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Abstract—The main point of the paper is to show the close re-
lation between the nonzero principal components and the differ-
ence subspace together with the complementary close relation be-
tween the zero principal components and the common vector. A
common vector representing each word-class is obtained from the
eigenvectors of the covariance matrix of its own word-class; that
is, the common vector is in the direction of a linear combination
of the eigenvectors corresponding to the zero eigenvalues of the co-
variance matrix. The methods that use the nonzero principal com-
ponents for recognition purposes suggest the elimination of all the
features that are in the direction of the eigenvectors corresponding
to the smallest eigenvalues (including the zero eigenvalues) of the
covariance matrix whereas the common vector approach suggests
the elimination of all the features that are in the direction of the
eigenvectors corresponding to the largest, all nonzero eigenvalues
of the covariance matrix.

Index Terms—Common vector approach, speech recognition,
subspace methods.

I. INTRODUCTION

A VOICE signal contains inter- and intra-speaker dif-
ferences as well as the acoustical environment effects

and the phase or temporal differences. A method has been
presented to subtract all the differences among the various
utterances of isolated words pronounced by different speakers
in our previous work [1]. The difference vectors for each
word belonging to a word-class in the training set constitute
a unique difference subspace [1]. After all the differences for
each word belonging to a certain word-class in the training
set are subtracted and eliminated, only one vector containing
the invariant features for each word-class remains, and we
called this vector the “common vector” [1], [2]. Each common
vector, which is unique [1] for each of the words in the training
set, represents the common properties of the corresponding
word-class. However, in the test set, when all the differences
in the difference subspace are taken away, the leftover vectors
are not unique, and we call those the “remaining vectors.” The
experimental studies have shown that the remaining vector is
usually closer to the common vector of its own word-class than
to the common vectors of other word-classes; therefore, the
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common vector approach (CVA) can be used in isolated word
recognition.

In this section, short reviews of the previous work which
include the computation of the difference subspace and the
common vector [1] and, also a short review of the principal
component analysis (PCA) and its application are given. In the
second section, it is shown that the common vector satisfies
the eigenvalue-eigenvector equation of the covariance matrix
corresponding to the zero eigenvalues. It is also shown that
the common vector can be obtained from the feature vector of
a certain word-class by subtracting all of its components that
are in the directions of the eigenvectors corresponding to the
nonzero eigenvalues of the covariance matrix. The comparison
of the CVA and the SELFIC (SELf-Featuring Information
Comparison) which is the subspace method that uses the PCA
is provided with an example in two-dimensional (2-D) feature
space in the third section. In the fourth section, the experimental
studies for the TI-digit database are given. The conclusion part
gives the relation between the nonzero principal components
and the difference subspace together with the relation between
the zero principal components and the common vector. This
part also emphasizes the differences between the results of the
SELFIC method and of the CVA.

A. Difference Subspace

The feature vectors1 for one of the word-classes in
the training set are given as linearly independent vectors

, where each ( ) is
column vector and . This -dimensional feature

space can be divided into an ( ) dimensional difference
subspace and an ( ) dimensional orthogonal
indifference subspace so that the direct sum of these two
subspaces would cover the whole feature space.

One way to define the ( ) dimensional difference sub-
space is to take the differences between the feature vectors,
i.e.,

is spanned by these difference vectors. Since
are not expected to be orthonormal,

an orthonormal basis vector set can be obtained by using
Gram–Schmidt orthogonalization method [4], [5]. The basis
vector set for will be in this case. is
independent of the choice of subtrahand vector[1].

1The vector that has features of a word as its elements is called the feature
vector throughout this paper. For the sake of clarity in the notation, vectors will
be referred to in boldface in the following discussion.
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B. Computation of the Common Vector

If the common vector is called as , then each of the fea-
ture vectors can be written as

where is the error vector term. Even if all of the error vectors
( ) are assumed to be zero, obviously there are
vector equations with ( ) unknown vectors. Therefore

there are infinitely many solutions for the common and differ-
ence vectors. To obtain a unique solution for the common vector,
one may make an assumption that the vectors are the pro-
jections of the feature vectors onto the difference subspace;
that is

where denote the
scalar product of and

. Then a metric can be es-
tablished to minimize the squares of the norms of the error
vectors in order to obtain a unique solution for the common
vector, that is

where denote the Euclidean norm of the
vector . It was shown that if the common vector is chosen
as

then is minimized and [1].
The common vector does not depend on the choice ofor

on the choice of the orthonormal basis vector set of[1]. The
common vector represents the common properties or invariant
features of a spoken word. Since all of the feature vectors within
one class yields the same common vector, the recognition rate
for this class will always be 100%; that is, the method guarantees
100% recognition rate for each class in the training set under the
condition . Obviously, if , then the difference
subspace would span the whole feature space and the common
vector would become a zero vector.

