Towards Modelling of Trabecular Bone Microstructure

SSIP 2008 Project 20
Outline

• Myths behind Bone
• Need for personalized bone analysis
• Method and Materials
 - Materials
 - segmentation and Mesh generation
 - Finite Element Analysis
 - Elastic property and Direction
• Results and Discussion
Objective

• Hypothesis: there exists a relationship between the direction (orientation) of bone and the forces it endures

• Challenges:
 – Trabecular bone is anisotropic, but how does the arrangement look like
 – Irregular geometry shapes
 – What kind of relationships between the architecture and mechanical properties
Insights of Bone

ACK, Bert van Rietbergen, Finite Element Modeling, The Physical Measurement of Bone, 475-510
Work flow

ROI selection of bone sample

Segmentation

3D reconstruction

meshing

FE model setting

FE solver

FE model setting

Virtual Mechanical Testing
Experimental data: tomography of a bone-cartilage sample

- **Data acquired at:**
 - ID17 Biomedical Beamline
 - European Synchrotron Radiation Facility (ESRF)
 - Grenoble, France

- **Technique:**
 - phase-contrast imaging (propagation-based imaging technique)
Meshing

• Divide the volume into elements
 • Surface meshing
 • Triangle shape elements (3 nodes)
 • Volumetric
 • Cube shape elements (8 nodes)
The Materials

• Elasticity
 – Young’s Modulus
 – Poisson Ratio

<table>
<thead>
<tr>
<th>Property</th>
<th>Tissue</th>
<th>Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young modulus [GPa]</td>
<td>6</td>
<td>0.006</td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Finite Element Model

• Elasticity Model
 – Geometry
 – Material properties

• A better one: Poroelasticity Model?

\[F = Ku \]
Preliminary Results (1)
Preliminary Results (2)
Discussion and Future Work

• The deformation of trabeculae seems to be along bone’s direction
• More data and quantitative analysis
• A descriptor of trabecular bone orientation
• Better modelling
 – More complicated but detailed meshing
 – More time for FEM
• Validation – real mechanical testing
Acknowledgements

• SSIP 2008 staff
• Dr. A. Bravin, Dr. P. Coan (ID17 ESRF, Grenoble, France) for the data
• Google
• Vienna’s good weather