Connected Filters

Michael H. F. Wilkinson

Institute for Mathematics and Computing Science
University of Groningen
The Netherlands
Filters by Reconstruction

 Attribute filters

 Max-trees:
 - Data structure
 - Use in attribute filtering
 - Shape filters and distributions
 - Computing multi-variate pattern spectra

 Adapting the Max-tree:
 - Iso-surface browsing
 - Splatting
 - Parallel computation
 - Other work
Lenna with noise (left) structural open-close with square S.E. (middle) area open-close (right)
Let E be some universal set and $\mathcal{P}(E)$ the set of all subsets of E.

For a binary image $X \subseteq E$ a connected foreground component C is a connected subset of X of maximal extent.

If C is a connected foreground component of X we denote this as $C \subseteq X$.

A connected background component of X is a connected foreground component of the complement X^c of X.

A partition of E is a set $A \subset \mathcal{P}(E)$ of sets α_i for which

\[\bigcup_i \alpha_i = E, \quad \text{and} \]

\[i \neq j \Rightarrow \alpha_i \cap \alpha_j = \emptyset. \]

The set A_X of all connected foreground and background components of X form a partition of E.
Let $A = \{\alpha_i\}$ and $B = \{\beta_j\}$ be partitions.

A is said to be finer than B iff for every α_i there exists a β_j such that $\alpha_i \subseteq \beta_j$.

If A is finer than B then B is coarser than A.

Let $\Psi : \mathcal{P}(E) \to \mathcal{P}(E)$ be a binary image operator, and $A_{\Psi(X)}$ be the partition of E consisting of all foreground and background components of $\Psi(X)$.

Ψ is a binary connected operator if for any image X the partition A_X is finer than $A_{\Psi(X)}$.

The connected opening Γ_x is defined as

$$
\Gamma_x(X) = \begin{cases}
C : C \subseteq X \land x \in C & \text{if } x \in X \\
\emptyset & \text{otherwise.}
\end{cases}
$$
original f

marker $g = \gamma_{21} f$

reconstruction of f by g

The edge preserving effect of openings-by-reconstruction compared to structural openings
The basis of an opening by reconstruction is the reconstruction of image f from an arbitrary marker g.

This is usually defined using geodesic dilations $\bar{\delta}_f$ defined as

$$\bar{\delta}_f^1(g) = f \land \delta(g).$$ \hspace{1cm} (4)

This operator is used iteratively until stability, to perform the reconstruction ρ i.e.

$$\rho(f|g) = \lim_{n \to \infty} \bar{\delta}_f^n g = \underbrace{\bar{\delta}_f^1 \ldots \bar{\delta}_f^1}_\text{until stability} \bar{\delta}_f(g).$$ \hspace{1cm} (5)

In practice we apply $\bar{\delta}_f^n$ with n the smallest integer such that

$$\bar{\delta}_f^n g = \bar{\delta}_f^{n-1} g.$$ \hspace{1cm} (6)
What this process does in the binary case is reconstruct any connected component in \(f \) which intersects some part of \(g \).

An opening-by-reconstruction \(\overline{\gamma}_X \) with structuring element (S.E) \(X \) is computed as

\[
\overline{\gamma}_X(f) = \rho(f | \gamma_X(f)),
\]

in which \(\gamma_X \) denotes an opening of \(f \) by \(X \).

Reconstructing from this marker preserves any connected component in which \(X \) fits at at least one position.

Closing-by-reconstruction \(\overline{\phi}_X \) can be defined by duality, i.e.

\[
\overline{\phi}_X(f) = -\overline{\gamma}_X(-f)
\]
The structural opening $X \circ B$, with B a 7×7 square, yields the union of all 7×7 squares which fit into X. Clearly this distorts the connected components and is not a connected filter.

The opening-by-reconstruction $\rho(X|X \circ B)$ preserves all connected components of X into which at least one 7×7 square fits. This can be considered an attribute filter.
Openings-by-reconstructions are anti-extensive, and closings-by-reconstructions are extensive, removing bright or dark image details respectively.

In this case a marker is used which may lie partly above and partly below the image.