C. Principal Component Analysis

Obtaining the eigenvalues and eigenvectors of the covariance
matrices for normal distributions is also known as the PCA or
the Karhunen–Loeve transforms (KLT). The PCA or KLT is also
known as the optimal linear dimensionality reduction. The goal
is to map vectors ( ) in an -dimensional
space onto another set of vectors in a-dimensional subspace
where . But this usually causes some loss of the informa-
tion which discriminates the different classes [6].

The covariance matrix of the feature vectors belonging to
a word-class is defined as

where superscript denotes the transpose and is the av-
erage vector of all feature vectors in the word-class

Since the covariance matrix is real, symmetric and nonnegative,
all of its eigenvalues are nonnegative, and its eigenvectors can
be chosen to be orthonormal; that is

and

if if for

An error caused by dimensionality reduction can be defined and
minimized by making use of the orthonormality relation be-
tween the eigenvectors [7]

Error

which is just the minimization of the metric

The maximization of the metric will yield

The minimum error is obtained by choosing the ( ) smallest
(zero in our case) eigenvalues and their corresponding eigen-
vectors as the ones to discard [8]. Since the number of largest
(nonzero) eigenvalues is limited by the number ( ) when

, the dimension of the subspace spanned by the eigen-
vectors corresponding to the largest eigenvalues can be extended
up to ( ).

The PCA is used for classification purposes that are known
as the subspace methods.

D. Subspace Method: SELFIC

The subspace methods for pattern recognition are introduced
by Watanabe [9] and widely used by Kohonen [10]–[12], and
all the work is summarized by Oja [13]. One of these subspace
methods is called SELFIC which uses the covariance matrix.
In this method, the feature vectors are normalized first. Then,
the average feature vector of the class is subtracted from each
feature vector in the training set. In this method, the following
metric is maximized [9]:

where is the class-correlation matrix ands are its eigenvec-
tors. Since the average feature vector of the class is subtracted
from each feature vector first, the correlation and covariance
matrices will become the same for the SELFIC method, that is,
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. Therefore the SELFIC method turns out to have the
same metric with the PCA. If is maximized, then

The classification is based on the maximization of the above
metric in the literature [9], [13] whereas it could also be done
by the minimization of the same metric, then it would be

In this case the minimum of the metric would be zero since
which is missed in the earlier

work [9], [13].
Another critical point is that the normalization of the feature

vectors is not necessary. In fact, this should not be done because
the radially aligned classes will overlap on the hypersphere with
the normalization procedure. The experimental results of the
SELFIC method are given in Section IV.

II. RELATION BETWEEN THECOMMON VECTOR AND THE

EIGENVALUES OF THECOVARIANCE MATRIX

In this section, an approach which is different from the ap-
proach given in [1] to find the common vector will be given.
Since the covariances characterize the variations of the vectors
about their mean, as long as , the nonzero eigenvalues of
the covariance matrix should correspond to the eigenvectors
which form an orthonormal basis for the difference subspace

. The orthogonal complement in this case is spanned by
all the eigenvectors corresponding to the zero eigenvalues. Be-
cause the common vector is orthogonal to any vector in the dif-
ference subspace, the common vector must be some linear com-
bination of the eigenvectors corresponding to the zero eigen-
values of , or else, the common vector can also be obtained
by subtracting all of the projections of a feature vector onto the
eigenvectors corresponding to the nonzero eigenvalues from the
feature vector itself.

The following definitions will be necessary to prove the sub-
sequent statements.

The eigenvalues of the covariance matrixare nonnegative
and they can be written in decreasing order:

. Let be the orthonormal eigenvectors corre-
sponding to these eigenvalues.

Let Ker be the kernel of the covariance matrix, and
be the orthogonal complement of the difference subspace.
That is

Ker

The kernel space of is the space of all eigenvectors corre-
sponding to the zero eigenvalues of. Further, since the space

is ( ) dimensional, the space is ( ) dimen-
sional [14].

