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Abstract

In this article we compare 14 distance measures and their modifications between feature vectors with respect to the
recognition performance of the principal component analysis (PCA)-based face recognition method and propose
modified sum square error (SSE)-based distance. Recognition experiments were performed using the database con-
taining photographies of 423 persons. The experiments showed, that the proposed distance measure was among the first
three best measures with respect to different characteristics of the biometric systems. The best recognition results were
achieved using the following distance measures: simplified Mahalanobis, weighted angle-based distance, proposed
modified SSE-based distance, angle-based distance between whitened feature vectors. Using modified SSE-based dis-
tance we need to extract less images in order to achieve 100% cumulative recognition than using any other tested
distance measure. We also showed that using the algorithmic combination of distance measures we can achieve better

recognition results than using the distances separately.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) or Karh-
unen—Loeve transform (KLT)-based face recogni-
tion method was proposed in (Turk and Pentland,
1991). It was studied by computer scientists (Moon
and Phillips, 1998; Yilmaz and Gokmen, 2001;
Navarrete and Ruiz-del-Solar, 2001, 2002) and
psychologists (Abdi et al., 1995; Hancock et al.,
1996), used as a baseline method for comparison
of face recognition methods (Moghaddam and

* Tel./fax: +370-37451577.
E-mail address: vperlib@mmlab.ktu.lt (V. Perlibakas).

Pentland, 1998; Phillips et al., 2000) and imple-
mented in commercial applications (Viisage, 2001).
Using PCA we find a subset of principal directions
(principal components) in a set of training faces.
Then we project faces into this principal compo-
nents space and get feature vectors. Comparison is
performed by calculating the distance between
these vectors. Usually comparison of face images is
performed by calculating the Euclidean distance
between these feature vectors. Sometimes the angle-
based distance is used. Mathematical formulation
of this recognition method is presented in the next
section. Although there exist many other distance
measures, we were able to find only few attempts to
create, compare and use other distance measures
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(Navarrete and Ruiz-del-Solar, 2002; Phillips et al.,
1997, 2000) in order to achieve better recognition
results.

In this article we compare recognition per-
formance of 14 distance measures including
Euclidean, angle-based, Mahalanobis and their
modifications. Also we propose modified sum
square error-based distance and modified Man-
hattan distance measures. The experiments showed,
that the proposed distance measures were among
the best distance measures with respect to different
characteristics of the biometric systems. For com-
parison we used the following characteristics of the
biometric systems: equal error rate (EER), first one
recognition rate, area above cumulative match
characteristic (CMC), area below receiver operating
characteristic (ROC), percent of images that we
need to extract in order to achieve 100% cumulative
recognition.

2. PCA-based face recognition

In this section we will describe Karhunen—
Loeve transform (KLT)-based face recognition
method, that is often called principal component
analysis (PCA) or eigenfaces. We will present only
main formulas of this method, whose details could
be found in (Grof3, 1994).

Let X; be N-element one-dimensional image and
suppose that we have r suchimages (j =1,...,r). A
one-dimensional image-column X from the two-
dimensional image (face photography) is formed
by scanning all the elements of the two-dimensional
image row by row and writing them to the column-
vector. Then the mean vector, centered data vec-
tors and covariance matrix are calculated:

1 r
=1
di=X;—m, (2)
1 r
C=- > ddj, (3)
=1
here X = (xl,xz,...,xN)T, m= (ml,mg,...,mN)T,

d=(d,d,... dy)".

In order to perform KLT, it is necessary to find
eigenvectors u; and eigenvalues /J; of the covari-
ance matrix C(Cu; = ;). Because the dimen-
sionality (N?) of the matrix C is large even for a
small images, and computation of eigenvectors
using traditional methods is complicated, dimen-
sionality of matrix C is reduced using the
decomposition described in (Kirby and Sirovich,
1990). Found eigenvectors u = (uy,u, . . ., uN)T are
normed and sorted in decreasing order according
to the corresponding eigenvalues. Then these vec-
tors are transposed and arranged to form the row-
vectors of the transformation matrix 7. Now any
data X can be projected into the eigenspace using
the following formula:

Y= T(X—m), (4)
here X= (xl,xz,...,xN)T,
0,...,0)".

