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Abstract

This is a note to explain Fisher linear discriminant analysis.

1 Fisher LDA

The most famous example of dimensionality reduction is "principal components analysis”.
This technique searches for directions in the data that have largest variance and subse-
guently project the data onto it. In this way, we obtain a lower dimensional representation
of the data, that removes some of the "noisy” directions. There are many difficult issues
with how many directions one needs to choose, but that is beyond the scope of this note.

PCA is an unsupervised technigque and as such does not include label information of the
data. For instance, if we imagine 2 cigar like clusters in 2 dimensions, one cigar-has

and the othey = —1. The cigars are positioned in parallel and very closely together, such
that the variance in the total data-set, ignoring the labels, is in the direction of the cigars.
For classification, this would be a terrible projection, because all labels get evenly mixed
and we destroy the useful information. A much more useful projection is orthogonal to
the cigars, i.e. in the direction of least overall variance, which would perfectly separate the
data-cases (obviously, we would still need to perform classification in this 1-D space).

So the question is, how do we utilize the label information in finding informative projec-
tions? To that purpose Fisher-LDA considers maximizing the following objective:
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where Sg is the “between classes scatter matrix” asigh is the “within classes scatter
matrix”. Note that due to the fact that scatter matrices are proportional to the covariance
matrices we could have defingdusing covariance matrices — the proportionality constant
would have no effect on the solution. The definitions of the scatter matrices are:
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where,
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and N, is the number of cases in class Oftentimes you will see that for 2 classég

is defined asS; = (p; — py)(py — po)T. This is the scatter of class 1 with respect to
the scatter of class 2 and you can show thigt= 2287, but since it boils down to
multiplying the objective with a constant is makes no difference to the final solution.

Why does this objective make sense. Well, it says that a good solution is one where the
class-means are well separated, measured relative to the (sum of the) variances of the data
assigned to a particular class. This is precisely what we want, because it implies that the
gap between the classes is expected to be big. It is also interesting to observe that since the
total scatter,

St = Z(Xz —5)(x; —3)" (6)
is given bySt = Sy + Sg the objective can be rewritten as,
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and hence can be interpreted as maximizing the total scatter of the data while minimizing
the within scatter of the classes.

An important property to notice about the objectivés that is is invariant w.r.t. rescalings

of the vectorsw — aw. Hence, we can always choosesuch that the denominator is
simply w? Syyw = 1, since it is a scalar itself. For this reason we can transform the
problem of maximizing J into the following constrained optimization problem,
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corresponding to the lagrangian,
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(the halves are added for convenience). The KKT conditions tell us that the following
equation needs to hold at the solution,

Spw = ASyw = S,'Spw =w (12)
This almost looks like an eigen-value equation, if the maﬂ;‘&SB would have been

symmetric (in fact, it is called a generalized eigen-problem). However, we can apply the
following transformation, using the fact thatz is symmetric positive definite and can
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hence be written aS2 .57, whereS3 is constructed from its eigenvalue decomposition as
1 1
Sp=UAUT — Sz =UAU". Definingv = S3w we get,
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S2S,SEv = v (12)
This problem is a regular eigenvalue problem for a symmetric, positive definite matrix
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SgSV}lS}; and for which we can can find solutiox), and vy that would correspond to
_1

solutionswy, = Sy 2 vy.



Remains to choose which eigenvalue and eigenvector corresponds to the desired solution.
Plugging the solution back into the objectivewe find,
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from which it immediately follows that we want the largest eigenvalue to maximize the
objective.

2 Kernel Fisher LDA

So how do we kernelize this problem? Unlike SVMs it doesn’t seem the dual problem re-
veal the kernelized problem naturally. But inspired by the SVM case we make the following
key assumption,

W= Z a; P(x;) (14)

This is a central recurrent equation that keeps popping up in every kernel machine. It says
that although the feature space is very high (or even infinite) dimensional, with a finite
number of data-cases the final solutiev;, will not have a component outside the space
spanned by the data-cases. It would not make much sense to do this transformation if the
number of data-cases is larger than the number of dimensions, but this is typically not the
case for kernel-methods. So, we argue that although there are possibly infinite dimensions
available a priori, at most are being occupied by the data, and the solutiomust lie

in its span. This is a case of the “representers theorem” that intuitively reasons as follows.

