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Abstract

This is a note to explain Fisher linear discriminant analysis.

1 Fisher LDA

The most famous example of dimensionality reduction is ”principal components analysis”.
This technique searches for directions in the data that have largest variance and subse-
quently project the data onto it. In this way, we obtain a lower dimensional representation
of the data, that removes some of the ”noisy” directions. There are many difficult issues
with how many directions one needs to choose, but that is beyond the scope of this note.

PCA is an unsupervised technique and as such does not include label information of the
data. For instance, if we imagine 2 cigar like clusters in 2 dimensions, one cigar hasy = 1
and the othery = −1. The cigars are positioned in parallel and very closely together, such
that the variance in the total data-set, ignoring the labels, is in the direction of the cigars.
For classification, this would be a terrible projection, because all labels get evenly mixed
and we destroy the useful information. A much more useful projection is orthogonal to
the cigars, i.e. in the direction of least overall variance, which would perfectly separate the
data-cases (obviously, we would still need to perform classification in this 1-D space).

So the question is, how do we utilize the label information in finding informative projec-
tions? To that purpose Fisher-LDA considers maximizing the following objective:

J(w) =
wT SBw
wT SW w

(1)

whereSB is the “between classes scatter matrix” andSW is the “within classes scatter
matrix”. Note that due to the fact that scatter matrices are proportional to the covariance
matrices we could have definedJ using covariance matrices – the proportionality constant
would have no effect on the solution. The definitions of the scatter matrices are:

SB =
∑

c

Nc(µc − x̄)(µc − x̄)T (2)

SW =
∑

c

∑

i∈c

(xi − µc)(xi − µc)
T (3)



where,

µc =
1

Nc

∑

i∈c

xi (4)

x̄ = =
1
N

∑

i

xi =
1
N

∑
c

Ncµc (5)

andNc is the number of cases in classc. Oftentimes you will see that for 2 classesSB

is defined asS′B = (µ1 − µ2)(µ1 − µ2)T . This is the scatter of class 1 with respect to
the scatter of class 2 and you can show thatSB = N1N2

N S′B , but since it boils down to
multiplying the objective with a constant is makes no difference to the final solution.

Why does this objective make sense. Well, it says that a good solution is one where the
class-means are well separated, measured relative to the (sum of the) variances of the data
assigned to a particular class. This is precisely what we want, because it implies that the
gap between the classes is expected to be big. It is also interesting to observe that since the
total scatter,

ST =
∑

i

(xi − x̄)(xi − x̄)T (6)

is given byST = SW + SB the objective can be rewritten as,

J(w) =
wT ST w
wT SW w

− 1 (7)

and hence can be interpreted as maximizing the total scatter of the data while minimizing
the within scatter of the classes.

An important property to notice about the objectiveJ is that is is invariant w.r.t. rescalings
of the vectorsw → αw. Hence, we can always choosew such that the denominator is
simply wT SW w = 1, since it is a scalar itself. For this reason we can transform the
problem of maximizing J into the following constrained optimization problem,

minw −1
2
wT SBw (8)

s.t. wT SW w = 1 (9)

corresponding to the lagrangian,

LP = −1
2
wT SBw +

1
2
λ(wT SW w − 1) (10)

(the halves are added for convenience). The KKT conditions tell us that the following
equation needs to hold at the solution,

SBw = λSW w ⇒ S−1
W SBw = λw (11)

This almost looks like an eigen-value equation, if the matrixS−1
W SB would have been

symmetric (in fact, it is called a generalized eigen-problem). However, we can apply the
following transformation, using the fact thatSB is symmetric positive definite and can

hence be written asS
1
2
BS

1
2
B , whereS

1
2
B is constructed from its eigenvalue decomposition as

SB = UΛUT → S
1
2
B = UΛ

1
2 UT . Definingv = S

1
2
Bw we get,

S
1
2
BS−1

W S
1
2
Bv = λv (12)

This problem is a regular eigenvalue problem for a symmetric, positive definite matrix

S
1
2
BS−1

W S
1
2
B and for which we can can find solutionλk andvk that would correspond to

solutionswk = S
− 1

2
B vk.



Remains to choose which eigenvalue and eigenvector corresponds to the desired solution.
Plugging the solution back into the objectiveJ , we find,

J(w) =
wT SBw
wT SW w

= λk
wT

k SW wk

wT
k SW wk

= λk (13)

from which it immediately follows that we want the largest eigenvalue to maximize the
objective1.

2 Kernel Fisher LDA

So how do we kernelize this problem? Unlike SVMs it doesn’t seem the dual problem re-
veal the kernelized problem naturally. But inspired by the SVM case we make the following
key assumption,

w =
∑

i

αiΦ(xi) (14)

This is a central recurrent equation that keeps popping up in every kernel machine. It says
that although the feature space is very high (or even infinite) dimensional, with a finite
number of data-cases the final solution,w∗, will not have a component outside the space
spanned by the data-cases. It would not make much sense to do this transformation if the
number of data-cases is larger than the number of dimensions, but this is typically not the
case for kernel-methods. So, we argue that although there are possibly infinite dimensions
available a priori, at mostN are being occupied by the data, and the solutionw must lie
in its span. This is a case of the “representers theorem” that intuitively reasons as follows.

