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.ukAbstra
t. A non{linear 
lassi�
ation te
hnique based on Fisher'sdis
riminant is proposed. The main ingredient is the kernel tri
kwhi
h allows the eÆ
ient 
omputation of Fisher dis
riminant infeature spa
e. The linear 
lassi�
ation in feature spa
e 
orrespondsto a (powerful) non{linear de
ision fun
tion in input spa
e. Larges
ale simulations demonstrate the 
ompetitiveness of our approa
h.DISCRIMINANT ANALYSISIn 
lassi�
ation and other data analyti
 tasks it is often ne
essary to utilizepre{pro
essing on the data before applying the algorithm at hand and it is
ommon to �rst extra
t features suitable for the task to solve.Feature extra
tion for 
lassi�
ation di�ers signi�
antly from feature ex-tra
tion for des
ribing data. For example PCA �nds dire
tions whi
h haveminimal re
onstru
tion error by des
ribing as mu
h varian
e of the data aspossible with m orthogonal dire
tions. Considering the �rst dire
tions theyneed not (and in pra
ti
e often will not) reveal the 
lass stru
ture that weneed for proper 
lassi�
ation. Dis
riminant analysis addresses the followingquestion: Given a data set with two 
lasses, say, whi
h is the best featureor feature set (either linear or non{linear) to dis
riminate the two 
lasses?Classi
al approa
hes ta
kle this question by starting with the (theoreti
ally)optimal Bayes 
lassi�er and, by assuming normal distributions for the 
lasses,standard algorithms like quadrati
 or linear dis
riminant analysis, amongthem the famous Fisher dis
riminant, 
an be derived (e.g. [5℄). Of 
ourse anyother model di�erent from a Gaussian for the 
lass distributions 
ould be as-sumed, this, however, often sa
ri�
es the simple 
losed form solution. Severalmodi�
ations towards more general features have been proposed (e.g. [6℄); foran introdu
tion and review on existing methods see e.g. [3, 5, 8, 11℄.In this work we propose to use the kernel idea [1℄, originally applied inSupport Ve
tor Ma
hines [19, 14℄), kernel PCA [16℄ and other kernel basedalgorithms (
f. [14℄) to de�ne a non{linear generalization of Fisher's dis-
riminant. Our method uses kernel feature spa
es yielding a highly 
exible



algorithm whi
h turns out to be 
ompetitive with Support Ve
tor Ma
hines.Note that there exists a variety of methods 
alled Kernel Dis
riminantAnalysis [8℄. Most of them aim at repla
ing the parametri
 estimate of 
lass
onditional distributions by a non{parametri
 kernel estimate. Even if ourapproa
h might be viewed in this way too, it is important to note that it goesone step further by interpreting the kernel as a dot{produ
t in another spa
e.This allows a theoreti
ally sound interpretation together with an appealing
losed form solution.In the following we will �rst review Fisher's dis
riminant, apply the kerneltri
k, then report 
lassi�
ation results and �nally present our 
on
lusions. Inthis paper we will fo
us on two{
lass problems only and dis
riminants linearin the feature spa
e.FISHER'S LINEAR DISCRIMINANTLet X1 = fx11; : : : ;x1̀1g and X2 = fx21; : : : ;x2̀2g be samples from two di�er-ent 
lasses and with some abuse of notation X = X1 [ X2 = fx1; : : : ;x`g.Fisher's linear dis
riminant is given by the ve
tor w whi
h maximizesJ(w) = wTSBwwTSWw (1)where SB := (m1 �m2)(m1 �m2)T and (2)SW := Xi=1;2Xx2Xi(x�mi)(x�mi)T (3)are the between and within 
lass s
atter matri
es respe
tively and mi isde�ned by mi := 1̀i P`ij=1 xij . The intuition behind maximizing J(w) is to�nd a dire
tion whi
h maximizes the proje
ted 
lass means (the numerator)while minimizing the 
lasses varian
e in this dire
tion (the denominator).But there is also a well known statisti
al way to motivate (1):Conne
tion to the optimal linear Bayes 
lassi�er: The optimal Bayes
