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Abstract

In this article we compare 14 distance measures and their modifications between feature vectors with respect to the

recognition performance of the principal component analysis (PCA)-based face recognition method and propose

modified sum square error (SSE)-based distance. Recognition experiments were performed using the database con-

taining photographies of 423 persons. The experiments showed, that the proposed distance measure was among the first

three best measures with respect to different characteristics of the biometric systems. The best recognition results were

achieved using the following distance measures: simplified Mahalanobis, weighted angle-based distance, proposed

modified SSE-based distance, angle-based distance between whitened feature vectors. Using modified SSE-based dis-

tance we need to extract less images in order to achieve 100% cumulative recognition than using any other tested

distance measure. We also showed that using the algorithmic combination of distance measures we can achieve better

recognition results than using the distances separately.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) or Karh-
unen–Loeve transform (KLT)-based face recogni-

tion method was proposed in (Turk and Pentland,

1991). It was studied by computer scientists (Moon

and Phillips, 1998; Yilmaz and Gokmen, 2001;

Navarrete and Ruiz-del-Solar, 2001, 2002) and

psychologists (Abdi et al., 1995; Hancock et al.,

1996), used as a baseline method for comparison

of face recognition methods (Moghaddam and
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Pentland, 1998; Phillips et al., 2000) and imple-

mented in commercial applications (Viisage, 2001).

Using PCA we find a subset of principal directions
(principal components) in a set of training faces.

Then we project faces into this principal compo-

nents space and get feature vectors. Comparison is

performed by calculating the distance between

these vectors. Usually comparison of face images is

performed by calculating the Euclidean distance

between these feature vectors. Sometimes the angle-

based distance is used. Mathematical formulation
of this recognition method is presented in the next

section. Although there exist many other distance

measures, we were able to find only few attempts to

create, compare and use other distance measures
ed.
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(Navarrete and Ruiz-del-Solar, 2002; Phillips et al.,

1997, 2000) in order to achieve better recognition

results.

In this article we compare recognition per-

formance of 14 distance measures including

Euclidean, angle-based, Mahalanobis and their
modifications. Also we propose modified sum

square error-based distance and modified Man-

hattan distance measures. The experiments showed,

that the proposed distance measures were among

the best distance measures with respect to different

characteristics of the biometric systems. For com-

parison we used the following characteristics of the

biometric systems: equal error rate (EER), first one
recognition rate, area above cumulative match

characteristic (CMC), area below receiver operating

characteristic (ROC), percent of images that we

need to extract in order to achieve 100% cumulative

recognition.
2. PCA-based face recognition

In this section we will describe Karhunen–

Loeve transform (KLT)-based face recognition

method, that is often called principal component

analysis (PCA) or eigenfaces. We will present only

main formulas of this method, whose details could

be found in (Groß, 1994).

LetX j be N -element one-dimensional image and
suppose that we have r such images (j ¼ 1; . . . ; r). A
one-dimensional image-column X from the two-

dimensional image (face photography) is formed

by scanning all the elements of the two-dimensional

image row by row and writing them to the column-

vector. Then the mean vector, centered data vec-

tors and covariance matrix are calculated:

m ¼ 1

r

Xr
j¼1

X j; ð1Þ

dj ¼ X j �m; ð2Þ

C ¼ 1

r

Xr
j¼1

d jd
T
j ; ð3Þ

here X ¼ ðx1; x2; . . . ; xN ÞT, m ¼ ðm1;m2; . . . ;mN ÞT,
d ¼ ðd1; d2; . . . ; dN ÞT.
In order to perform KLT, it is necessary to find

eigenvectors uk and eigenvalues kk of the covari-

ance matrix CðCuk ¼ kkukÞ. Because the dimen-

sionality (N 2) of the matrix C is large even for a

small images, and computation of eigenvectors

using traditional methods is complicated, dimen-
sionality of matrix C is reduced using the

decomposition described in (Kirby and Sirovich,

1990). Found eigenvectors u ¼ ðu1; u2; . . . ; uN ÞT are

normed and sorted in decreasing order according

to the corresponding eigenvalues. Then these vec-

tors are transposed and arranged to form the row-

vectors of the transformation matrix T. Now any

data X can be projected into the eigenspace using
the following formula:

Y ¼ TðX �mÞ; ð4Þ

here X ¼ ðx1; x2; . . . ; xN ÞT, Y ¼ ðy1; y2; . . . ; yr;
0; . . . ; 0ÞT.

Also we can perform ‘‘whitening’’ (Bishop,
1995) transform:

Y ¼ K�1=2TðX �mÞ; ð5Þ

here K�1=2 ¼ diag
ffiffiffiffiffiffiffiffiffi
1=k1

p
;
ffiffiffiffiffiffiffiffiffi
1=k2

p
; . . . ;

ffiffiffiffiffiffiffiffiffi
1=kr

p� �
.