1 1
The solutionw is the solution to some eigenvalue equatiéii,S;;' S2w = Aw, where
both Sz andSy, (and hence its inverse) lie in the span of the data-cases. Hence, the part
w that is perpendicular to this span will be projected to zero and the equation above
puts no constraints on those dimensions. They can be arbitrary and have no impact on the
solution. If we now assume a very general form of regularization on the noxn dien
these orthogonal components will be set to zero in the final solutidn= 0.

In terms ofa the objective/(«) becomes,
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where it is understood that vector notation now applies to a different space, namely the
space spanned by the data-vect®%s, The scatter matrices in kernel space can expressed
in terms of the kernel only as follows (this requires some algebra to verify),
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LIf you try to find the dual and maximize that, you'll get the wrong sign it seems. My best guess
of what goes wrong is that the constraint is not linear and as a result the problem is not convex and
hence we cannot expect the optimal dual solution to be the same as the optimal primal solution.



So, we have managed to express the problem in terms of kernels only which is what we
were after. Note that since the objective in term&dias exactly the same form as that in
terms ofw, we can solve it by solving the generalized eigenvalue equation. This scales as
N3 which is certainly expensive for many datasets. More efficient optimization schemes
solving a slightly different problem and based on efficient quadratic programs exist in the
literature.

Projections of new test-points into the solution space can be computed by,
wld(x) = Z a; K (x;,%) (20)

as usual. In order to classify the test point we still need to divide the space into regions
which belong to one class. The easiest possibility is to pick the cluster with smallest Ma-
halonobis distanced(x, u?) = (z® — u)?/(c%)? whereu® ando? represent the class
mean and standard deviation in the 1-d projected space respectively. Alternatively, one
could train any classifier in the 1-d subspace.

One very important issue that we did not pay attention to is regularization. Clearly, as it
stands the kernel machine will overfit. To regularize we can add a term to the denominator,
Sw — Sw + (1 (21)

By adding a diagonal term to this matrix makes sure that very small eigenvalues are
bounded away from zero which improves numerical stability in computing the inverse.
If we write the Lagrangian formulation where we maximize a constrained quadratic form
in «, the extra term appears as a penalty proportionghth? which acts as a weight decay
term, favoring smaller values @f over larger ones. Fortunately, the optimization problem
has exactly the same form in the regularized case.

3 A Constrained Convex Programming Formulation of FDA

We will now give a simplified derivation of an equivalent mathematical program derived
by Mika and co. We first represent the problem in yet another form as,
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where we have switched the role of within and between scatter (and replaced a minus sign

with a plus sign). Now we note that by shifting the coordinatges- x; + a we can always

achieve that the overall mean of the data is wherever we like to be. The solutierdfoes

not depend on it. We also recall that the constrainfgrcan be equivalently written as,
wiSpw =c— ||luf —u5|> =g (24)

wheren? is mean in the projected space. Since hptindz are free at our disposal, we
can equivalently picl}’ andpy and letc andz be determined by that choice. We choose
py =landuy = —1oru? = y. for convenience.

The objective can be expressed as,
wlSyw = Z (wlx; — pi)? + Z (wlx; — pt)? (25)
iy =+1 LY =—

We can replacg@. = y. in the above expression if explicitely add this constraint. Defining
fi = WTXZ' — y; We find
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by definition of¢. To express the constraintg’ = y. ¢ = 1, 2 we note that,
Yood= > wWixi—1)=N(u-1). (27)
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Hence by constrainingji:yizc &8 = 0 we enforce the constraint. So finally, the program
is,

1
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S.t. é-Z = WTXZ' — Y (29)
Y &=0 c=1,2 (30)
1:Y;=cC

To move to kernel space you simply replasé x; — Zj a; K(x;,%;) in the definition
of ¢ and you add a regularization term arto the objective. This is typically of the form
|la]|? or T Ka.

This exercise reveals two important things. Firstly, the end result looks a lot like the pro-
gram for the SVM and SVR case. In some sense we are regressing on the labels. The other
thing is that we can change the norms&anda from L, to L;. Changing the norm on

will have the effect of making the solution sparsenin