Theorem 1: The following is true:

Ker (1)

Proof: See the Appendix.
Theorem 2: The following is true:

Ker

Proof: See the Appendix.
From the Theorems 1 and 2, one concludes that

Ker

From this last equality and remembering that is ( )
dimensional, it follows that the last ( ) eigenvectors of
the set correspond to the zero eigenvalues.
Therefore

span

A. Relation Between the Common Vector and the Zero
Eigenvalues

First of all, the following theorem should be given.
Theorem 3: Under the previous definitions for all

, the following is true:

(2)

Proof: Since , then the following can be
written:

The definition of the common vector states that

The scalar multiplication of the last two equality gives (2).
In the following theorem, it will be shown that the common

vector satisfies the eigenvalue–eigenvector equation for the co-
variance matrix for the zero eigenvalues.

Theorem 4: The following is true:

(3)

Proof: From Theorem 3, the following can be written:

Since the first term in the parenthesis is the average of all
( ), the following can be written:

(4)

Similarly

(5)

From (4) and (5), it follows that (3) holds.
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B. Relation Between the Common Vector and the Nonzero
Eigenvalues

The first ( ) eigenvectors of the covariance matrix cor-
respond to the nonzero eigenvalues. Now it will be shown that

is the span of the eigenvectors corresponding to the nonzero
eigenvalues.

Theorem 5: The following is true:

span

Here are the eigenvectors corresponding to
the nonzero eigenvalues of.

Proof: For any span

span

Therefore, or , since is fi-
nite dimensional and therefore [4]. Thus,
span .

Since the span and have the same
( ) dimensions; from this, we get

span

By combining the Theorems 3–5, any feature vectorcan be
written as

(6)

or

where

and

(7)

From (6), for any feature vector , the common vector
can also be written as

As seen from the above derivations, the common vector can
be determined by using the eigenvectors corresponding to the
zero or nonzero eigenvalues of the covariance matrix. But
it must be noted that the common vector does not include in-
formation in the directions corresponding to the nonzero eigen-
values. The CVA also saves computation time by selecting zero
or nonzero eigenvalues whichever is the smaller set.

Remark: Similar derivations can be carried out when the set
of feature vectors are linearly dependent. If

out of feature vectors in one class are linearly independent,
the difference subspace will have ( ) dimensions. The

common vector will correspond to the eigenvectors be-
longing to the ( ) zero eigenvalues of the covariance
matrix .

C. Numerical Examples

Example 1: Let the following feature vectors represent the
training set of a class:

Then, the difference vector will be

The unit vector in the direction of is

The common vector is then

The average vector is

The covariance matrix is

The covariance matrix has the following eigenvectors and eigen-
values

The common vector in this case is the following:

or

The common vector is also the summation of the projec-
tions of any feature vector or onto the and

Example 2: Let the feature vectors be

belonging to the same class.
The difference vectors between these feature vectors will be
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The orthonormal basis vector set that will define the subspace
span

The common vector can be obtained from any of the
feature vectors

The average vector is

The covariance matrix is

The eigenvalues of are and the
corresponding eigenvectors are

The projections of onto and are the following:

Their summation is

The common vector in this case is

which is in accord with the theorem.
The alignment of and is easily seen to be the same

and the following is true:

The calculation of the covariance matrix and its eigenvalues
and eigenvectors is not necessary for both the common vector
and the SELFIC approach. Since the common vector is the pro-
jection of any of the feature vectors onto the indifference sub-
space, the common vector can be obtained by just a subtraction
of the difference projection from the feature vector itself.

Fig. 1. Application of the SELFIC method and the CVA in 2-D feature space.

III. COMPARISON OF THECOMMON VECTOR AND THESELFIC
METHOD FORCLASSIFICATION

In this section, the common vector and the SELFIC method
which uses the nonzero principal components are compared for
the classification of two classes which are shown in Figs. 1 and
2 in 2-D feature space. In Fig. 1, one of the classes () has
the feature vectors of and , and the other class ( ) has
the feature vectors of and . The common vectors of two
classes are also shown as and in Fig. 1.