Whitening is a linear rescaling that makes the

transformed input data to have zero mean and a

covariance matrix given by the identity matrix.

For projection into eigenspace we can use not all

found eigenvectors, but only a few of them, cor-

responding to the largest eigenvalues. We can
manually select desired number of eigenvectors or

use the method described in (Swets et al., 1998).

When the image (human face photography) is

projected into the eigenspace we get its eigenfeature

vector Z ¼ ðz1; z2; . . . ; znÞT ¼ ðy1; y2; . . . ; ynÞT, here
n is the number of features. When we have feature

vector Z of each face, identification can be per-

formed. After projecting a new unknown face
image into the eigenspace we get its feature vec-

tor Znew and calculate the Euclidean distances

between unknown face and each known face

ei ¼ kZnew � Z ik and say that the face with pro-

jection Znew belongs to a person s ¼ argmini½ei�.
For rejection of unknown faces a threshold s is

chosen and it is said that the face with projec-

tion Znew is unknown if es P s. Distance between
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projections Z is usually measured using the Euclid-

ean distance, some authors measured the distance

between the feature vectors in the eigenspace using

the angle-based measure (Phillips et al., 1997), but

other distance measures also could be used.
3. Distance measures

Let X , Y be eigenfeature vectors of length n.
Then we can calculate the following distances be-

tween these feature vectors (Grudin, 1997; Yam-

bor and Draper, 2002; Phillips et al., 1999, 2000;

Cekanavicius and Murauskas, 2002):

(1) Minkowski distance (Lp metrics)

dðX ;YÞ ¼ LpðX ;YÞ ¼
Xn
i¼1

jxi

 
� yijp

!1=p

;

ð6Þ
here p > 0;

(2) Manhattan distance (L1 metrics, city block dis-

tance)

dðX ;YÞ ¼ Lp¼1ðX ;YÞ ¼
Xn
i¼1

jxi � yij; ð7Þ

(3) Euclidean distance (L2 metrics)

dðX ;YÞ ¼ Lp¼2ðX ;YÞ ¼ kX � Yk

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðxi � yiÞ2
s

; ð8Þ

(4) Squared euclidean distance (sum square error,

SSE), mean square error (MSE)

dðX ;YÞ ¼ L2
p¼2ðX ;YÞ ¼ SSE

¼ kX � Yk2 ¼
Xn
i¼1

ðxi � yiÞ2; ð9Þ

dðX ;YÞ ¼ 1

n
L2
p¼2ðX ;YÞ ¼ MSE

¼ 1

n

Xn
i¼1

ðxi � yiÞ2; ð10Þ

(5) Angle-based distance

dðX ;YÞ ¼ � cosðX ;YÞ; ð11Þ
cosðX ;YÞ ¼
Pn

i¼1
xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1
x2i
Pm

i¼1
y2i

p ;

(6) Correlation coefficient-based distance

dðX ;YÞ ¼ �rðX ;YÞ; ð12Þ

rðX ;YÞ

¼ n
Pn

i¼1 xiyi �
Pn

i¼1 xi
Pn

i¼1 yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
Pn

i¼1 x
2
i �

Pn
i¼1 xi

� �2� �
n
Pn

i¼1 y
2
i �

Pn
i¼1 yi

� �2� �r ;

(7) Mahalanobis distance and Mahalanobis dis-

tance between normed vectors

dðX ;YÞ ¼ �
Xn
i¼1

zixiyi; ð13Þ

dðX ;YÞ ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p Xn
i¼1

zixiyi;

ð14Þ

here zi ¼

ffiffiffiffiffiffiffiffi
ki

kiþa2

q
, a ¼ 0:25, ki––corresponding

eigenvalues, or simplified Mahalanobis dis-

tance versions with zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki=ðki þ a2Þ

p
’ffiffiffiffiffiffiffiffiffi

1=ki
p

;

(8) Weighted Manhattan distance

dðX ;YÞ ¼
Xn
i¼1

zijxi � yij; zi ¼
ffiffiffiffiffiffiffiffiffi
1=ki

p
; ð15Þ

(9) Weighted SSE distance

dðX ;YÞ ¼
Xn
i¼1

ziðxi � yiÞ2; zi ¼
ffiffiffiffiffiffiffiffiffi
1=ki

p
;

ð16Þ
(10) Weighted angle-based distance

dðX ;YÞ ¼ �
Pn

i¼1 zixiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 x

2
i

Pm
i¼1 y

2
i

p ; zi ¼
ffiffiffiffiffiffiffiffiffi
1=ki

p
;

