
1(φa

1(f))))) . . .)) (21)
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Grey Scale Example

f γa
256(f)

φa
256(f) ψN

256(f)
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Definitions for Grey Scale

A level set Lh of image f is defined as

Lh(f) = {x ∈ E|f(x) = h} (22)

A flat zone or level component Lh at level h of a grey scale image f is a
connected component of the level set Lh(f).

peak component Ph at level h is a connected component of the thresholded set
Xh(f).

A regional maximum Mh at level h is a level component no members of which
have neighbors larger than h. A

At each level h there may be several such components, which will be indexed as
Li

h, P
j
h and Mk

h , respectively.

Any regional maximum Mk
h is also a peak component, but the reverse is not true.
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Definitions for Grey Scale

Xh"

Xh'

Xh

h

h'
h"

L1
h"

M = P = L1 1 1
h h h

P1
h'

M = P = L2 2 2
h h h

(a) (b)

One-dimensional example of level components, peak components and regional
maxima.

SSIP, Vienna, July 11, 2008 22 of 73



Algorithms for the Grey-scale Case

Naive computation of these filters in the grey-scale case can be done by threshold
decomposition. This is SLOW!

Three faster algorithms have been proposed

A priority-queue based approach (Vincent, 1993; Breen & Jones, 1996): low
memory cost, time complexity O(N2 logN).

A union-find approach (Meijster & Wilkinson 2002): low memory cost, time
complexity O(N logN), fastest in practice, only for increasing filters.

The Max-tree based approach (Salembier et al., 1998): high memory cost, time
complexity O(N), most flexible.

The Max-tree method was combined with the union-find method by Najman
and Couprie (2003), and extended floating point (Geraud et al. 2007).

A variant of the Max-tree for second-generation connectivity was developed
(Ouzounis and Wilkinson 2005, 2007)

A parallel variant has been developed recently (Wilkinson et al, 2008).
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Priority-Queue Algorithm I

Create a list of all regional maxima Mk
h .

Select a seed pixel pk
h from each maximum Mk

h .

For each seed pk
h do

push pk
h in priority queue, with grey level as priority.

start flood-filling the peak component P j
h′ around the regional maximum

Stop if either

the flooded area is equal to λ, or
a pixel is retrieved from the priority queue with grey value h′′ > h′. In this
case the region grown so far is not a peak component P j

h′ at level h′.

Flood the region with grey value λ.

The algorithm terminates when all maxima have been processed.
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The Core of the Priority-Queue Algorithm

/* List F contains the local maximum components */
while (F not empty) do

{
extract C from F;
area = A(C);
curlevel = grey level of component;
while (area < lambda)

{ n = neighbor of C with I[n]
is maximum of all neighbors;

if (I[n] > curlevel)
break;

else { add n to C;
curlevel = I[n];

}
}

for all p in C do
{ I[p] = curlevel;

L[p] = PROCESSED;
}

}
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O(N2 logN) Complexity

(a) (b) (c) (d) (e) (f) (g)

(a) Original 1-D signal on which the priority-queue algorithm shows its O(N2 logN)
behaviour.

(b)-(f) Processing sequence for each maximum, indicating pixels scanned before the
next maximum is found.

(g) 2-D counterpart of (a).
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Union-Find I

We start from an observation that the partition of E induced by the connected
components or level components of an image consist of disjoint sets.

Tarjan’s union-find algorithm for keeping track of disjoint sets can be used to
implement merging in an efficient way.

For each set (component) an arbitrary member is chosen as representative for that
set.

The algorithm uses rooted trees to represent sets, in which the root is chosen as
the representative.

Each non-root node in a tree points to its parent, while the root points to itself.

Two objects x and y are members of the same set if and only if x and y are nodes
of the same tree.

This is equivalent to saying that they share the same root of the tree they are
stored in.
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Union-Find II

There are four basic operations.

MakeSet(x): Create a new singleton set {x}. This operation assumes that x is
not a member of any other set.

FindRoot(x): Return the root of the tree containing x.

Union(x,y): Form the union of the two sets that contain x and y.