We can compute a leveling of $\lambda(f|g)$ of f from marker g as

$$
(\lambda(f|g))(x) = \begin{cases}
(\rho(f|g))(x) & \text{if } f(x) \geq g(x) \\
-(\rho(-f|-g))(x) & \text{if } f(x) < g(x),
\end{cases}
$$

Levelings allow edge-preserving simplification of images, by simultaneously removing bright and dark details.
Example: Levelings

Leveling using a Gaussian filter to simplify the image in an auto-dual manner.
Example: Leveling Cartoons

Leveling cartoons for texture/cartoon decomposition.
Introduced by Breen and Jones in 1996.

Examples: area openings/closings, attribute openings, shape filters

How do they work?

Binary image:

1. compute attribute for each connected component
2. keep components of which attribute value exceeds some threshold λ
Let $T : \mathcal{P}(E) \rightarrow \{false, true\}$ be an increasing criterion, i.e. $C \subseteq D$ implies that $T(C) \Rightarrow T(D)$.

A binary trivial opening $\Gamma_T : \mathcal{P}(E) \rightarrow \mathcal{P}(E)$ using T as defined above is defined as

$$\Gamma_T(C) = \begin{cases} C & \text{if } T(C), \\ \emptyset & \text{otherwise.} \end{cases}$$ (10)

A typical form of T is

$$T(C) = (\mu(C) \geq \lambda)$$ (11)

in which μ is some increasing scalar attribute value (i.e. $C \subseteq D \Rightarrow \mu(C) \leq \mu(D)$), and λ is the attribute threshold.

The binary attribute opening Γ^T is defined as

$$\Gamma^T(X) = \bigcup_{x \in X} \Gamma_T(\Gamma_x(X)),$$ (12)

in other words it is the union of all connected foreground components of X which meet the criterion T.
An area opening is obtained if the criterion $T = A(C) \geq \lambda$, with A the area of the connected set C.

A moment-of-inertia opening is obtained if the criterium is of the form $T = I(C) \geq \lambda$, with I the moment of inertia.
If criterion T is non-increasing in (10), Γ_T becomes a *trivial thinning*, or *trivial, anti-extensive grain filter* Φ_T:

$$\Phi_T(C) = \begin{cases} C & \text{if } T(C), \\ \emptyset & \text{otherwise.} \end{cases}$$ (13)

Using a trivial thinning rather than a trivial opening in (12), Γ_T becomes an *attribute thinning* or *anti-extensive grain filter* Φ^T:

$$\Phi^T(X) = \bigcup_{x \in X} \Phi_T(\Gamma_x(X)),$$ (14)

The extensive dual of the attribute opening Γ_T is the *attribute closing* Ψ_T, which is defined as

$$\Psi_T(X) = (\Gamma_T(X^c))^c.$$ (15)

The extensive dual of the attribute thinning is the *attribute thickening*, which is defined as above, but with a non-increasing criterion.
Non-Increasing Attributes

Attribute thinnings can be defined using the usual form $T(C') = (\mu(C') \geq \lambda)$ if μ is non-increasing, e.g.:

- Perimeter length P
- Circularity (or boundary complexity) P^2/A
- Concavity: $(H - A)/A$, with H the convex hull area
- Elongation (non-compactness): I/A^2
- Any of Hu’s moment invariants

Alternatively, increasing attributes (i.e. $C \subseteq D \Rightarrow \mu(C) \leq \mu(D)$) can be used if the form of T is changed:

- $T = (\mu(C') = \lambda)$
- $T = (\mu(C') \leq \lambda)$
- etc.
In the case of attribute openings, generalization to grey scale is achieved through *threshold decomposition*.

A threshold set X_h of grey level image (function) f is defined as

$$X_h(f) = \{ x \in E | f(x) \geq h \}.$$ \hspace{1cm} (16)

The grey scale attribute opening γ^T based on binary counterpart Γ^T is given by

$$(\gamma^T(f))(x) = \sup \{ h \leq f(x) | x \in \Gamma^T(X_h(f)) \}$$

(17)

Closings ψ^T are defined by duality:

$$\psi^T(f) = -\gamma^T(-f).$$

(18)

The non-increasing case will be dealt with after discussing the algorithms.
A filter is auto-dual (or self-dual) if it is invariant to inversion:

$$\psi(f) = -\psi(-f)$$ \hspace{1cm} (19)

An approximation is offered by *alternating sequential filters* (ASFs), which consist of an alternating sequence of openings and closings of increasing scale (e.g. radius of structuring element).