ð17Þ
(11) Chi square distance

dðX;YÞ ¼ v2 ¼
Xn
i¼1

ðxi � yiÞ2

xi þ yi
; ð18Þ

(12) Canberra distance

dðX ;YÞ ¼
Xn
i¼1

jxi � yij
jxij þ jyij

; ð19Þ
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(13) Modified Manhattan distance

dðX ;YÞ ¼
Pn

i¼1 jxi � yijPn
i¼1 jxij

Pn
i¼1 jyij

; ð20Þ

(14) Modified SSE-based distance

dðX ;YÞ ¼
Pn

i¼1 ðxi � yiÞ2Pn
i¼1 x

2
i

Pn
i¼1 y

2
i
; ð21Þ

(15) Weighted modified Manhattan distance

dðX ;YÞ ¼
Pn

i¼1 zijxi � yijPn
i¼1 jxij

Pn
i¼1 jyij

; zi ¼
ffiffiffiffiffiffiffiffiffi
1=ki

p
;

ð22Þ

(16) Weighted modified SSE-based distance

dðX ;YÞ ¼
Pn

i¼1 ziðxi � yiÞ2Pn
i¼1 x

2
i

Pn
i¼1 y

2
i
; zi ¼

ffiffiffiffiffiffiffiffiffi
1=ki

p
;

ð23Þ

If the feature vectors X are stored in the data-

base, some of the components like
Pn

i¼1 x
2
i ,

n
Pn

i¼1 x
2
i ,

Pn
i¼1 xi

� �2
,
Pn

i¼1 jxij of the described

distances could be calculated in advance and

stored in the database in order to speed-up com-

parisons and search in the database. In some cases

instead of using eigenvalues ki in the distance

measures, we can include them in the transfor-
mation formula. For example instead of using

weighted Manhattan distance (15) we can use

whitening transform (5) and simple Manhattan

distance (7):

dWeightedManhattanðX ;YÞ ¼
Xn
i¼1

k�1=2
i jxi � yij

¼
Xn
i¼1

k�1=2
i xi

�� � k�1=2
i yi

��
¼
Xn
i¼1

uij � vij;

here ui ¼ k�1=2
i xi, vi ¼ k�1=2

i yi.
That is in some cases instead of using weighted

distances we can calculate weighted vectors in

advance and then use plain (unweighted) dis-

tances. But it must be noted that, although men-
tioned weighted distances perform some data

scaling along principal directions, weighting is not

necessarily related with whitening because of dif-

ferent scaling factors. Also it must be noted that

some of the distances (e.g. (11) and (12)) could be

shifted in order to have positive distance values
and scaled in order to have values in the interval

½0; 1�, but these normalizations increase computa-

tion time. So if we do not necessary need nor-

malized values, we can calculate and perform

faster search with unnormalized values. When the

search is done and we present some of the best

results to the user (usually only a small part of the

database), then we can normalize the displayed
results.

Now we will compare some of the mentioned

distance measures using the PCA-based face rec-

ognition method.
4. Experiments and results

For experiments we used images from the AR

(AR, 1998; Martinez and Benavente, 1998), Bern

(1995), BioID (2001), Yale (1997), Manchester

(1998), MIT (MIT, 1989; Turk and Pentland,

1991), ORL (ORL, 1992; Samaria and Harter,

1994), Umist (Umist, 1997; Graham and Allinson,

1998), FERET (Phillips et al., 1997) databases.

From these databases we collected the database
containing photographies of 423 persons (two

images per person––one for learning and one for

testing). In order to avoid recognition errors re-

lated to incorrectly detected faces we manually

selected the centers of eyes and lips. Then we rot-

ated the images in order to make the line con-

necting eye centers horizontal, resized the images

and made the distances between the centers of the
eyes equal to 26 pixels, calculated the center of the

face using the centers of eyes and lips, cropped

64 · 64 central part of the face, performed histo-

gram equalization on the cropped part of the

image. It must be noted, that in some cases his-

togram equalization reduces recognition perfor-

mance, but usually it is used in order to normalize

illumination. Using the cropped templates we
performed PCA-based face recognition. In all the

experiments we use the same templates and change
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only the distance measures between eigenfeature

vectors and the number (percent) of used features.

For comparison we use cumulative match char-

acteristic (CMC) and receiver operating charac-

teristic (ROC)-based measures, described in

(Bromba, 2003).
Table 2

Recognition using 20% of features (85)

Distance measure Rank (%) of images needed to extract in

achieve some cumulative recognition per

80 85 90 95

Euclidean; SSE 0.2 0.5 2.4 7.6

Angle; Mahalanobis

normed

0.2 0.5 1.4 5.2

Correlation 0.2 0.5 1.2 5.4

SSE modified 0.2 0.5 1.2 4.3

Manhattan 0.2 0.5 1.7 4.5

Manhattan modified 0.2 0.2 0.5 2.4

Mahalanobis 0.5 0.5 1.2 4.7

Mahalanobis simplified 0.2 0.2 0.5 1.2

Angle weighted 0.2 0.2 0.5 1.7

Manhattan weighted 0.2 0.5 1.4 7.3

Manhattan weighted

modified

0.2 0.2 0.7 3.3

SSE weighted 0.2 0.2 1.2 4.3

SSE weighted modified 0.2 0.5 0.9 1.9

Angle whitened 0.2 0.2 0.5 1.2

Correlation whitened 0.2 0.2 0.5 1.2

Table 1

Recognition using 10% of features (42)