Criterion(x,y): a symmetric criterion which determines whether x and y
belong to the same set.
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Union-Find III

For flat zone labeling the algorithm becomes:

for all pixels p do
{ MakeSet(p);
for all neighbors n<p do
if ( I[n]==I[p] )

Union( n, p );
}

Note that in this context the condition n<p means that n is a pixel which has
been processed before p.

This part finds the flat zones

A second resolving phase is needed to assign labels.
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Changes needed for Area Openings

Pointers are replaced by integer indices refering to the location of the parent.

Instead of letting the root point to itself, we set it to −A(C), with A(C) the area
of the component gathered so far.

We have to process the pixels in descending grey-scale order to be sure we process
peak components from the top down.

We do this by sorting the pixels first (counting sort O(N)), pixels of the same
grey level are processed in lexicographic order.

We link pixels p and q if:

f(p) = f(q) or

(f(p) > f(q) and -parent[findroot[p]]< λ) or

(f(p) < f(q) and -parent[findroot[q]]< λ).

We always choose the pixel with the lowest grey level as the root of a region.

Resolving consists of assigning the root grey level to each pixel in a tree.
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Basic Operations for Area Openings

void MakeSet ( int x )
{ parent[x] = -1;
}

int FindRoot ( int x )
{ if ( parent[x] >=0 )

{ parent[x] = FindRoot( parent[x] );
return parent[x];

}
else return x;

}

boolean Criterion ( int x, int y )
{ return ( (I[x] == I[y]) ||

( -parent[x] < lambda ) ) ;
}
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Basic Operations for Area Openings

void Union ( int n, int p )
{ int r=FindRoot(n);
if ( r != p )
{ if ( Criterion(r, p) )

{ parent[p] = parent[p] + parent[r];
parent[r] = p;

}
else
parent[p] = -lambda;

}
}
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Area Opening by Union Find

/* array S contains sorted pixel list */
for (p=0; p<Length(S); p++)
{
pix = S[p]; MakeSet(pix);
for all neighbors nb of pix do
if ((I[pix] < I[nb]) ||

((I[pix] == I[nb]) && (nb<pix)))
Union(nb,pix);

}
/* Resolving phase in reverse sort order */
for (p=Length(S)-1; p>=0; p--)
{
pix = S[p];
if (parent[pix] >= 0)

parent[pix] = parent[parent[pix]];
else

parent[pix] = I[pix];
}
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Tree Structures for Connected Filtering

Because peak components at different grey levels are nested within eachother, it
is possible to represent the entire component structure as a tree.

In Max-trees (Salembier et al., 1998) the nodes represent peak components.

In Min-trees the nodes represent valley components (peak components of the
inverted image).

Level-line trees are built by computing a Min-tree and a Max-tree and merging
these in such a way that the leaves of the tree are both minima and maxima in
the image.

Removing nodes in the Max-tree is leads to anti-extensive filtering

Removing nodes in the Min-tree is leads to extensive filtering

Removing nodes in the Level-line tree leads to auto-dual filtering.
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Max-Tree representation
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Filtering
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Filtering Rules

Different rules exist for removal of nodes:

20

8 6

50

70

P 0
1

P 0
0

P 0
3

P 0
2

P 0
1

P 0
0

attributes Min Max

P 0
3

P 0
1

P 0
0

P 0
2

P 0
1

P 0
0

Direct Subtract

The first two are ”pruning” rules, the second two ”non-pruning”. These different
rules have an impact on the way ”top-hat” equivalents of grey-scale shape filters

work.
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The Difference between Filtering Rules

original min max

direct subtractive
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Invariances in Attribute Filters

Very often in image analysis, we want our methods to be invariant to certain
transforms.

Most, if not all filters are shift invariant

Rotation invariance can be obtained in structural filtering by:

Using a rotation invariant structuring element (SE), or

Using a non-rotation invariant SE at all possible rotations.

In attribute filtering invariance properties of the attribute carry over in the filter if
the connectivity is also invariant.

Example: area is a rotation invariant attribute, and so is the area opening.

Scale invariance is easily achieved in attribute filtering: use scale-invariant
attributes: I/A2.

This leads to so-called shape-filters.
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Why shape filters?

Shape extraction is required whenever the objects of interest are characterized by
shape, rather than scale.

The common approach to this problem is by using multi-scale processing
techniques.