Let γ_λ^a be an area opening of attribute threshold λ, and ϕ_λ^a the corresponding area closing.

The *area* N-Sieve ψ_λ^N is given by

$$\psi_\lambda^N(f) = \phi_\lambda^a(\gamma_\lambda^a(\ldots(\phi_2^a(\gamma_2^a(\phi_1^a(\gamma_1^a(f)))))\ldots))$$ \hspace{1cm} (20)

and is an alternating sequential filter.

The corresponding M-Sieve ψ_λ^M is just

$$\psi_\lambda^M(f) = \gamma_\lambda^a(\phi_\lambda^a(\ldots(\gamma_2^a(\phi_2^a(\gamma_1^a(\phi_1^a(f))))))\ldots))$$ \hspace{1cm} (21)
Grey Scale Example

\[f, \gamma_{256}(f), \phi_{256}(f), \psi_{256}(f) \]
A level set \mathcal{L}_h of image f is defined as

$$\mathcal{L}_h(f) = \{x \in E | f(x) = h\}$$ \hspace{1cm} (22)

A flat zone or level component L_h at level h of a grey scale image f is a connected component of the level set $\mathcal{L}_h(f)$.

Peak component P_h at level h is a connected component of the thresholded set $X_h(f)$.

A regional maximum M_h at level h is a level component no members of which have neighbors larger than h. A

At each level h there may be several such components, which will be indexed as L^i_h, P^j_h and M^k_h, respectively.

Any regional maximum M^k_h is also a peak component, but the reverse is not true.
Definitions for Grey Scale

One-dimensional example of level components, peak components and regional maxima.
Naive computation of these filters in the grey-scale case can be done by threshold decomposition. This is SLOW!

Three faster algorithms have been proposed:

- A priority-queue based approach (Vincent, 1993; Breen & Jones, 1996): low memory cost, time complexity $O(N^2 \log N)$.

- A union-find approach (Meijster & Wilkinson 2002): low memory cost, time complexity $O(N \log N)$, fastest in practice, only for increasing filters.

- The Max-tree based approach (Salembier et al., 1998): high memory cost, time complexity $O(N)$, most flexible.

The Max-tree method was combined with the union-find method by Najman and Couprie (2003), and extended floating point (Geraud et al. 2007).

A variant of the Max-tree for second-generation connectivity was developed (Ouzounis and Wilkinson 2005, 2007)

A parallel variant has been developed recently (Wilkinson et al, 2008).
Create a list of all regional maxima M^k_h.

Select a seed pixel p^k_h from each maximum M^k_h.

For each seed p^k_h do

- push p^k_h in priority queue, with grey level as priority.
- start flood-filling the peak component $P^j_{h'}$ around the regional maximum
- Stop if either
 - the flooded area is equal to λ, or
 - a pixel is retrieved from the priority queue with grey value $h'' > h'$. In this case the region grown so far is not a peak component $P^j_{h'}$ at level h'.

- Flood the region with grey value λ.
- The algorithm terminates when all maxima have been processed.
/* List F contains the local maximum components */
while (F not empty) do
{
 extract C from F;
 area = A(C);
 curlevel = grey level of component;
 while (area < lambda)
 {
 n = neighbor of C with I[n]
 is maximum of all neighbors;
 if (I[n] > curlevel)
 break;
 else { add n to C;
 curlevel = I[n];
 }
 }
 for all p in C do
 {
 I[p] = curlevel;
 L[p] = PROCESSED;
 }
}
(a) Original 1-D signal on which the priority-queue algorithm shows its $O(N^2 \log N)$ behaviour.

(b)-(f) Processing sequence for each maximum, indicating pixels scanned before the next maximum is found.

(g) 2-D counterpart of (a).
We start from an observation that the partition of E induced by the connected components or level components of an image consist of disjoint sets.