lassi�er 
ompares the a posteriori probabilities of all 
lasses and assigns apattern to the 
lass with the maximal probability (e.g. [5℄). However, the a-posteriori probabilities are usually unknown and have to be estimated from a�nite sample. For most 
lasses of distributions this is a diÆ
ult task and oftenit is impossible to get a 
losed form estimate. However, by assuming normaldistributions for all 
lasses, one arrives at quadrati
 dis
riminant analysis(whi
h essentially measures the Mahalanobis distan
e of a pattern towardsthe 
lass 
enter). Simplifying the problem even further and assuming equal
ovarian
e stru
ture for all 
lasses, quadrati
 dis
riminant analysis be
omeslinear. For two{
lass problems it is easy to show that the ve
tor w maxi-mizing (1) is in the same dire
tion as the dis
riminant in the 
orrespondingBayes optimal 
lassi�er. Although relying on heavy assumptions whi
h are



not true in many appli
ations, Fisher's linear dis
riminant has proven verypowerful. One reason is 
ertainly that a linear model is rather robust againstnoise and most likely will not over�t. Cru
ial, however, is the estimation ofthe s
atter matri
es, whi
h might be highly biased. Using simple \plug{in"estimates as in (2) when the number of samples is small 
ompared to thedimensionality will result in a high variability. Di�erent ways to deal withsu
h a situation by regularization have been proposed (e.g. [4, 7℄) and we willreturn to this topi
 later.FISHER'S DISCRIMINANT IN THE FEATURE SPACEClearly, for most real{world data a linear dis
riminant is not 
omplex enough.To in
rease the expressiveness of the dis
riminant we 
ould either try to usemore sophisti
ated distributions in modeling the optimal Bayes 
lassi�er orlook for non{linear dire
tions (or both). As pointed out before, assuminggeneral distributions will 
ause trouble. Here we restri
t ourselves to �ndingnon{linear dire
tions by �rst mapping the data non{linearly into some featurespa
eF and 
omputing Fisher's linear dis
riminant there, thus thus impli
itlyyielding a non{linear dis
riminant in input spa
e.Let � be a non{linear mapping to some feature spa
e F . To �nd thelinear dis
riminant in F we need to maximizeJ(w) = wTS�BwwTS�Ww (4)where now w 2 F and S�B and S�W are the 
orresponding matri
es in F , i.e.S�B := (m�1 �m�2 )(m�1 �m�2 )T andS�W := Xi=1;2Xx2Xi(�(x)�m�i )(�(x)�m�i )Twith m�i := 1̀i P`ij=1 �(xij).Introdu
ing kernel fun
tions: Clearly, if F is very high{ or even in�nitelydimensional this will be impossible to solve dire
tly. To over
ome this limita-tion we use the same tri
k as in Kernel PCA [16℄ or Support Ve
tor Ma
hines.Instead of mapping the data expli
itely we seek a formulation of the algo-rithm whi
h uses only dot{produ
ts (�(x) � �(y)) of the training patterns.As we are then able to 
ompute these dot{produ
ts eÆ
iently we 
an solvethe original problem without ever mapping expli
itely to F . This 
an bea
hieved using Mer
er kernels (e.g. [12℄): these kernels k(x;y) 
ompute adot{produ
t in some feature spa
e F , i.e. k(x;y) = (�(x) � �(y)). Possible
hoi
es for k whi
h have proven useful e.g. in Support Ve
tor ma
hines orKernel PCA are Gaussian RBF, k(x;y) = exp(�kx� yk2=
), or polynomialkernels, k(x;y) = (x � y)d, for some positive 
onstants 
 and d respe
tively.To �nd Fisher's dis
riminant in the feature spa
e F , we �rst need a formu-lation of (4) in terms of only dot produ
ts of input patterns whi
h we then



repla
e by some kernel fun
tion. From the theory of reprodu
ing kernels weknow that any solution w 2 F must lie in the span of all training samples inF . Therefore we 
an �nd an expansion for w of the formw = X̀i=1 �i�(xi) (5)Using the expansion (5) and the de�nition of m�i we writewTm�i = 1̀i X̀j=1 `iXk=1�j k(xj ;xik)= �TM i (6)where we de�ned (M i)j := 1̀i P`ik=1 k(xj ;xik) and repla