Distance measure Rank (%) of images needed to extract in

achieve some cumulative recognition per

80 85 90 95

Euclidean; SSE 0.2 0.5 2.6 9.5

Angle; Mahalanobis

normed

0.2 0.5 1.9 5.9

Correlation 0.2 0.5 1.4 6.6

SSE modified 0.5 0.5 1.2 4.7

Manhattan 0.2 0.5 2.4 6.4

Manhattan modified 0.2 0.5 0.9 2.8

Mahalanobis 0.5 0.9 1.7 5.2

Mahalanobis simplified 0.2 0.5 0.7 1.9

Angle weighted 0.2 0.5 0.9 2.4

Manhattan weighted 0.2 0.7 2.1 6.9

Manhattan weighted

modified

0.2 0.5 0.7 2.6

SSE weighted 0.2 0.5 1.9 5.4

SSE weighted modified 0.2 0.5 0.9 2.6

Angle whitened 0.2 0.2 0.7 1.9

Correlation whitened 0.2 0.2 0.7 2.1
The results of experiments are summarized in

Tables 1–5. In these tables we can see how different

distance measures affect recognition accuracy. For

measuring overall goodness of the distance mea-

sure with respect to recognition accuracy, we use

the area above cumulative match characteristic
order to

cent

CMCA,

0–104
First1

recogni-

tion, %

EER, % ROCA,

0–104

100

86.1 210.61 83.22 7.33 254.60

49.44 106.47 83.45 5.915 125.525

50.8 109.07 83.22 5.91 127.68

22.21 86.824 81.80 6.86 147.15

73.3 122.20 83.22 7.57 251.09

51.5 92.44 85.825 6.15 144.63

51.3 102.55 78.25 6.38 166.16

31.72 56.981 86.524 3.312 50.182
32.93 58.712 87.003 3.784 46.441
92.4 200.19 82.98 10.64 442.58

72.8 149.92 85.11 7.09 210.48

68.6 130.19 85.11 7.33 270.42

40.0 97.11 84.16 6.62 216.36

51.15 85.033 88.422 3.071 68.523
51.3 87.605 88.891 3.313 72.704

order to

cent

CMCA,

0–104
First1

recogni-

tion, %

EER, % ROCA,

0–104

100

85.8 222.16 81.56 7.09 260.84

47.0 117.03 81.56 6.86 139.025

53.4 125.02 80.61 6.62 144.80

24.61 95.99 79.91 7.09 162.73

77.3 128.12 82.27 7.09 218.17

31.44 91.075 82.27 5.445 139.70

46.8 115.60 72.81 6.86 200.56

25.32 66.171 82.985 3.783 71.434
31.03 68.322 84.633 4.494 57.651
65.5 149.28 81.09 9.22 307.51

62.4 136.20 81.56 5.91 204.50

68.8 123.32 83.224 7.09 220.79

50.4 92.19 82.27 6.15 169.19

35.55 77.414 85.341 3.551 58.662
36.4 77.043 85.112 3.552 59.533



Table 3

Recognition using 30% of features (127)

Distance measure Rank (%) of images needed to extract in order to

achieve some cumulative recognition percent

CMCA,

0–104
First1

recogni-

tion, %

EER, % ROCA,

0–104

80 85 90 95 100

Euclidean; SSE 0.2 0.5 2.1 8.5 86.1 215.20 83.22 7.33 261.63

Angle; Mahalanobis

normed

0.2 0.2 1.4 4.3 46.84 103.42 85.11 5.915 123.065

Correlation 0.2 0.5 1.2 4.7 49.2 105.01 84.87 5.91 124.69

SSE modified 0.2 0.5 0.9 3.5 21.31 84.113 83.45 7.09 144.36

Manhattan 0.2 0.5 1.2 5.0 78.7 155.20 83.92 8.51 318.38

Manhattan modified 0.2 0.2 0.5 2.1 52.2 103.78 87.235 6.38 170.44

Mahalanobis 0.2 0.5 0.9 4.5 48.55 98.985 80.61 5.91 155.97

Mahalanobis simplified 0.2 0.2 0.5 0.9 23.92 54.571 87.944 3.071 45.192
Angle weighted 0.2 0.2 0.5 1.4 26.03 57.152 88.422 3.312 44.081
Manhattan weighted 0.2 0.5 4.3 20.1 92.7 316.44 82.98 13.48 628.08