Also we can perform ‘“‘whitening” (Bishop,
1995) transform:

Y = (yl’yZa“'vyra

Y=A4"T(X —m), (5)

here A~/2 = diag(«/l/il, NIV «/l/ir).

Whitening is a linear rescaling that makes the
transformed input data to have zero mean and a
covariance matrix given by the identity matrix.
For projection into eigenspace we can use not all
found eigenvectors, but only a few of them, cor-
responding to the largest eigenvalues. We can
manually select desired number of eigenvectors or
use the method described in (Swets et al., 1998).

When the image (human face photography) is
projected into the eigenspace we get its eigenfeature
vector Z = (z1,22, . .. ,zn)T =Ly, yn)T, here
n is the number of features. When we have feature
vector Z of each face, identification can be per-
formed. After projecting a new unknown face
image into the eigenspace we get its feature vec-
tor Z,, and calculate the Euclidean distances
between unknown face and each known face
& = ||Znew — Zi]| and say that the face with pro-
jection Z,., belongs to a person s = argmin,[g].
For rejection of unknown faces a threshold t is
chosen and it is said that the face with projec-
tion Z ., 1s unknown if ¢ > 7. Distance between
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projections Z is usually measured using the Euclid-
ean distance, some authors measured the distance
between the feature vectors in the eigenspace using
the angle-based measure (Phillips et al., 1997), but
other distance measures also could be used.

3. Distance measures

Let X, Y be eigenfeature vectors of length ».
Then we can calculate the following distances be-
tween these feature vectors (Grudin, 1997; Yam-
bor and Draper, 2002; Phillips et al., 1999, 2000;
Cekanavicius and Murauskas, 2002):

(1) Minkowski distance (L, metrics)

§ 1/p
dX,Y) = Y) = (Z |x; —y,-P> ,
=1
(6)
here p > 0;
(2) Manhattan distance (L; metrics, city block dis-
tance)

d(X,Y) =L, (X,Y)

:Z|xi_yi‘; (7)
i=1

(3) Euclidean distance (L, metrics)

d(X,Y) = L»(X,Y) = [|X - Y|

=/ - ®)

(4) Squared euclidean distance (sum square error,
SSE), mean square error (MSE)
dX,Y) = Lf)zz(X7 Y) =SSE

n

=X -YIP=) (-0 ©)

i=1

1
dX,Y) = ;Lﬁzz(x, Y) = MSE

1< )
—;;(xi—)ﬁ) ) (10)
(5) Angle-based distance
d(X,Y)=—cos(X,Y), (11)

0
> i
f— i=1 .
- n T E)
2 2
X7
V z :,:1 i =1 i

(6) Correlation coefficient-based distance
dX,Y)=-r(X,Y), (12)

cos(X,Y)

rX,Y)
R XV = D Xi D Vi :
YO = (SL0)) (1507 - (5]

(7) Mahalanobis distance and Mahalanobis dis-
tance between normed vectors

n

- Zzixi)% (13)

i=1

d(X,Y) =

d(X,Y) =

1 n
ZiXiYis
\/Zz 1 l\/Zl lyl IZ

(14)

here z; = /5 + —, o = 0.25, J;—corresponding

eigenvalues, or simplified Mahalanobis dis-
tance versions with z; = /A;/(A + o?) ~
V1/4;

(8) Weighted Manhattan distance

n

Zzi|xi_yi|azi: 1//1:'3 (15)

i=1

(9) Weighted SSE distance

d(X,Y) =

n

dX,Y) = zla—w)" z=1/k
=1
(16)
(10) Weighted angle-based distance
d(X'7 Y) — %i:]zz[xi_)’: -, l/i,;
Do Xi D iy Vi
(17)
(11) Chi square distance
n 2
dX,¥) = =3 ) 18
x¥) =72 =3 St (18)
(12) Canberra distance
xi =yl
dX,Y) 19
Z FEaTA ()
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(13) Modified Manhattan distance