ed the dot produ
tsby the kernel fun
tion. Now 
onsider the numerator of (4). Be using thede�nition of S�B and (6) it 
an be rewritten aswTS�Bw = �TM� (7)where M := (M 1 �M2)(M 1 �M2)T . Considering the denominator, using(5), the de�nition of m�i and a similar transformation as in (7) we �nd:wTS�Ww = �TN� (8)where we set N := Pj=1;2Kj(I � 1`j )KTj , Kj is a ` � `j matrix with(Kj)nm := k(xn;xjm) (this is the kernel matrix for 
lass j), I is the iden-tity and 1`j the matrix with all entries 1=`j.Combining (7) and (8) we 
an �nd Fisher's linear dis
riminant in F bymaximizing J(�) = �TM��TN� : (9)This problem 
an be solved (analogously to the algorithm in the input spa
e)by �nding the leading eigenve
tor of N�1M . We will 
all this approa
h (non{linear) Kernel Fisher Dis
riminant (KFD). The proje
tion of a new patternx onto w is given by (w ��(x)) = X̀i=1 �i k(xi;x): (10)Numeri
al issues and regularization: Obviously, the proposed setting isill{posed: we are estimating ` dimensional 
ovarian
e stru
tures from ` sam-ples. Besides numeri
al problems whi
h 
ause the matrix N not to be posi-tive, we need a way of 
apa
ity 
ontrol in F . To this end, we simply add amultiple of the identity matrix to N , i.e. repla
e N by N� whereN� := N + �I: (11)



This 
an be viewed in di�erent ways: (i) it 
learly makes the problem nu-meri
ally more stable, as for � large enough N� will be
ome positive de�nite;(ii) it 
an be seen in analogy to [4℄, de
reasing the bias in sample based es-timation of eigenvalues; (iii) it imposes a regularization on k�k2 (rememberthat we are maximizing (9)), favoring solutions with small expansion 
oeÆ-
ients. Although the real in
uen
e in this setting of the regularization is notyet fully understood, it shows 
onne
tions to those used in Support Ve
torMa
hines (see also [14℄). Furthermore, one might use other regularizationtype additives to N , e.g. penalizing kwk2 in analogy to SVM (by adding thefull kernel matrix Kij = k(xi;xj)).EXPERIMENTSFigure 1 shows an illustrative 
omparison of the feature found by KFD andthe �rst and se
ond (non{linear) feature found by Kernel PCA [16℄ on a toydata set. For both we used a polynomial kernel of degree two and for KFDthe regularized within 
lass s
atter (11) where � = 10�3. Depi
ted are thetwo 
lasses (
rosses and dots), the feature value (indi
ated by grey level)and 
ontour lines of identi
al feature value. Ea
h 
lass 
onsists of two noisyparaboli
 shapes mirrored at the x and y axis respe
tively. We see, that theKFD feature dis
riminates the two 
lasses in a nearly optimal way, whereasthe Kernel PCA features, albeit des
ribing interesting properties of the dataset, do not separate the two 
lasses well (although higher order Kernel PCAfeatures might be dis
riminating, too).To evaluate the performan
e of our new approa
h we performed an ex-tensive 
omparison to other state-of-the-art 
lassi�ers. The experimentalsetup was 
hosen in analogy to [10℄ and we 
ompared the Kernel Fisher Dis-
riminant to AdaBoost, regularized AdaBoost (also [10℄) and Support Ve
torMa
hines (with Gaussian kernel). For KFD we used Gaussian kernels, too,and the regularized within-
lass s
atter from (11). After the optimal dire
-tion w 2 F was found, we 
omputed proje
tions onto it by using (10). Toestimate an optimal threshold on the extra
ted feature, one may use any
lassi�
ation te
hnique, e.g. as simple as �tting a sigmoid [9℄. Here we used alinear Support Ve
tor Ma
hine (whi
h is optimized by gradient des
ent as weFigure 1: Comparison of feature found by KFD (left) and those found by KernelPCA: �rst (middle) and se
ond (right); details see text.