Tarjan’s union-find algorithm for keeping track of disjoint sets can be used to implement merging in an efficient way.

For each set (component) an arbitrary member is chosen as representative for that set.

The algorithm uses rooted trees to represent sets, in which the root is chosen as the representative.

Each non-root node in a tree points to its parent, while the root points to itself.

Two objects x and y are members of the same set if and only if x and y are nodes of the same tree.

This is equivalent to saying that they share the same root of the tree they are stored in.
There are four basic operations.

- **MakeSet(x):** Create a new singleton set \(\{x\} \). This operation assumes that \(x \) is not a member of any other set.

- **FindRoot(x):** Return the root of the tree containing \(x \).

- **Union(x,y):** Form the union of the two sets that contain \(x \) and \(y \).

- **Criterion(x,y):** a symmetric criterion which determines whether \(x \) and \(y \) belong to the same set.
For flat zone labeling the algorithm becomes:

```plaintext
for all pixels p do
{ MakeSet(p);
    for all neighbors n<p do
        if ( I[n]==I[p] )
            Union( n, p );
}
```

Note that in this context the condition \(n < p \) means that \(n \) is a pixel which has been processed before \(p \).

This part finds the flat zones

A second *resolving* phase is needed to assign labels.
Pointers are replaced by integer indices referring to the location of the parent.

Instead of letting the root point to itself, we set it to $-A(C)$, with $A(C)$ the area of the component gathered so far.

We have to process the pixels in descending grey-scale order to be sure we process peak components from the top down.

We do this by sorting the pixels first (counting sort $O(N)$), pixels of the same grey level are processed in lexicographic order.

We link pixels p and q if:

- $f(p) = f(q)$ or
- $(f(p) > f(q) \text{ and } -\text{parent}[\text{findroot}[p]] < \lambda)$ or
- $(f(p) < f(q) \text{ and } -\text{parent}[\text{findroot}[q]] < \lambda)$.

We always choose the pixel with the lowest grey level as the root of a region.

Resolving consists of assigning the root grey level to each pixel in a tree.
void MakeSet (int x)
{ parent[x] = -1;
}

int FindRoot (int x)
{ if (parent[x] >=0)
 { parent[x] = FindRoot(parent[x]);
 return parent[x];
 }
 else return x;
}

boolean Criterion (int x, int y)
{ return ((I[x] == I[y]) ||
 (-parent[x] < lambda)) ;
}
void Union (int n, int p)
{
 int r=FindRoot(n);
 if (r != p)
 {
 if (Criterion(r, p))
 {
 parent[p] = parent[p] + parent[r];
 parent[r] = p;
 }
 else
 {
 parent[p] = -lambda;
 }
 }
}
/* array S contains sorted pixel list */
for (p=0; p<Length(S); p++)
{
 pix = S[p]; MakeSet(pix);
 for all neighbors nb of pix do
 if ((I[pix] < I[nb]) ||
 ((I[pix] == I[nb]) && (nb<pix)))
 Union(nb,pix);
}

/* Resolving phase in reverse sort order */
for (p=Length(S)-1; p>=0; p--)
{
 pix = S[p];
 if (parent[pix] >= 0)
 parent[pix] = parent[parent[pix]];
 else
 parent[pix] = I[pix];
}
Because peak components at different grey levels are nested within each other, it is possible to represent the entire component structure as a tree.

In *Max-trees* (Salembier et al., 1998) the nodes represent peak components.

In *Min-trees* the nodes represent *valley components* (peak components of the inverted image).

Level-line trees are built by computing a Min-tree and a Max-tree and merging these in such a way that the leaves of the tree are both minima and maxima in the image.

Removing nodes in the Max-tree leads to anti-extensive filtering.

Removing nodes in the Min-tree leads to extensive filtering.