> i =i
d(X,Y) = S (20)
> bl 20 il
(14) Modified SSE-based distance
n 2
ax,y) = S ) @)
Zz 1% i= lyz
(15) Weighted modified Manhattan distance
> zibi — il -
dX.Y) =5 = za=V1/k;
SR YT /
(22)

(16) Weighted modified SSE-based distance

40X, Y>=§zx5—zf13 a= V1A

(23)

If the feature vectors X are stored in the data-
base, some of the components like > 7 x7,
ny o x% (Z:':Ix,-)z, " lxi| of the described
distances could be calculated in advance and
stored in the database in order to speed-up com-
parisons and search in the database. In some cases
instead of using eigenvalues /; in the distance
measures, we can include them in the transfor-
mation formula. For example instead of using
weighted Manhattan distance (15) we can use
whitening transform (5) and simple Manhattan

distance (7):

Z} l/2|x1 yz

= Z ’;L;l/le' - i;l/zy,"
i=1

= Z ‘Ui - Ui|7
i=1

here u; = )ui’l/zx,», v = ijl/zy,«.

That is in some cases instead of using weighted
distances we can calculate weighted vectors in
advance and then use plain (unweighted) dis-
tances. But it must be noted that, although men-

dWe1ghtedManhattan X Y

tioned weighted distances perform some data
scaling along principal directions, weighting is not
necessarily related with whitening because of dif-
ferent scaling factors. Also it must be noted that
some of the distances (e.g. (11) and (12)) could be
shifted in order to have positive distance values
and scaled in order to have values in the interval
[0, 1], but these normalizations increase computa-
tion time. So if we do not necessary need nor-
malized values, we can calculate and perform
faster search with unnormalized values. When the
search is done and we present some of the best
results to the user (usually only a small part of the
database), then we can normalize the displayed
results.

Now we will compare some of the mentioned
distance measures using the PCA-based face rec-
ognition method.

4. Experiments and results

For experiments we used images from the AR
(AR, 1998; Martinez and Benavente, 1998), Bern
(1995), BiolD (2001), Yale (1997), Manchester
(1998), MIT (MIT, 1989; Turk and Pentland,
1991), ORL (ORL, 1992; Samaria and Harter,
1994), Umist (Umist, 1997; Graham and Allinson,
1998), FERET (Phillips et al., 1997) databases.
From these databases we collected the database
containing photographies of 423 persons (two
images per person—one for learning and one for
testing). In order to avoid recognition errors re-
lated to incorrectly detected faces we manually
selected the centers of eyes and lips. Then we rot-
ated the images in order to make the line con-
necting eye centers horizontal, resized the images
and made the distances between the centers of the
eyes equal to 26 pixels, calculated the center of the
face using the centers of eyes and lips, cropped
64 x 64 central part of the face, performed histo-
gram equalization on the cropped part of the
image. It must be noted, that in some cases his-
togram equalization reduces recognition perfor-
mance, but usually it is used in order to normalize
illumination. Using the cropped templates we
performed PCA-based face recognition. In all the
experiments we use the same templates and change
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only the distance measures between eigenfeature
vectors and the number (percent) of used features.
For comparison we use cumulative match char-
acteristic (CMC) and receiver operating charac-
teristic (ROC)-based measures, described in
(Bromba, 2003).

715

The results of experiments are summarized in
Tables 1-5. In these tables we can see how different
distance measures affect recognition accuracy. For
measuring overall goodness of the distance mea-
sure with respect to recognition accuracy, we use
the area above cumulative match characteristic