Table 1: Comparison between KFD, a single RBF 
lassi�er, AdaBoost (AB), reg-ularized AdaBoost (ABR) and Support Ve
tor Ma
hine (SVM) (see text). Bestmethod in bold fa
e, se
ond best emphasized.RBF AB ABR SVM KFDBanana 10.8�0.6 12.3�0.7 10.9�0.4 11.5�0.7 10.8�0.5B.Can
er 27.6�4.7 30.4�4.7 26.5�4.5 26.0�4.7 25.8�4.6Diabetes 24.3�1.9 26.5�2.3 23.8�1.8 23.5�1.7 23.2�1.6German 24.7�2.4 27.5�2.5 24.3�2.1 23.6�2.1 23.7�2.2Heart 17.6�3.3 20.3�3.4 16.5�3.5 16.0�3.3 16.1�3.4Image 3.3�0.6 2.7�0.7 2.7�0.6 3.0�0.6 4.8�0.6Ringnorm 1.7�0.2 1.9�0.3 1.6�0.1 1.7�0.1 1.5�0.1F.Sonar 34.4�2.0 35.7�1.8 34.2�2.2 32.4�1.8 33.2�1.7Spli
e 10.0�1.0 10.1�0.5 9.5�0.7 10.9�0.7 10.5�0.6Thyroid 4.5�2.1 4.4�2.2 4.6�2.2 4.8�2.2 4.2�2.1Titani
 23.3�1.3 22.6�1.2 22.6�1.2 22.4�1.0 23.2�2.0Twonorm 2.9�0.3 3.0�0.3 2.7�0.2 3.0�0.2 2.6�0.2Waveform 10.7�1.1 10.8�0.6 9.8�0.8 9.9�0.4 9.9�0.4only have 1-d samples). A drawba
k of this, however, is that we have anotherparameter to 
ontrol, namely the regularization 
onstant in the SVM.We used 13 arti�
ial and real world datasets from the UCI, DELVE andSTATLOG ben
hmark repositories (ex
ept for banana).1 The problems whi
hare not binary were partitioned into two-
lass problems. Then 100 partitionsinto test and training set (about 60%:40%) were generated. On ea
h ofthese data sets we trained and tested all 
lassi�ers (see [10℄ for details).The results in table 1 show the average test error over these 100 runs andthe standard deviation. To estimate the ne
essary parameters we ran 5-fold
ross validation on the �rst �ve realizations of the training sets and took themodel parameters to be the median over the �ve estimates.2Furthermore, we 
ondu
ted preliminary experiments with KFD on theUSPS dataset of handwritten digits where we restri
ted the expansion of win (5) to run only over the �rst 3000 training samples. We a
hieved a 10{
lass error of 3:7% with a Gaussian kernel of width 0:3 � 256, whi
h is slightlysuperior to a SVM with Gaussian kernel (4:2% [13℄).Experimental results: The experiments show that the Kernel Fisher Dis-
riminant (plus a Support Ve
tor Ma
hine to estimate the threshold) is 
om-petitive or in some 
ases even superior to the other algorithms on almost alldata sets (an ex
eption being image). Interestingly, both SVM and KFD
onstru
t an (in some sense) optimal hyperplane in F , while we noti
e thatthe one given by the solution w of KFD is often superior to the one of SVM.1The breast 
an
er domain was obtained from the University Medi
al Center, Inst. ofOn
ology, Ljubljana, Yugoslavia. Thanks to M. Zwitter and M. Sokli
 for the data.2In fa
t we did two su
h runs, �rst with a 
oarse and then with a �ner stepping overparameter spa
e. The data sets 
an be obtained via http://www.first.gmd.de/~raets
h/.



DISCUSSION AND CONCLUSIONSFisher's dis
riminant is one of the standard linear te
hniques in statisti
aldata analysis. However, linear methods are often too limited and there havebeen several approa
hes in the past to derive more general 
lass separability
riteria (e.g. [6, 8, 5℄). Our approa
h is very mu
h in this spirit, however, dueto the fa
t that we are 
omputing the dis
riminant fun
tion in some featurespa
e F (whi
h is non{linearly related to input spa
e), we are still able to�nd 
losed form solutions and maintain the theoreti
al beauty of Fisher'sdis
riminant analysis. Furthermore di�erent kernels allow for high 
exibilitydue to the wide range of non{linearities possible.Our experiments show that KFD is 
ompetitive to other state of the art
lassi�
ation te
hniques. Furthermore, there is still mu
h room for extensionsand further theory as linear dis
riminant analysis is an intensively studied�eld and many ideas previously developed in the input spa
e 
arry over tofeature spa
e.Note that while the 
omplexity of SVMs s
ales with the number of Sup-port Ve
tors, KFD does not have a notion of SVs and its 
omplexity s
aleswith the number of training patterns. On the other hand, we spe
ulate, thatsome of the superior performan
e of KFD over SVM might be related to thefa
t, that KFD uses all training samples in the solution, not only the diÆ
ultones, i.e. the Support Ve
tors.Future work will be dedi
ated to �nding suitable approximation s
hemes(e.g. [2, 15℄) and numeri
al algorithms for obtaining the leading eigenve
torsof large matri
es. Further �elds of study will in
lude the 
onstru
tion ofmulti-
lass dis
riminants, a theoreti
al analysis of generalization error boundsof KFD, and the investigation of the 
onne
tion between KFD and SupportVe
tor Ma
hines (
f. [18, 17℄).A
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