Removing nodes in the Level-line tree leads to auto-dual filtering.
Max-Tree representation

input signal

peak components

labelling

Max-Tree

0 1 2 3 2 1 2 1 0

C₀ C₁ C₀ C₀ C₀ C₁ C₀ C₀ C₀

P₃

P₂

P₁

P₀

C₃

C₂

C₁

C₀
Filtering

attribute values

original

filtered ($\lambda = 10$)
Filtering Rules

Different rules exist for removal of nodes:

The first two are "pruning" rules, the second two "non-pruning". These different rules have an impact on the way "top-hat" equivalents of grey-scale shape filters work.
The Difference between Filtering Rules

original

min

max

direct

subtractive
Very often in image analysis, we want our methods to be invariant to certain transforms.

Most, if not all filters are shift invariant.

Rotation invariance can be obtained in structural filtering by:

- Using a rotation invariant structuring element (SE), or
- Using a non-rotation invariant SE at all possible rotations.

In attribute filtering, invariance properties of the attribute carry over in the filter if the connectivity is also invariant.

Example: area is a rotation invariant attribute, and so is the area opening.

Scale invariance is easily achieved in attribute filtering: use scale-invariant attributes: I/A^2.

This leads to so-called shape-filters.
Why shape filters?

- Shape extraction is required whenever the objects of interest are characterized by shape, rather than scale.

- The common approach to this problem is by using multi-scale processing techniques.

- One example is finding elongated structures (vessels) is by using successive top-hat filters to obtain features of different width, followed by selection of sufficiently long features at each width scale by area openings.

- Multi-scale operators usually require multiple applications of filters to a single image.

- It may be more economical to design filters select for shape directly, in a single filter step.
If we filter a grey-scale image f using shape criteria, we want the following properties to hold:

- **All** connected components of any threshold set of the filtered image $\phi^T_r(f)$ satisfy the shape criterion used.

- **None** of the connected components of any threshold set of the *difference* between the filtered image and original image $\phi^T_r(f) - f$ satisfy the shape criterion used

More formally we have

$$\Phi^T_r(X_h(\phi^T_r(f))) = X_h(\phi^T_r(f))$$ \hspace{1cm} (23)

and

$$\Phi^T_r(X_h(f - \phi^T_r(f))) = \emptyset$$ \hspace{1cm} (24)

for all h.
Grey-Scale Image Decomposition by Shape

Original image f

\[\phi_r^T(f) \]

\[f - \phi_r^T(f) \]

\[\phi_r^T(f - \phi_r^T(f)) \]
Explicit Multiscale Approach
Let us define a scaling X_λ of set X by a scalar factor $\lambda \in \mathbb{R}$ as

$$X_\lambda = \{ x \in \mathbb{R}^n | \lambda^{-1} x \in X \},$$

(25)

An operator ϕ is said to be scale invariant if

$$\phi(X_\lambda) = (\phi(X))_\lambda$$

(26)

for all $\lambda > 0$.

If an operator is scale, rotation and translation invariant, we call it a shape operator.

If it is also idempotent it is a shape filter.
The binary connected opening Γ_x extracts the connected component to which x belongs, discarding all others.

The trivial thinning Φ_T of a connected set C with criterion T is just the set C if C satisfies T, and is empty otherwise. Furthermore, $\Phi_T(\emptyset) = \emptyset$.

The binary attribute thinning Φ^T of set X with criterion T is given by

$$\Phi^T(X) = \bigcup_{x \in X} \Phi_T(\Gamma_x(X))$$ (27)

If T is scale, rotation and translation invariant, Φ^T is a shape filter. An example would be:

$$T(C) = \left(\frac{I(C)}{A^2(C)} \geq \lambda \right).$$ (28)
In angiography it is often necessary to enhance curvilinear detail before segmentation.

Standard multi-scale techniques require filtering at multiple scales and orientations.

Shape filtering using 3D shape criteria can be used instead. Examples:

- **non-compactness**: \(I/V^{5/3} > \lambda \), in which \(I \) is the trace of moment-of-inertia tensor (\(\propto \) covariance matrix of the coordinate distribution of the pixels) of the connected set, and \(V \) the volume.

- **elongation** \(\epsilon_1 \): ratio \(|e_1|/|e_2| \) of the two largest eigenvalues of the moment-of-inertia tensor

- **flatness** \(f_1 \): ratio \(|e_2|/|e_3| \) of the two smallest eigenvalues.