Table 1
Recognition using 10% of features (42)
Distance measure Rank (%) of images needed to extract in order to CMCA, Firstl EER, % ROCA,
achieve some cumulative recognition percent 0-10* recogni- 0-10*
80 85 90 95 100 tion, %
Euclidean; SSE 0.2 0.5 2.6 9.5 85.8 222.16 81.56 7.09 260.84
Angle; Mahalanobis 0.2 0.5 1.9 5.9 47.0 117.03 81.56 6.86 139.02;5
normed
Correlation 0.2 0.5 1.4 6.6 53.4 125.02 80.61 6.62 144.80
SSE modified 0.5 0.5 1.2 4.7 24.6, 95.99 79.91 7.09 162.73
Manhattan 0.2 0.5 24 6.4 77.3 128.12 82.27 7.09 218.17
Manhattan modified 0.2 0.5 0.9 2.8 31.44 91.075 82.27 5.44; 139.70
Mahalanobis 0.5 0.9 1.7 5.2 46.8 115.60 72.81 6.86 200.56
Mahalanobis simplified 0.2 0.5 0.7 1.9 25.3, 66.17, 82.98; 3.78, 71.43,4
Angle weighted 0.2 0.5 0.9 24 31.05 68.32, 84.63;5 4.49, 57.65,
Manhattan weighted 0.2 0.7 2.1 6.9 65.5 149.28 81.09 9.22 307.51
Manhattan weighted 0.2 0.5 0.7 2.6 62.4 136.20 81.56 591 204.50
modified
SSE weighted 0.2 0.5 1.9 5.4 68.8 123.32 83.224 7.09 220.79
SSE weighted modified 0.2 0.5 0.9 2.6 50.4 92.19 82.27 6.15 169.19
Angle whitened 0.2 0.2 0.7 1.9 35.55 77.414 85.34, 3.55; 58.66,
Correlation whitened 0.2 0.2 0.7 2.1 36.4 77.044 85.11, 3.55, 59.53;
Table 2
Recognition using 20% of features (85)
Distance measure Rank (%) of images needed to extract in order to CMCA, Firstl EER, % ROCA,
achieve some cumulative recognition percent 0-10* recogni- 0-10*
80 85 90 95 100 tion, %
Euclidean; SSE 0.2 0.5 24 7.6 86.1 210.61 83.22 7.33 254.60
Angle; Mahalanobis 0.2 0.5 1.4 5.2 49.4, 106.47 83.45 5915 125.525
normed
Correlation 0.2 0.5 1.2 5.4 50.8 109.07 83.22 591 127.68
SSE modified 0.2 0.5 1.2 4.3 22.2; 86.824 81.80 6.86 147.15
Manhattan 0.2 0.5 1.7 4.5 73.3 122.20 83.22 7.57 251.09
Manhattan modified 0.2 0.2 0.5 2.4 51.5 92.44 85.82;5 6.15 144.63
Mahalanobis 0.5 0.5 1.2 4.7 51.3 102.55 78.25 6.38 166.16
Mabhalanobis simplified 0.2 0.2 0.5 1.2 31.7, 56.98, 86.52, 3.31, 50.18,
Angle weighted 0.2 0.2 0.5 1.7 32.9, 58.71, 87.005 3.784 46.44,
Manhattan weighted 0.2 0.5 1.4 7.3 92.4 200.19 82.98 10.64 442.58
Manhattan weighted 0.2 0.2 0.7 33 72.8 149.92 85.11 7.09 210.48
modified
SSE weighted 0.2 0.2 1.2 4.3 68.6 130.19 85.11 7.33 270.42
SSE weighted modified 0.2 0.5 0.9 1.9 40.0 97.11 84.16 6.62 216.36
Angle whitened 0.2 0.2 0.5 1.2 51.1s 85.03;5 88.42, 3.07, 68.52;
Correlation whitened 0.2 0.2 0.5 1.2 51.3 87.605 88.89,; 3.31; 72.70,
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Table 3