One example is finding elongated structures (vessels) is by using successive
top-hat filters to obtain features of different width, followed by selection of
sufficiently long features at each width scale by area openings.

Multi-scale operators usually require multiple applications of filters to a single
image.

It may be more economical to design filters select for shape directly, in a single
filter step.
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Grey-Scale Image Decomposition by Shape

If we filter a grey-scale image f using shape criteria, we want the following properties
to hold:

All connected components of any threshold set of the filtered image φT
r (f) satisfy

the shape criterion used.

None of the connected components of any threshold set of the difference between
the filtered image and original image φT

r (f)− f satisfy the shape criterion used

More formally we have

ΦT
r (Xh(φT

r (f))) = Xh(φT
r (f)) (23)

and
ΦT

r (Xh(f − φT
r (f))) = ∅ (24)

for all h.
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Grey-Scale Image Decomposition by Shape

Min Max Dir. Sub.

φT
r (f)

Original image f

f − φT
r (f)

φT
r (f − φT

r (f))
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Explicit Multiscale Approach

original radius = 1 radius = 3 radius = 9 final
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Shape filters: formal description

Let us define a scaling Xλ of set X by a scalar factor λ ∈ R as

Xλ = {x ∈ Rn|λ−1x ∈ X}, (25)

An operator φ is said to be scale invariant if

φ(Xλ) = (φ(X))λ (26)

for all λ > 0.

If an operator is scale, rotation and translation invariant, we call it a shape
operator.

If it is also idempotent it is a shape filter.

SSIP, Vienna, July 11, 2008 44 of 73



An instance of a shape filter

The binary connected opening Γx extracts the connected component to which x
belongs, discarding all others.

The trivial thinning ΦT of a connected set C with criterion T is just the set C if
C satisfies T , and is empty otherwise. Furthermore, ΦT (∅) = ∅.

The binary attribute thinning ΦT of set X with criterion T is given by

ΦT (X) =
⋃

x∈X

ΦT (Γx(X)) (27)

If T is scale, rotation and translation invariant, ΦT is a shape filter. An example
would be:

T (C) =
(
I(C)
A2(C)

≥ λ
)
. (28)
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Vessel Enhancement

In angiography it is often necessary to enhance curvilinear detail before
segmentation.

Standard multi-scale techniques require filtering at multiple scales and
orientations.

Shape filtering using 3D shape criteria can be used instead. Examples:

non-compactness: I/V 5/3 > λ, in which I is the trace of moment-of-inertia
tensor (∝ covariance matrix of the coordinate distribution of the pixels) of the
connected set, and V the volume.

elongation ε1: ratio |e1|/|e2| of the two largest eigenvalues of the
moment-of-inertia tensor

flatness f1: ratio |e2|/|e3| of the two smallest eigenvalues.

elongation ε2: ratio |e1|/
√
|e2e3|

flatness f2: ratio
√
|e1e2|/|e3|.

The result can be computed in under 12 s on a Pentium 4 at 1.9 GHz for a 2563

volume.
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Vessel Enhancement II

angiogram filtered λ = 2.0

segmentation of original segmentation of filtered set
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Problem: Time of Flight MRA

original I/V 5/3 ≥ 2.0 I/V 5/3 ≥ 4.8

f1 ≥ 19.0 I/V 5/3 ≥ 2.0 and f1 < 19.0
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Vector-attribute filters

Aim: Removing objects that are similar enough to a given shape.

Example: removing objects that are similar enough (ε) to the reference shape
(letter A).

Original image X ε = 0.01 ε = 0.10 ε = 0.15

A value of ε = 0 means only those shapes are removed that are exactly the same
as the reference shape.

To gain more descriptive power we may use more than one attribute per node.
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Binary Vector-Attribute Thinning

A multi-variate attribute thinning Φ{Ti}(X) with scalar attributes {τi} and their
corresponding criteria {Ti}, with 1 ≤ i ≤ N , preserves a component C if ∃i : Ti,
Ti = τi(C) ≥ ri:

Φ{Ti}(X) =
N⋃

i=1

ΦTi(X). (29)

An alternative is the vector-attribute thinning, in which C is preserved if
~τ(C) ∈ RD satisfies criterion

T ~τ
~r,ε(C) = d(~τ(C), ~r) ≥ ε (30)

in which dissimilarity measure d : RD ×RD → R quantifies the difference between
~τ(C) and ~r.