First of all, let us apply the CVA to classify each of the fea-
ture vectors. The direction of the eigenvector corresponding to
the zero eigenvalue for each class is the same as the direction of
the common vector; that is, the direction of the eigenvector cor-
responding to the zero eigenvalue for the classis the vertical
direction, and so is the direction of the common vector in
Fig. 1. The directions for the class are the horizontal direc-
tions in Fig. 1. The Euclidean distance between the projection
of all feature vectors ( ) of a given class ( ) onto the eigen-
vector corresponding to a zero eigenvalue of the same class and
the common vector ( ) of the same class gives a zero value.
But the Euclidean distance between the projection of all feature
vectors ( ) of a given class ( ) onto the eigenvector corre-
sponding to a zero eigenvalue of the other class (, ) and
the common vector ( ) of the other class gives the values of
3, 1, 2 and 1 (all of which are greater than zero) for the fea-
ture vectors , , and respectively. Therefore, since we
consider the minimum values of the distances obtained for each
feature vector for classification purposes in the CVA, all of the
feature vectors are correctly classified. A 100% recognition rate
is always guaranteed for the training set of the classes unless
they yield the same common vector. Also, a feature vector may
be unrecognized if one of the feature vectors of a given class is
aligned with the line combining two feature vectors of the other
class.

If the SELFIC method, an application of the PCA, is applied
without normalization of the feature vectors, the projection of
all feature vectors of a given class onto the eigenvector corre-
sponding to nonzero eigenvalue of the same class must be de-
termined. For the example considered here, the values of 0, 2, 3,
and 0 are obtained in magnitudes for the feature vectors, ,
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Fig. 2. Direct application of the SELFIC method and the CVA after
normalization.

and respectively. Also the projection of all feature vectors
of a given class onto the eigenvector corresponding to nonzero
eigenvalue of the other class must be determined to classify the
feature vectors. Then the values of 1, 1, 3 and 3 are obtained
in magnitudes for the feature vectors, , and , respec-
tively. Therefore, and are misclassified; , not classified;
and , correctly classified since we consider the maxima of
these values obtained for each feature vector.

In the SELFIC method with normalization, the feature vectors
are mapped onto the unit circle as shown in Fig. 2. Then the
nonzero principal components are considered to classify each
feature vector on the unit circle. In this case, the feature vectors

and are correctly classified, but the feature vectorsand
are misclassified.

If the CVA is applied to classify each of the feature vectors
on the unit circle (after normalization), still the Euclidean dis-
tance between the projection of all feature vectors of a given
class onto the eigenvector corresponding to a zero eigenvalue of
the same class and the common vector of the same class gives
a zero value. But the Euclidean distance between the projec-
tion of all feature vectors of a given class onto the eigenvector
corresponding to a zero eigenvalue of the other class and the
common vector of the other class gives the values greater than
zero. Therefore, all of the feature vectors are correctly classi-
fied since the minimum distances are used for classification in
the CVA.

IV. EXPERIMENTAL STUDY FORISOLATEDWORK RECOGNITION

When all the differences in the difference subspaces are taken
away from the words in the test set, the leftover vectors are
called the remaining vectors [1], [3]. In fact for a feature vector

of an unknown word-class, the remaining vector ( )
can be written as

where denotes the class. The Euclidean distance between the
common vector and the remaining vector is used as the decision
criterion, and it is given as

(8)

that is, if the feature vector belongs to the class , the dis-
tance between and is expected to be a minimum
just as it is the case for the training set.

In the recognition process of the SELFIC method, the digits
in the database are classified according to maximum value of
the following criterion:

Experimental studies on the TI digit database have shown that
the remaining vector is usually closer to the common vector
of its own word-class than it is to the common vectors of the
other word-classes, and therefore, it can be used in isolated word
recognition [1]. In the analysis of the TI database, at first, si-
lence regions at the beginning and at the end of each digit are
removed by using energy and zero-crossing thresholds. Then
the speech frames consisting of 256 samples are pre-empha-
sized and analyzed to calculate the 11th-order root-melcep pa-
rameters. Thus the feature vector for each repetition of each
digit is constructed with these parameters. After this process,
the longest feature vector in the TI database has 407 parameters
or features ( ), and the shortest feature vector has 110 pa-
rameters. Therefore, the dimensions of the feature vectors which
have fewer than 407 parameters are extended to 407 by inserting
random values obtained with the command “randn” in Matlab.
The covariance matrix for each digit is then a 407 407 ma-
trix. The covariance matrix and its eigenvalues and eigenvec-
tors are found by using 224 feature vectors obtained from 224
repetitions of each digit (112 speakers say each digit twice) in
the training set ( ). 223 eigenvalues, that is, ( )
eigenvalues, out of 407 eigenvalues are found to be nonzero and
the rest ( ) of the eigenvalues are zero. Since the
eigenvalues change abruptly, e.g., from to 0.219
for the digit eight, the values under are assumed to
be zero. In fact, the number of zero eigenvalues is always equal
to for all classes. The common vector for
each digit is obtained from (7) by using the eigenvectors corre-
sponding to 184 zero eigenvalues. If the decision criterion given
in (8) is applied to the training set, a recognition rate of 100%
is obtained for each digit. If the test set formed from 226 repeti-
tions (113 speakers say each digit twice) is used in the recogni-
tion process, recognition rates of 97% and 96%, which are the
best performances on the test set, are obtained on the average for
the normalized and nonnormalized feature vectors respectively.
The results are given in Table I for each digit.