The solutionw is the solution to some eigenvalue equation,S
1
2
BS−1

W S
1
2
Bw = λw, where

bothSB andSW (and hence its inverse) lie in the span of the data-cases. Hence, the part
w⊥ that is perpendicular to this span will be projected to zero and the equation above
puts no constraints on those dimensions. They can be arbitrary and have no impact on the
solution. If we now assume a very general form of regularization on the norm ofw, then
these orthogonal components will be set to zero in the final solution:w⊥ = 0.

In terms ofα the objectiveJ(α) becomes,

J(α) =
αT SΦ

Bα

αT SΦ
W α

(15)

where it is understood that vector notation now applies to a different space, namely the
space spanned by the data-vectors,RN . The scatter matrices in kernel space can expressed
in terms of the kernel only as follows (this requires some algebra to verify),

SΦ
B =

∑
c

[
κcκ

T
c − κκT

]
(16)

SΦ
W = K2 −

∑
c

Ncκcκ
T
c (17)

κc =
1

Nc

∑

i∈c

Kij (18)

κ =
1
N

∑

i

Kij (19)

1If you try to find the dual and maximize that, you’ll get the wrong sign it seems. My best guess
of what goes wrong is that the constraint is not linear and as a result the problem is not convex and
hence we cannot expect the optimal dual solution to be the same as the optimal primal solution.



So, we have managed to express the problem in terms of kernels only which is what we
were after. Note that since the objective in terms ofα has exactly the same form as that in
terms ofw, we can solve it by solving the generalized eigenvalue equation. This scales as
N3 which is certainly expensive for many datasets. More efficient optimization schemes
solving a slightly different problem and based on efficient quadratic programs exist in the
literature.

Projections of new test-points into the solution space can be computed by,

wT Φ(x) =
∑

i

αiK(xi,x) (20)

as usual. In order to classify the test point we still need to divide the space into regions
which belong to one class. The easiest possibility is to pick the cluster with smallest Ma-
halonobis distance:d(x,µΦ

c ) = (xα − µα
c )2/(σα

c )2 whereµα
c andσα

c represent the class
mean and standard deviation in the 1-d projected space respectively. Alternatively, one
could train any classifier in the 1-d subspace.

One very important issue that we did not pay attention to is regularization. Clearly, as it
stands the kernel machine will overfit. To regularize we can add a term to the denominator,

SW → SW + βI (21)

By adding a diagonal term to this matrix makes sure that very small eigenvalues are
bounded away from zero which improves numerical stability in computing the inverse.
If we write the Lagrangian formulation where we maximize a constrained quadratic form
in α, the extra term appears as a penalty proportional to||α||2 which acts as a weight decay
term, favoring smaller values ofα over larger ones. Fortunately, the optimization problem
has exactly the same form in the regularized case.

3 A Constrained Convex Programming Formulation of FDA

We will now give a simplified derivation of an equivalent mathematical program derived
by Mika and co. We first represent the problem in yet another form as,

minw
1
2
wT SW w (22)

s.t. wT SBw = c (23)

where we have switched the role of within and between scatter (and replaced a minus sign
with a plus sign). Now we note that by shifting the coordinatesxi → xi +a we can always
achieve that the overall mean of the data is wherever we like to be. The solution forw does
not depend on it. We also recall that the constraint onSB can be equivalently written as,

wT SBw = c → ||µw
1 − µw

2 ||2 = g (24)

whereµw
c is mean in the projected space. Since bothg andx̄ are free at our disposal, we

can equivalently pickµw
1 andµw

2 and letc andx̄ be determined by that choice. We choose
µw

1 = 1 andµw
2 = −1 or µw

c = yc for convenience.

The objective can be expressed as,

wT SW w =
∑

i:yi=+1

(wT xi − µw
1 )2 +

∑

i:yi=−1

(wT xi − µw
1 )2 (25)

We can replaceµc = yc in the above expression if explicitely add this constraint. Defining
ξi = wT xi − yi we find

wT SW w =
∑

i:yi=+1

(ξ1
i )2 +

∑

i:yi=−1

(ξ2
i )2 =

∑

i

ξ2
i (26)



by definition ofξ. To express the constraintsµw
c = yc c = 1, 2 we note that,

∑

i:yi=+1

ξ1
i =

∑

i:yi=+1

(wT xi − 1) = N(µw
1 − 1). (27)

Hence by constraining
∑

i:yi=c ξc
i = 0 we enforce the constraint. So finally, the program

is,

1
2

∑

i

ξ2
i (28)

s.t. ξi = wT xi − yi (29)∑

i:yi=c

ξc
i = 0; c = 1, 2 (30)

To move to kernel space you simply replacewT xi →
∑

j αjK(xj ,xi) in the definition
of ξ and you add a regularization term onα to the objective. This is typically of the form
||α||2 or αT Kα.

This exercise reveals two important things. Firstly, the end result looks a lot like the pro-
gram for the SVM and SVR case. In some sense we are regressing on the labels. The other
thing is that we can change the norms onξ andα from L2 to L1. Changing the norm onα
will have the effect of making the solution sparse inα.