A binary vector-attribute thinning Φ~τ
~r,ε(X), with D-dimensional vectors, removes

the connected components of a binary image X whose vector-attributes differ less
than ε from a reference vector ~r ∈ RD.
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Vector Attribute Thinning

Definition 1. The vector-attribute thinning Φ~τ
~r,ε of X with respect to a reference

vector ~r and using vector-attribute ~τ and scalar value ε is given by

Φ~τ
~r,ε(X) = {x ∈ X| T ~τ

~r,ε(Γx(X))}. (31)

Possible choices for d:

Euclidean distance d(~u,~v) = ||~v − ~u||.

Manhattan distance d(~u,~v) =
∑
|vi − ui|

Any dissimilarity measure can be used (such as Mahalanobis distance).

Since the triangle inequality d(a, c) ≤ d(a, b) + d(b, c) is not required, d need not
be a distance.
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Thinning with Respect to a Shape (Family)

To select the appropriate vector ~r we can provide a shape in a binary image and
compute its vector attributes.

Definition 2. The vector-attribute thinning Φ~τ
S,ε of X with respect to a

reference shape S and using vector-attribute ~τ and scalar value ε is given by

Φ~τ
S,ε(X) = Φ~τ

~τ(S),ε(X) (32)

More robustness can be obtained using a series of example shapes in a shape
family F = {S1, S2, . . . , Sn}:

Definition 3. The vector-attribute thinning Φ~τ
F,ε of X with respect to a

reference shape family F and using vector-attribute ~τ and scalar value ε is given
by

Φ~τ
F,ε(X) =

⋂
S∈F

Φ~τ
S,ε(X) (33)

This removes objects if they are similar enough to any of the example shapes
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Gray-scale vector-attribute thinning

Extension to gray-scale using threshold decomposition:

φ~τ
~r,ε(f) = sup{h| T ~τ

~r,ε(Γx(Xh(f)))}, (34)

where threshold set Xh(f) is defined as: Xh(f) = {x ∈M|f(x) ≥ h}. Example:
removing letters from image f consisting of nested versions of the letters A, B, and
C.

f φ~τ
SA,ε(f) φ~τ

SB,ε(f) φ~τ
SC,ε(f)
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Filtering using Hu’s Moment Invariants

Using vector-attribute thinning with Hu’s set of 7 moment invariants as
vector-attribute to remove from image X the letters A, B, and C respectively.

X Φ~τ
SA,0.010(X) Φ~τ

SB,0.013(X) Φ~τ
SC,0.010(X)

X − Φ~τ
SA,ε(X) X − Φ~τ

SB,ε(X) X − Φ~τ
SC,ε(X)
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Traffic-Sign Recognition

Using scaling and rotation invariant vector-attribute filters it is possible to detect
e.g. traffic signs in natural scenes.

Using a single filter it is possible to detect multiple targets.
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Visualization using Max-trees

Visualization of 3-D data sets can be done in a variety of ways.

One class of rendering methods first extracts some interim representation in terms
of graphical primitives from the data

Once extracted, this representation can be rendered rapidly using standard
graphical systems, e.g. through OpenGL.

The most common example is iso-surface rendering

Alternatively, we can use direct volume rendering in which the 3-D data are
projected directly onto the view plane in some way.

Examples are Maximum Intensity Projection (MIP) and X-ray rendering

The following techniques can be handled efficiently through Max-trees:

Iso-surface rendering

Splatting (yielding either MIP or X-ray rendering)

Texture-based Volume Rendering (as above and more advanced transfer
functions).
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Isosurface

3-D surface representing locations of constant scalar value within volume

Standard method: marching cubes
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Augmenting the Max-Tree

Definition: the root path of node Ck
h contains all nodes encountered on the

descent from Ck
h to the root

Consider 26-connected neighborhood, then:

1. all 8 corner voxels of a cell are part of the same root path

2. filtering does not change the grey-level ordering of nodes along a root path

Therefore:

one node Ck
h1

defines a cell’s minimum

another node Ck
h2

defines a cell’s maximum

Important: after filtering, the same nodes still define the cell’s minimum and
maximum

SSIP, Vienna, July 11, 2008 58 of 73



Augmented Max-Tree
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Algorithm

Pseudo-code
for all nodes p do

p.processed← false

end for
root.processed← true

for all leaves q do
p← q

while (not p.processed) and (g(p) ≥ t) do
i← 0

while (i<p.numEdges) and (g(Vmin(c
p
i )) ≤ t) do

mark cp
i as active

i← i + 1

end while
p.processed← true

p← p.parent

end while
end for

C0
3

?