Recognition using 30% of features (127)
Distance measure Rank (%) of images needed to extract in order to CMCA, Firstl EER, % ROCA,
achieve some cumulative recognition percent 0-10* recogni- 0-10*
80 85 90 95 100 tion, %
Euclidean; SSE 0.2 0.5 2.1 8.5 86.1 215.20 83.22 7.33 261.63
Angle; Mahalanobis 0.2 0.2 14 4.3 46.8, 103.42 85.11 5915 123.065
normed
Correlation 0.2 0.5 1.2 4.7 49.2 105.01 84.87 591 124.69
SSE modified 0.2 0.5 0.9 3.5 21.3; 84.11; 83.45 7.09 144.36
Manhattan 0.2 0.5 1.2 5.0 78.7 155.20 83.92 8.51 318.38
Manhattan modified 0.2 0.2 0.5 2.1 52.2 103.78 87.23; 6.38 170.44
Mahalanobis 0.2 0.5 0.9 4.5 48.55 98.98; 80.61 591 155.97
Mabhalanobis simplified 0.2 0.2 0.5 0.9 23.9, 54.57, 87.944 3.07, 45.19,
Angle weighted 0.2 0.2 0.5 1.4 26.0; 57.15, 88.42, 3.31, 44.08,
Manhattan weighted 0.2 0.5 43 20.1 92.7 316.44 82.98 13.48 628.08
Manhattan weighted 0.2 0.5 0.7 7.8 76.4 208.66 84.16 8.51 301.52
modified
SSE weighted 0.2 0.2 1.2 6.6 78.5 166.27 85.34 8.75 343.28
SSE weighted modified 0.2 0.5 1.2 2.6 54.6 118.65 82.98 7.09 261.83
Angle whitened 0.2 0.2 0.5 2.1 49.9 98.92, 88.18; 3.78, 84.84,
Correlation whitened 0.2 0.2 0.5 2.4 52.0 101.52 88.89, 3.78, 87.78,
Table 4
Recognition using 60% of features (254)
Distance measure Rank (%) of images needed to extract in order to CMCA, Firstl EER, % ROCA,
achieve some cumulative recognition percent 0-10* recogni- 0-10*
80 85 90 95 100 tion, %
Euclidean; SSE 0.2 0.5 2.1 8.0 86.3 216.78 83.45 7.33 265.36
Angle; Mahalanobis 0.2 0.2 1.2 4.0 46.64 100.46,4 85.58 5.675 119.72,
normed
Correlation 0.2 0.2 1.4 4.0 48.2 101.495 85.82 5.91 120.62
SSE modified 0.2 0.5 1.2 33 20.8; 81.123 83.22 6.86 140.54
Manhattan 0.2 0.5 1.4 7.3 81.6 218.97 83.92 9.46 388.59
Manhattan modified 0.2 0.2 0.5 2.1 63.8 113.34 86.765 6.62 192.74
Mahalanobis 0.2 0.5 0.9 43 48.05 95.40 81.56 6.15 145.42
Mabhalanobis simplified 0.2 0.2 0.5 0.9 21.3, 49.01, 88.65, 2.84, 36.04,
Angle weighted 0.2 0.2 0.5 0.9 23.4, 52.14, 89.605 3.07, 38.76,
Manhattan weighted 0.5 2.1 15.1 48.0 98.3 589.51 79.20 17.26 951.26
Manhattan weighted 0.5 0.9 5.2 18.0 92.4 298.53 79.43 11.58 196.63
modified
SSE weighted 0.2 0.5 1.4 8.5 83.5 237.58 84.40 10.17 437.54
SSE weighted modified 0.2 0.7 1.7 6.1 58.4 160.40 82.51 8.75 369.03
Angle whitened 0.2 0.2 0.5 1.9 68.8 126.56 89.83, 4.73; 119.734
Correlation whitened 0.2 0.2 0.5 1.9 68.6 126.00 89.83, 4.73, 120.04;