Manhattan weighted

modified

0.2 0.5 0.7 7.8 76.4 208.66 84.16 8.51 301.52

SSE weighted 0.2 0.2 1.2 6.6 78.5 166.27 85.34 8.75 343.28

SSE weighted modified 0.2 0.5 1.2 2.6 54.6 118.65 82.98 7.09 261.83

Angle whitened 0.2 0.2 0.5 2.1 49.9 98.924 88.183 3.783 84.843
Correlation whitened 0.2 0.2 0.5 2.4 52.0 101.52 88.891 3.784 87.784

Table 4

Recognition using 60% of features (254)

Distance measure Rank (%) of images needed to extract in order to

achieve some cumulative recognition percent

CMCA,

0–104
First1

recogni-

tion, %

EER, % ROCA,

0–104

80 85 90 95 100

Euclidean; SSE 0.2 0.5 2.1 8.0 86.3 216.78 83.45 7.33 265.36

Angle; Mahalanobis

normed

0.2 0.2 1.2 4.0 46.64 100.464 85.58 5.675 119.723

Correlation 0.2 0.2 1.4 4.0 48.2 101.495 85.82 5.91 120.62

SSE modified 0.2 0.5 1.2 3.3 20.81 81.123 83.22 6.86 140.54

Manhattan 0.2 0.5 1.4 7.3 81.6 218.97 83.92 9.46 388.59

Manhattan modified 0.2 0.2 0.5 2.1 63.8 113.34 86.765 6.62 192.74

Mahalanobis 0.2 0.5 0.9 4.3 48.05 95.40 81.56 6.15 145.42

Mahalanobis simplified 0.2 0.2 0.5 0.9 21.32 49.011 88.654 2.841 36.041
Angle weighted 0.2 0.2 0.5 0.9 23.43 52.142 89.603 3.072 38.762
Manhattan weighted 0.5 2.1 15.1 48.0 98.3 589.51 79.20 17.26 951.26

Manhattan weighted

modified

0.5 0.9 5.2 18.0 92.4 298.53 79.43 11.58 196.63

SSE weighted 0.2 0.5 1.4 8.5 83.5 237.58 84.40 10.17 437.54

SSE weighted modified 0.2 0.7 1.7 6.1 58.4 160.40 82.51 8.75 369.03

Angle whitened 0.2 0.2 0.5 1.9 68.8 126.56 89.832 4.733 119.734
Correlation whitened 0.2 0.2 0.5 1.9 68.6 126.00 89.831 4.734 120.045
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(CMCA). Smaller CMCA means better overall
recognition accuracy. Also we present how many

images (in percents) must be extracted from the

database in order to achieve some cumulative

recognition rate (80–100%). Smaller values mean
that we need to extract fewer images in order to
achieve some cumulative recognition rate. Last

columns of the table are equal error rate (EER)

and the area below receiver operating character-

istic (ROCA). Smaller values mean better results.



Table 5

Recognition using 90% of features (381)

Distance measure Rank (%) of images needed to extract in order to

achieve some cumulative recognition percent

CMCA,

0–104
First1

recogni-

tion, %

EER, % ROCA,

0–104

80 85 90 95 100

Euclidean; SSE 0.2 0.5 2.1 7.6 87.2 217.54 83.69 7.33 266.20

Angle; Mahalanobis

normed

0.2 0.2 0.9 3.8 46.14 99.425 85.34 5.913 118.663

Correlation 0.2 0.2 1.2 4.0 46.35 100.12 85.11 5.91 119.244
SSE modified 0.2 0.5 0.9 3.3 20.83 79.703 83.45 6.86 140.41

Manhattan 0.2 0.5 2.6 12.1 86.1 270.22 83.92 9.46 423.03

Manhattan modified 0.2 0.2 0.5 2.1 77.8 119.80 88.423 6.38 182.42

Mahalanobis 0.2 0.5 0.9 4.3 47.0 94.204 81.80 5.91 142.75

Mahalanobis simplified 0.2 0.2 0.5 0.9 18.42 44.181 89.832 2.841 30.491
Angle weighted 0.2 0.2 0.2 0.7 16.31 47.782 90.071 3.072 33.822
Manhattan weighted 8.7 23.9 49.4 77.1 99.5 1079.20 66.43 18.44 1199.75

Manhattan weighted

modified

1.7 5.2 14.9 37.1 94.8 474.77 72.58 15.84 828.84

SSE weighted 0.2 0.5 2.6 16.5 86.8 301.63 83.92 11.35 497.21

SSE weighted modified 0.5 1.4 3.1 14.7 74.9 227.72 78.01 10.64 486.00

Angle whitened 0.2 0.2 0.7 2.8 89.1 168.75 86.524 5.204 169.875
Correlation whitened 0.2 0.2 0.7 3.5 87.9 172.78 86.525 5.205 172.27

Fig. 1. Cumulative match characteristic.
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Also we present recognition rate that is achieved if
only the first one (most similar) image from the

database is extracted. Larger values mean better

result. Graphical representation of the used char-

acteristics is shown in Figs. 1 and 2.