- (0, 0), (0, 1), (1, 0), (1, 1)

C0
2

?

- (0, 2), (1, 2)

C0
1

?

- (2, 0), (2, 1), (2, 2)

C0
0

Visited nodes and cells for

t = 0.5.
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Isosurface result
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Splatting: the principle
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Splatting from a Max-tree

In standard X-ray and maximum-intensity projection, visiting zero grey-level voxels
wastes time.

Rather than filtering and rebuilding a volume, extract the non-zero voxels from
the Max-tree, and splat these.

In the orginal Max-tree representation, it was easy to find which node a voxel
belongs to, but not the reverse.

Adding a voxel-list to each node circumvents this problem

simply scan the Max-tree from the leaves downwards, and splat each voxel of each
non-zero node.
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Splatting result
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Texture-Based Volume Rendering

Instead of using the CPU to perform most of the work, we can use the GPU to
perform the rendering through texture-based volume rendering

In the standard approach (STBV), the complete volume is loaded into graphics
memory as a 3-D texture

It can then be rendered using any transfer function, which dictates how grey levels
are represented (e.g. through a colour/tranparency LUT)

Blending methods also determine the rendering method (MIP, X-Ray,etc).

Advantages of the method are:

Speed when changing viewpoint

Versatility

Drawbacks are

Requires large graphics memory

Slow when doing λ-browsing

SSIP, Vienna, July 11, 2008 65 of 73



Indirect Texture-Based Rendering

We can increase the speed of λ-browsing by using indirect texture-based volume
rendering.

In this case the texture data are first sent through a look-up table (LUT), and the
LUT value is used to determine the transfer function result.

We can now send a label volume to the texture buffer once, as a 3-D texture Tv.

Each voxel in Tv contains a label corresponding to its Max-tree node Ck
h.

We use a second (1-D) texture T to encode the grey levels for each node Ck
h.

Whenever λ is changed, we update T by copying the new grey levels of each node
(stored in an array A[i] for convenience), and send only T to the graphics board.

We can then draw by indirect texture-based rendering, purely on the GPU!
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Algorithm

Update()

{g(p) denotes current grey value of node p}
for i← 0 to length(A) do
T [i]← g(A[i])

end for
Transfer T to graphics hardware

Draw()

for all slice planes s do
for all fragments f in s do
i ← sample Tv in point f {Fetch node index}
g ← T [i] {Fetch current grey value}
f .color ← TransferFunction(g)

end for
Blend s with frame buffer

end for
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Parallel Computation

Parallel computation is desirable because the volume data sets are often hughe
(5123 = 256 MB for short integer data).

Parallel computation of connected filters is hard, because

Connected filters are not local

Connected filters are not separable

We have developed a parallel algorithm for extensive and anti-extensive attribute
filters by:

dividing the image (or volume) into strips

computing a Max-tree for each strip

merging the local Max-trees into a single tree

performing the filtering strip-wise

To do this efficiently, we need to merge the Max-tree and union-find approaches.

The big problem is keeping the attributes correct
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Including Union-find
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Speed-up
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Timings were performed on the 16 CPU Onyx 3400 of the Centre for High
Performance Computing & Visualisation of the RuG.
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Speed-up II
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Timings on a 2 socket dual-core Opteron-based machine.
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Other work

Morphological connected hat scale-spaces based on Max-trees have been
constructed for contour and texture analysis.

The C-trees for multi-scale connectivity analysis of binary images as suggested by
Tzafestas & Maragos (2003) can be implemented rapidly as Max-trees of opening
transforms.

Derived connectivities (i.e. using openings or closings) can be incorporated into
the Max-tree by constructing the tree not from one, but from two images. The
second image encodes the altered connectivity.

Extending the attributes for shape filtering.

Making shape filters trainable by examples.
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Questions

?
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