(CMCA). Smaller CMCA means better overall
recognition accuracy. Also we present how many
images (in percents) must be extracted from the
database in order to achieve some cumulative
recognition rate (80-100%). Smaller values mean

that we need to extract fewer images in order to
achieve some cumulative recognition rate. Last
columns of the table are equal error rate (EER)
and the area below receiver operating character-
istic (ROCA). Smaller values mean better results.
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Table 5

Recognition using 90% of features (381)
Distance measure Rank (%) of images needed to extract in order to CMCA, Firstl EER, % ROCA,

achieve some cumulative recognition percent 0-10* recogni- 0-10*
80 85 90 95 100 tion, %
Euclidean; SSE 0.2 0.5 2.1 7.6 87.2 217.54 83.69 7.33 266.20
Angle; Mahalanobis 0.2 0.2 0.9 3.8 46.14 99.42;  85.34 591, 118.665
normed
Correlation 0.2 0.2 1.2 4.0 46.35 100.12 85.11 591 119.24,
SSE modified 0.2 0.5 0.9 33 20.8; 79.70; 83.45 6.86 140.41
Manhattan 0.2 0.5 2.6 12.1 86.1 270.22 83.92 9.46 423.03
Manhattan modified 0.2 0.2 0.5 2.1 77.8 119.80 88.42; 6.38 182.42
Mabhalanobis 0.2 0.5 0.9 43 47.0 94.20,  81.80 591 142.75
Mahalanobis simplified 0.2 0.2 0.5 0.9 18.4, 44.18,  89.83, 2.84, 30.49,
Angle weighted 0.2 0.2 0.2 0.7 16.3, 47.78,  90.07, 3.07, 33.82,
Manhattan weighted 8.7 23.9 49.4 77.1 99.5 107920  66.43 18.44 1199.75
Manhattan weighted 1.7 5.2 14.9 37.1 94.8 474.71 72.58 15.84 828.84
modified

SSE weighted 0.2 0.5 2.6 16.5 86.8 301.63 83.92 11.35 497.21
SSE weighted modified 0.5 1.4 3.1 14.7 74.9 227.72 78.01 10.64 486.00
Angle whitened 0.2 0.2 0.7 2.8 89.1 168.75 86.52, 5.204 169.875
Correlation whitened 0.2 0.2 0.7 3.5 87.9 172.78 86.525 5.205 172.27

Also we present recognition rate that is achieved if 100% cumulative rec.,

only the first one (most similar) image from the A ,/ rank = 40%

database is extracted. Larger values mean better 100

result. Graphical representation of the used char- 90 —

acteristics is shown in Figs. 1 and 2. %0 —
Also we performed some experiments using :

Minkowski distance (6) in order to find out how % 70 -f < First I recognition = 70%

parameter p influences recognition performance. 5‘;; 60 | :

As we can see from Fig. 3, the best recognition s .|

performance is achieved using p € [1,2]. = 5
Using the results of experiments we can sort the §> 40

distance measures with respect to the recognition é 30 -

performance using the measured biometric char- i

acteristics: overall recognition accuracy (area )

above cumulative match characteristic—CMCA), 10 — ; :

first one recognition rate (Firstl), percent of im- — [ _ I >

ages needed to extract in order to achieve 100% 10 20 30 40 50 60 70 80 90 100

cumulative recognition (Cum100), equal error rate
(EER), area below receiver operating characteris-
tic (ROCA). The results are presented in Table 6.
Also the best results are denoted using sub-
script numbers in Tables 1-5. The relationship
between the number of used features and recog-
nition performance is presented in Fig. 4. The best
recognition results were achieved using the fol-
lowing distance measures: simplified Mahalanobis,
weighted angle-based distance, proposed modified

Rank, %

Fig. 1. Cumulative match characteristic.

SSE-based distance, angle-based distance between
whitened vectors. The proposed modified SSE-
based distance measure is among the first three
best measures with respect to different character-
istics of the biometric systems. Using the proposed
modified SSE-based distance we need to extract
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\{«— EER =20% ( FAR =FRR )’

T T T T
60 70 80 90 100

T T 1
10 20 30 40 50
FAR., %

Fig. 2. Receiver operating characteristic.

fewer images (20.8-24.6%) in order to achieve
100% cumulative recognition than using all other
tested distance measures if 10-60% of features are
used. If we use larger number of features (90%),
better 100% cumulative recognition results are
achieved using weighted angle (16.3%) or simpli-
fied Mahalanobis distance (18.4%). The best re-
sults with respect to CMCA are achieved using
simplified Mahalanobis distance (44.18-66.17).

300}

CMCA, ROCA, 0-10000

N
1331
=]

N
=1
S

The largest first one recognition rate is achieved
using angle between whitened vectors (85.34%) if
we use 10% of features, correlation between whit-
ened vectors (88.89-89.83%) if we use 20-60% of
features, weighted angle-based distance (90.07%) if
we use 90% of features. The best results with re-
spect to EER are achieved using angle-based dis-
tance between whitened vectors (3.07-3.55%) if
we use 10-20% of features and simplified Maha-
lanobis distance (2.84-3.07%) if we use 30-90% of
features. The best results with respect to ROCA
are achieved using weighted angle-based distance
(44.08-57.65%) if we use 10-30% of features and
using simplified Mahalanobis distance (30.49-
36.04%) if we use 60-90% of features.