Also we performed some experiments using

Minkowski distance (6) in order to find out how

parameter p influences recognition performance.

As we can see from Fig. 3, the best recognition
performance is achieved using p 2 ½1; 2�.

Using the results of experiments we can sort the

distance measures with respect to the recognition

performance using the measured biometric char-

acteristics: overall recognition accuracy (area

above cumulative match characteristic––CMCA),

first one recognition rate (First1), percent of im-

ages needed to extract in order to achieve 100%
cumulative recognition (Cum100), equal error rate

(EER), area below receiver operating characteris-

tic (ROCA). The results are presented in Table 6.

Also the best results are denoted using sub-

script numbers in Tables 1–5. The relationship

between the number of used features and recog-

nition performance is presented in Fig. 4. The best

recognition results were achieved using the fol-
lowing distance measures: simplified Mahalanobis,

weighted angle-based distance, proposed modified
SSE-based distance, angle-based distance between

whitened vectors. The proposed modified SSE-

based distance measure is among the first three

best measures with respect to different character-

istics of the biometric systems. Using the proposed

modified SSE-based distance we need to extract



Fig. 2. Receiver operating characteristic.
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fewer images (20.8–24.6%) in order to achieve

100% cumulative recognition than using all other

tested distance measures if 10–60% of features are

used. If we use larger number of features (90%),
better 100% cumulative recognition results are

achieved using weighted angle (16.3%) or simpli-

fied Mahalanobis distance (18.4%). The best re-

sults with respect to CMCA are achieved using

simplified Mahalanobis distance (44.18–66.17).
Fig. 3. Recognition performance using Minkowski distance. (a) CM

EER.
The largest first one recognition rate is achieved

using angle between whitened vectors (85.34%) if

we use 10% of features, correlation between whit-

ened vectors (88.89–89.83%) if we use 20–60% of

features, weighted angle-based distance (90.07%) if

we use 90% of features. The best results with re-
spect to EER are achieved using angle-based dis-

tance between whitened vectors (3.07–3.55%) if

we use 10–20% of features and simplified Maha-

lanobis distance (2.84–3.07%) if we use 30–90% of

features. The best results with respect to ROCA

are achieved using weighted angle-based distance

(44.08–57.65%) if we use 10–30% of features and

using simplified Mahalanobis distance (30.49–
36.04%) if we use 60–90% of features.

Also we tested if the differences between dis-

tance measures with respect to Cum100, CMCA,

First1, EER, ROCA are statistically significant.

We used bootstrap resampling with replacement

(Efron and Tibshirani, 1993), analysis of variance

(ANOVA) and Tukey�s honest significant differ-

ence (HSD) post hoc test. We used 30% of features
(127), the number of bootstrap samples N ¼ 2000,

significance level a ¼ 0:001. Some descriptive sta-

tistics are presented in Table 7. In Table 8 we

present Tukey�s HSD results. Asterisks indicate

significantly different means at an alpha level

of a ¼ 0:001. In these tables distance IDs are

as follows: 1––Mahalanobis (simplified), 2––angle
CA and ROCA, (b) Cumulative 100% and First1 recognition,



Table 6

Sorted distance measures with respect to recognition performance

Feat.

Num.

CMCA First1 Cum100 EER ROCA

10% Mahalanobis

(simplified)

Angle (whitened) SSE (modified) Angle (whitened) Angle (weighted)

(42) Angle (weighted) Correlation

(whitened)

Mahalanobis

(simplified)

Correlation

(whitened)

Angle (whitened)

Correlation

(whitened)

Angle (weighted) Angle (weighted) Mahalanobis

(simplified)

Correlation (whitened)

20% Mahalanobis

(simplified)

Correlation

(whitened)

SSE (modified) Angle (whitened) Angle (weighted)

(85) Angle (weighted) Angle (whitened) Mahalanobis

(simplified)

Mahalanobis

(simplified)

Mahalanobis (simplified)

Angle (whitened) Angle (weighted) Angle (weighted) Correlation

(whitened)

Angle (whitened)

30% Mahalanobis

(simplified)

Correlation

(whitened)

SSE (modified) Mahalanobis

(simplified)

Angle (weighted)

(127) Angle (weighted) Angle (weighted) Mahalanobis

(simplified)

Angle (weighted) Mahalanobis (simplified)

SSE (modified) Angle (whitened) Angle (weighted) Angle (whitened) Angle (whitened)

60% Mahalanobis

(simplified)

Correlation

(whitened)

SSE (modified) Mahalanobis

(simplified)

Mahalanobis (simplified)

(254) Angle (weighted) Angle (whitened) Mahalanobis

(simplified)

Angle (weighted) Angle (weighted)