- **elongation** \(\epsilon_2 \): ratio \(|e_1|/\sqrt{|e_2e_3|} \)

- **flatness** \(f_2 \): ratio \(\sqrt{|e_1e_2|}/|e_3| \).

The result can be computed in under 12 s on a Pentium 4 at 1.9 GHz for a \(256^3 \) volume.
angiogram

filtered $\lambda = 2.0$

segmentation of original

segmentation of filtered set
Problem: Time of Flight MRA

original

\[\frac{I}{V^{5/3}} \geq 2.0 \]

\[\frac{I}{V^{5/3}} \geq 4.8 \]

\[f_1 \geq 19.0 \]

\[\frac{I}{V^{5/3}} \geq 2.0 \text{ and } f_1 < 19.0 \]
Vector-attribute filters

- **Aim:** Removing objects that are similar enough to a given shape.

- **Example:** removing objects that are similar enough (\(\epsilon\)) to the reference shape (letter A).

![Original image X for different values of \(\epsilon\)]

- Original image \(X\)
- \(\epsilon = 0.01\)
- \(\epsilon = 0.10\)
- \(\epsilon = 0.15\)

- A value of \(\epsilon = 0\) means only those shapes are removed that are exactly the same as the reference shape.

- To gain more descriptive power we may use more than one attribute per node.
A multi-variate attribute thinning $\Phi\{T_i\}(X)$ with scalar attributes $\{\tau_i\}$ and their corresponding criteria $\{T_i\}$, with $1 \leq i \leq N$, preserves a component C if $\exists i : T_i, T_i = \tau_i(C) \geq r_i$:

$$\Phi\{T_i\}(X) = \bigcup_{i=1}^{N} \Phi T_i(X).$$

(29)

An alternative is the vector-attribute thinning, in which C is preserved if $\vec{\tau}(C') \in \mathbb{R}^D$ satisfies criterion

$$T_{\vec{\tau},\epsilon}^r(C') = d(\vec{\tau}(C'), \vec{r}) \geq \epsilon$$

(30)

in which dissimilarity measure $d : \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$ quantifies the difference between $\vec{\tau}(C')$ and \vec{r}.

A binary vector-attribute thinning $\Phi_{\vec{r},\epsilon}^\tau(X)$, with D-dimensional vectors, removes the connected components of a binary image X whose vector-attributes differ less than ϵ from a reference vector $\vec{r} \in \mathbb{R}^D$.
Definition 1. The vector-attribute thinning $\Phi_{\vec{r},\vec{\tau},\epsilon}^\vec{r}$ of X with respect to a reference vector \vec{r} and using vector-attribute $\vec{\tau}$ and scalar value ϵ is given by

$$\Phi_{\vec{r},\vec{\tau},\epsilon}^\vec{r}(X) = \{ x \in X | T_{\vec{r},\vec{\tau},\epsilon}^\vec{r}(\Gamma_x(X)) \}. \quad (31)$$

Possible choices for d:

- Euclidean distance $d(\vec{u}, \vec{v}) = ||\vec{v} - \vec{u}||$.
- Manhattan distance $d(\vec{u}, \vec{v}) = \sum |v_i - u_i|
- Any dissimilarity measure can be used (such as Mahalanobis distance).
- Since the triangle inequality $d(a, c) \leq d(a, b) + d(b, c)$ is not required, d need not be a distance.
To select the appropriate vector \(\vec{r} \) we can provide a shape in a binary image and compute its vector attributes.

Definition 2. The vector-attribute thinning \(\Phi_{\vec{r}, \epsilon}^{S} \) of \(X \) with respect to a reference shape \(S \) and using vector-attribute \(\vec{r} \) and scalar value \(\epsilon \) is given by

\[
\Phi_{\vec{r}, \epsilon}^{S}(X) = \Phi_{\vec{r}(S), \epsilon}(X)
\]

(32)

More robustness can be obtained using a series of example shapes in a shape family \(F = \{S_1, S_2, \ldots, S_n\} \):