If the SELFIC method is applied to the TI database, the max-
imum recognition rate of 91% in the average is obtained by
using the eigenvectors corresponding to the 115 largest of the
223 nonzero eigenvalues for each digit in the training set. The
maximum recognition rate of 75% on the average is obtained
by using the eigenvectors corresponding to the 74 largest eigen-
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TABLE I
CORRECTRECOGNITION RATES IN AVERAGE OBTAINED BY USING COMMON

VECTORAPPROACH AND THESELFIC METHOD EXPRESSED ASPERCENTAGES

values for each digit in the test set. If the eigenvectors corre-
sponding to all 223 nonzero eigenvalues are used in the test set,
the recognition rate decreases to 70%. In the SELFIC method,
the dimensions of the feature vectors which have fewer than 407
parameters are also extended to 407 by inserting random values.
The results of the SELFIC method are given in Table I for each
digit.

V. CONCLUSIONS

Throughout this paper, the CVA is discussed, and the relation
between the CVA and the principal components is given. The
relation between the common vector and the eigenvectors
of the covariance matrix of any feature vector set is established
by the theorems in Section II. Two numerical examples are pro-
vided in the same section. The most important conclusion is that
the common vector satisfies the eigenvalue-eigenvector equa-
tion of the covariance matrix corresponding to the zero eigen-
values, i.e., the common vector is orthogonal to all the eigenvec-
tors that correspond to the nonzero eigenvalues of the covariance
matrix.

The following results should be highlighted.

1) The PCA is usually carried out to reduce the dimensions
of a given feature vector set. The features that are elim-
inated correspond to the smallest (including zero) eigen-
values of the covariance matrix. This may cause some loss
of information which discriminates the different classes.
The SELFIC method which is used for discriminating
classes and which is just a direct application of the PCA
verifies this situation.

2) The CVA method is used for discriminating classes. Ac-
cording to the CVA, the process in the SELFIC method
must be reversed to increase the power of discrimination
between the different classes; that is, the common vector

is obtained by eliminating all the features in the differ-
ence subspace. This also eliminates all the components
of a feature vector that are along the eigenvectors cor-
responding to the nonzero eigenvalues of the covariance
matrix.

Seemingly contradictory, these two results stem from the fact
that the goals in using the PCA and the CVA are completely
different; that is, the PCA is used for reducing the dimensions
whereas the CVA is used for recognition purposes. These two
results are true in case the dimensionof the feature vectors is
larger than or equal to which is the number of data available
for any class in the training set or when some of the eigenvalues
of the covariance matrix are zero. This case is true for many
speech and pattern recognition applications.

These conclusions may be pushed a little further. The
common vector that also corresponds to the zero eigenvalues
of the covariance matrix contains the invariant features of
any class which is highly important from the recognition
or discrimination point of view. This result is important for
information scientists since classes with a huge number of
features can be represented with unique common vectors, each
of which is unique for its class and contains all the common
invariant features of its own class.

Obviously, the method fails when the number of feature vec-
tors is at least one larger than their dimensions, that is, the
method fails when . This is a subject under investi-
gation, but in our future work, it will be shown that the common
vector will be just the projection of the average vector
of all the intra-class feature vectors onto the indifference sub-
space under certain conditions.

APPENDIX

Proof of Theorem 1:If any , then . From
here the following scalar multiplication must be zero:

for

or

for

Therefore

or Ker . Since the element was arbitrary, then (1)
is true.

Proof of Theorem 2:If for
, and if the matrix is defined as
, then the covariance matrix can be

written as

Let be one of the eigenvectors corresponding to a zero
eigenvalue. Thus
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or

By premultiplying the above equality with , we get

or

From here

(A1)

It can be easily shown that the space spanned by
has ( ) dimension. On the other

hand, the dimension of is also ( ) and since then
according to (A1) we obtain or equivalently .

Thus all the eigenvectors corresponding to zero eigen-
values must belong to . Since the set of the eigenvectors
corresponding to zero eigenvalues is the basis of Ker, then

Ker
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