SSE (modified) Angle (weighted) Angle (weighted) Angle (whitened) Angle

90% Mahalanobis

(simplified)

Angle (weighted) Angle (weighted) Mahalanobis

(simplified)

Mahalanobis (simplified)

(381) Angle (weighted) Mahalanobis

(simplified)

Mahalanobis

(simplified)

Angle (weighted) Angle (weighted)

SSE (modified) Manhattan (modified) SSE (modified) Angle Angle
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(weighted), 3––SSE (modified), 4––angle (whit-
ened), 5––correlation (whitened). As we can see

from the Table 8 the mean differences are not

significant at the a ¼ 0:001 level between the fol-

lowing distance measures: Mahalanobis (simpli-

fied) and SSE (modified) with respect to Cum100,

Mahalanobis (simplified) and angle (weighted)

with respect to ROCA, angle (whitened) and

correlation (whitened) with respect to EER and
ROCA, Mahalanobis (simplified) and angle

(whitened) with respect to First1, angle (weighted)

and angle (whitened) with respect to First1. All

other differences are statistically significant. We

also used more post hoc tests available in SPSS

12.0 package (SPSS, 2003) and almost all the tests

showed the same significant (and insignificant)

differences. The only exception was Fisher�s least
significant difference (LSD) test. This test showed
that the difference between Mahalanobis (simpli-

fied) and angle (whitened) with respect to First1 is

statistically significant.

Now we will compare our results with the re-

sults of other researchers. The experiments de-

scribed in (Phillips et al., 1997, 2000; Navarrete

and Ruiz-del-Solar, 2002) showed that recognition

performance using PCA-based recognition method
with angle-based distance measure is better than

using the Euclidean distance, using the Euclid-

ean distance we can achieve larger recognition

rates than using Manhattan distance, Maha-

lanobis distance performs better than other

mentioned distances. The experiments with Man-

hattan, Euclidean, angle-based, Mahalanobis dis-

tances and different combinations described in



Fig. 4. Recognition performance using different number of features. (a) Cumulative 100% recognition, (b) First1 recognition,

(c) CMCA, (d) ROCA and (e) EER.
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Table 7

Descriptive statistics

Distance ID Mean Std. Dev. Std. Err. 95% Confidence Interval Min Max

Lower bound Upper bound

CMCA

1 54.4720 9.53966 0.21331 54.0537 54.8904 29.34 90.18

2 56.9940 10.33195 0.23103 56.5409 57.4471 30.04 96.77

3 84.0432 12.61411 0.28206 83.4900 84.5963 48.06 131.64

4 99.0460 21.02596 0.47015 98.1240 99.9680 39.82 174.45

5 101.7862 21.68936 0.48499 100.8350 102.7373 43.76 181.75

First1

1 89.6742 1.62365 0.03631 89.6030 89.7454 83.69 94.80

2 89.9774 1.59608 0.03569 89.9074 90.0474 84.16 94.56

3 85.1074 1.82273 0.04076 85.0275 85.1874 78.96 91.02

4 89.8616 1.60529 0.03590 89.7912 89.9320 83.92 94.56

5 90.3178 1.55792 0.03484 90.2495 90.3862 84.16 95.04

Cum100

1 21.6412 3.72947 0.08339 21.4776 21.8047 4.50 30.30

2 24.1841 4.39684 0.09832 23.9913 24.3770 4.50 33.80

3 21.4187 2.00773 0.04489 21.3307 21.5067 11.10 27.90

4 43.6803 8.88014 0.19857 43.2909 44.0698 19.10 60.50

5 45.5153 9.21713 0.20610 45.1111 45.9194 19.10 62.20

EER

1 3.0896 0.87283 0.01952 3.0513 3.1278 0.97 6.80

2 3.3346 0.76055 0.01701 3.3012 3.3679 1.36 8.78

3 6.7445 1.29171 0.02888 6.6879 6.8012 3.35 15.17

4 3.7646 1.15688 0.02587 3.7139 3.8154 1.05 8.40

5 3.7791 1.18242 0.02644 3.7273 3.8310 1.17 8.85

ROCA

1 47.0447 19.52074 0.43650 46.1887 47.9007 11.69 170.44

2 44.9181 20.03766 0.44806 44.0394 45.7968 9.32 182.29

3 147.7803 43.57351 0.97433 145.8695 149.6911 56.38 451.57

4 85.7599 36.75803 0.82193 84.1479 87.3718 20.31 279.02

5 88.8438 37.94469 0.84847 87.1798 90.5078 19.53 288.80
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(Yambor and Draper, 2002) showed that simpli-
fied Mahalanobis distance performs significantly

better than L1, L2 or angle-based distance if using

more than 60% of eigenfeatures. Our results also

showed that angle-based distance performs better

than the Euclidean distance. Simplified Mahalan-

obis distance performs better than the Euclidean,

Manhattan and angle-based distance measures

with respect to CMCA and EER. But the results
also showed, that weighted angle-based distance

performs better than simplified Mahalanobis dis-

tance with respect to ROCA and first one recog-

nition rate. Also the experiments showed, that the

proposed modified SSE-based distance performs
better than simplified Mahalanobis distance and
weighted angle-based distance with respect to

100% cumulative recognition. We also tested Chi

square and Canberra distances, but the results

were much worse than using the Euclidean or

other tested distance measure. The results using

Euclidean or SSE-based distance between whit-

ened feature vectors were worse than the results

using angle-based distance between whitened vec-
tors.