Definition 3. The vector-attribute thinning \(\Phi_{\vec{r}, \epsilon}^{F} \) of \(X \) with respect to a reference shape family \(F \) and using vector-attribute \(\vec{r} \) and scalar value \(\epsilon \) is given by

\[
\Phi_{F, \epsilon}^{\vec{r}}(X) = \bigcap_{S \in F} \Phi_{\vec{r}, \epsilon}^{S}(X)
\]

(33)

This removes objects if they are similar enough to any of the example shapes.
Gray-scale vector-attribute thinning

Extension to gray-scale using threshold decomposition:

\[\phi_{\vec{\tau},\epsilon}^\pi(f) = \sup \{ h | T_{\vec{\tau},\epsilon}^\pi(\Gamma_x(X_h(f))) \}, \] \hspace{1cm} (34)\]

where threshold set \(X_h(f) \) is defined as: \(X_h(f) = \{ x \in M | f(x) \geq h \} \). Example: removing letters from image \(f \) consisting of nested versions of the letters A, B, and C.

![Images of letters A, B, and C with different grey-scale representations.](image-url)
Using vector-attribute thinning with Hu’s set of 7 moment invariants as vector-attribute to remove from image X the letters A, B, and C respectively.
Using scaling and rotation invariant vector-attribute filters it is possible to detect e.g. traffic signs in natural scenes.

Using a single filter it is possible to detect multiple targets.
Visualization of 3-D data sets can be done in a variety of ways.

One class of rendering methods first extracts some interim representation in terms of graphical primitives from the data.

Once extracted, this representation can be rendered rapidly using standard graphical systems, e.g. through OpenGL.

The most common example is iso-surface rendering.

Alternatively, we can use *direct volume rendering* in which the 3-D data are projected directly onto the view plane in some way.

Examples are Maximum Intensity Projection (MIP) and X-ray rendering.

The following techniques can be handled efficiently through Max-trees:

- Iso-surface rendering
- Splatting (yielding either MIP or X-ray rendering)
- Texture-based Volume Rendering (as above and more advanced transfer functions).
Isosurface

- 3-D surface representing locations of constant scalar value within volume
- Standard method: marching cubes
Definition: the root path of node C_{hk}^k contains all nodes encountered on the descent from C_{hk}^k to the root

Consider 26-connected neighborhood, then:

1. all 8 corner voxels of a cell are part of the same root path
2. filtering does not change the grey-level ordering of nodes along a root path

Therefore:

- one node $C_{h_1}^k$ defines a cell’s minimum
- another node $C_{h_2}^k$ defines a cell’s maximum

Important: after filtering, the same nodes still define the cell’s minimum and maximum
Augmented Max-Tree

<table>
<thead>
<tr>
<th>Original Image</th>
<th>Label Image</th>
<th>V_{min}</th>
<th>V_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2 1 0</td>
<td>C_0^0 C_2^0 C_1^0 C_0^0</td>
<td>C_0^0 C_1^0 C_0^0</td>
<td>C_3^0 C_3^0 C_1^0</td>
</tr>
<tr>
<td>0 3 1 0</td>
<td>C_0^0 C_3^0 C_1^0 C_0^0</td>
<td>C_0^0 C_1^0 C_0^0</td>
<td>C_3^0 C_3^0 C_1^0</td>
</tr>
<tr>
<td>0 2 1 0</td>
<td>C_0^0 C_2^0 C_1^0 C_0^0</td>
<td>C_0^0 C_1^0 C_0^0</td>
<td>C_2^0 C_2^0 C_1^0</td>
</tr>
<tr>
<td>0 2 1 0</td>
<td>C_0^0 C_2^0 C_1^0 C_0^0</td>
<td>C_0^0 C_1^0 C_0^0</td>
<td>C_0^0 C_0^0 C_0^0</td>
</tr>
</tbody>
</table>

$C_3^0 \rightarrow (0, 0), (0, 1), (1, 0), (1, 1)$
$C_2^0 \rightarrow (0, 2), (1, 2)$
$C_1^0 \rightarrow (2, 0), (2, 1), (2, 2)$
Algorithm

Pseudo-code

for all nodes p do
 p.processed ← false
end for

root.processed ← true

for all leaves q do
 p ← q
 while (not p.processed) and (g(p) ≥ t) do
 i ← 0
 while (i < p.numEdges) and (g(V_{min}(c_i^p)) ≤ t) do
 mark c_i^p as active
 i ← i + 1
 end while
 p.processed ← true
 p ← p.parent
 end while
end for

Visited nodes and cells for \(t = 0.5 \).
Splatting: the principle
In standard X-ray and maximum-intensity projection, visiting zero grey-level voxels wastes time.

Rather than filtering and rebuilding a volume, extract the non-zero voxels from the Max-tree, and splat these.

In the original Max-tree representation, it was easy to find which node a voxel belongs to, but not the reverse.

Adding a voxel-list to each node circumvents this problem.

Simply scan the Max-tree from the leaves downwards, and splat each voxel of each non-zero node.
Instead of using the CPU to perform most of the work, we can use the GPU to perform the rendering through texture-based volume rendering.

In the standard approach (STBV), the complete volume is loaded into graphics memory as a 3-D texture.

It can then be rendered using any *transfer function*, which dictates how grey levels are represented (e.g. through a colour/transparency LUT).

Blending methods also determine the rendering method (MIP, X-Ray, etc).

Advantages of the method are:

- Speed when changing viewpoint
- Versatility

Drawbacks are:

- Requires large graphics memory
- Slow when doing λ-browsing
We can increase the speed of λ-browsing by using *indirect* texture-based volume rendering.

In this case the texture data are first sent through a look-up table (LUT), and the LUT value is used to determine the transfer function result.

We can now send a *label* volume to the texture buffer once, as a 3-D texture T_v.

Each voxel in T_v contains a label corresponding to its Max-tree node C^k_h.

We use a second (1-D) texture T to encode the grey levels for each node C^k_h.

Whenever λ is changed, we update T by copying the new grey levels of each node (stored in an array $A[i]$ for convenience), and send *only* T to the graphics board.

We can then draw by indirect texture-based rendering, purely on the GPU!
Algorithm

Update()

\{g(p) \text{ denotes current grey value of node } p\}

\textbf{for} i \leftarrow 0 \text{ to length}(A) \textbf{ do}

\hspace{1em} T[i] \leftarrow g(A[i])

\textbf{end for}

Transfer T to graphics hardware

Draw()

\textbf{for all} slice planes $s \textbf{ do}

\hspace{1em} \textbf{for all} fragments f in $s \textbf{ do}

\hspace{2em} i \leftarrow \text{sample } T_v \text{ in point } f \ \{\text{Fetch node index}\}

\hspace{2em} g \leftarrow T[i] \ \{\text{Fetch current grey value}\}

\hspace{2em} f.\text{color} \leftarrow \text{TransferFunction}(g)

\hspace{1em} \textbf{end for}

\hspace{1em} \text{Blend } s \text{ with frame buffer}

\textbf{end for}
Parallel computation is desirable because the volume data sets are often huge
\((512^3 = 256 \text{ MB for short integer data})\).

Parallel computation of connected filters is hard, because

- Connected filters are not local
- Connected filters are not separable

We have developed a parallel algorithm for extensive and anti-extensive attribute filters by:

- dividing the image (or volume) into strips
- computing a Max-tree for each strip
- merging the local Max-trees into a single tree
- performing the filtering strip-wise

To do this efficiently, we need to merge the Max-tree and union-find approaches.

The big problem is keeping the attributes correct.
Including Union-find

input signal

peak components

labelling

Max-Tree
Timings were performed on the 16 CPU Onyx 3400 of the Centre for High Performance Computing & Visualisation of the RuG.
Timings on a 2 socket dual-core Opteron-based machine.
Morphological connected hat scale-spaces based on Max-trees have been constructed for contour and texture analysis.

The C-trees for multi-scale connectivity analysis of binary images as suggested by Tzafestas & Maragos (2003) can be implemented rapidly as Max-trees of opening transforms.

Derived connectivities (i.e. using openings or closings) can be incorporated into the Max-tree by constructing the tree not from one, but from two images. The second image encodes the altered connectivity.

Extending the attributes for shape filtering.

Making shape filters trainable by examples.