In order to achieve larger recognition per-

formance we can try to combine different dis-

tance measures as it was done in (Yambor and

Draper, 2002). Also we can perform algorithmic



Table 9

Recognition using 30% of features (127) and combined distance measures

Distance measure Rank (%) of images needed to extract in order to

achieve some cumulative recognition percent

CMCA,

0–104
First1

recogni-

tion, %

EER, % ROCA,

0–104

80 85 90 95 100

SSE (mod.) 0.2 0.5 0.9 3.5 21.3 84.11 83.45 7.09 144.36

Mahalanobis (simplified) 0.2 0.2 0.5 0.9 23.9 54.57 87.94 3.07 45.19

Angle (weighted) 0.2 0.2 0.5 1.4 26.0 57.15 88.42 3.31 44.08

SSE (mod.) +Mahalanobis

(simplified)

0.2 0.2 0.5 0.9 16.8 49.54 87.94 3.07 38.97

SSE (mod.) + angle

(weighted)

0.2 0.2 0.5 1.4 15.8 50.55 88.42 3.31 36.63

Mahalanobis

(simplified)+ angle

(weighted)

0.2 0.2 0.5 1.4 24.8 56.81 88.42 3.31 41.79

Table 8

Mean differences and significance values

Distance ID 1 Distance ID 2 CMCA First1 Cum100 EER ROCA

1 2 )2.52199� )0.30319� )2.54300� )0.24499� 2.12662

0.000006 0.000000 0.000000 0.000000 0.250291

1 3 )29.57116� 4.56678� 0.22245 )3.65495� )100.73560�

0.000000 0.000000 0.801765 0.000000 0.000000

1 4 )44.57398� )0.18735 )22.03920� )0.67508� )38.71515�

0.000000 0.002906 0.000000 0.000000 0.000000

1 5 )47.31414� )0.64362� )23.87410� )0.68954� )41.79910�

0.000000 0.000000 0.000000 0.000000 0.000000

2 3 )27.04916� 4.86998� 2.76545� )3.40997� )102.86222�

0.000000 0.000000 0.000000 0.000000 0.000000

2 4 )42.05199� 0.11584 )19.49620� )0.43009� )40.84177�

0.000000 0.169208 0.000000 0.000000 0.000000

2 5 )44.79215� )0.34043� )21.33110� )0.44455� )43.92572�

0.000000 0.000000 0.000000 0.000000 0.000000

3 4 )15.00282� )4.75414� )22.26165� 2.97988� 62.02044�

0.000000 0.000000 0.000000 0.000000 0.000000

3 5 )17.74299� )5.21040� )24.09655� 2.96542� 58.93650�

0.000000 0.000000 0.000000 0.000000 0.000000

4 5 )2.74017� )0.45626� )1.83490� )0.01446 )3.08394
0.000001 0.000000 0.000000 0.993103 0.026595
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combination (Perlibakas, 2002) by sorting all
images using one distance measure (e.g. modified

SSE-based distance) and then resorting some part

(e.g. 25%) of images with the smallest distances

using another distance measure, for example sim-

plified Mahalanobis or weighted angle-based dis-

tance. The results of such algorithmic combination

are presented in Table 9. As we can see from

the table, using such combination we can achieve
better performance with respect to CMCA, ROCA

and 100% cumulative recognition. But it must be
noted that in order to achieve better results using
combined method than using not combined meth-

ods we must choose an appropriate percent of

resorting.
5. Conclusions

In this publication we compared 14 distance
measures and their modifications for principal

component analysis-based face recognition method



V. Perlibakas / Pattern Recognition Letters 25 (2004) 711–724 723
and proposed modified sum squared error (SSE)-

based distance measure. Recognition experiments

were performed using the database containing

photographies of 423 persons. The experiments

showed, that the proposed distance measure is

among the first three best measures with respect to
different characteristics of the biometric systems.

The best recognition results were achieved using

the following distance measures: simplified Ma-

halanobis, weighted angle-based distance, pro-

posed modified SSE-based distance, angle-based

distance between whitened feature vectors. Using

the proposed modified SSE-based distance we

need to extract less images in order to achieve
100% cumulative recognition than using any other

tested distance measure. We also showed that

using the algorithmic combination of distance

measures we can achieve better recognition results

than using the distances separately.
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