Also we tested if the differences between dis-
tance measures with respect to Cum100, CMCA,
Firstl, EER, ROCA are statistically significant.
We used bootstrap resampling with replacement
(Efron and Tibshirani, 1993), analysis of variance
(ANOVA) and Tukey’s honest significant differ-
ence (HSD) post hoc test. We used 30% of features
(127), the number of bootstrap samples N = 2000,
significance level « = 0.001. Some descriptive sta-
tistics are presented in Table 7. In Table 8 we
present Tukey’s HSD results. Asterisks indicate
significantly different means at an alpha level
of o =0.001. In these tables distance IDs are
as follows: 1—Mahalanobis (simplified), 2—angle

100

90r

80

ES
o 70}
w
w
~ 60f
B
L sof
S B Cumulative 100
- L —»—  First1
o 40 —— EER
2
2 30t
£
-]
O 201

10-\

0 1 2 3 4 5 6 7 8 9 10

(b) :

Fig. 3. Recognition performance using Minkowski distance. (a) CMCA and ROCA, (b) Cumulative 100% and Firstl recognition,

EER.
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EER

ROCA

Table 6
Sorted distance measures with respect to recognition performance
Feat. CMCA Firstl Cum100
Num.
10% Mahalanobis Angle (whitened) SSE (modified)
(simplified)
(42) Angle (weighted) Correlation Mahalanobis
(whitened) (simplified)
Correlation Angle (weighted) Angle (weighted)
(whitened)
20% Mahalanobis Correlation SSE (modified)
(simplified) (whitened)
(85) Angle (weighted) Angle (whitened) Mahalanobis
(simplified)
Angle (whitened) Angle (weighted) Angle (weighted)
30% Mabhalanobis Correlation SSE (modified)
(simplified) (whitened)
(127) Angle (weighted) Angle (weighted) Mahalanobis
(simplified)
SSE (modified) Angle (whitened) Angle (weighted)
60% Mahalanobis Correlation SSE (modified)
(simplified) (whitened)
(254) Angle (weighted) Angle (whitened) Mabhalanobis
(simplified)
SSE (modified) Angle (weighted) Angle (weighted)
90% Mahalanobis Angle (weighted) Angle (weighted)
(simplified)
(381) Angle (weighted) Mabhalanobis Mabhalanobis
(simplified) (simplified)
SSE (modified) Manhattan (modified)  SSE (modified)

Angle (whitened)

Correlation
(whitened)
Mahalanobis
(simplified)

Angle (whitened)

Mahalanobis
(simplified)
Correlation
(whitened)

Mahalanobis
(simplified)
Angle (weighted)

Angle (whitened)

Mahalanobis
(simplified)
Angle (weighted)

Angle (whitened)

Mahalanobis
(simplified)
Angle (weighted)

Angle

Angle (weighted)

Angle (whitened)

Correlation (whitened)

Angle (weighted)

Mahalanobis (simplified)

Angle (whitened)

Angle (weighted)

Mahalanobis (simplified)

Angle (whitened)

Mabhalanobis (simplified)

Angle (weighted)

Angle

Mahalanobis (simplified)

Angle (weighted)

Angle

(weighted), 3—SSE (modified), 4—angle (whit-
ened), S5—correlation (whitened). As we can see
from the Table 8 the mean differences are not
significant at the o = 0.001 level between the fol-
lowing distance measures: Mahalanobis (simpli-
fied) and SSE (modified) with respect to Cum100,
Mahalanobis (simplified) and angle (weighted)
with respect to ROCA, angle (whitened) and
correlation (whitened) with respect to EER and
ROCA, Mahalanobis (simplified) and angle
(whitened) with respect to Firstl, angle (weighted)
and angle (whitened) with respect to Firstl. All
other differences are statistically significant. We
also used more post hoc tests available in SPSS
12.0 package (SPSS, 2003) and almost all the tests
showed the same significant (and insignificant)
differences. The only exception was Fisher’s least

significant difference (LSD) test. This test showed
that the difference between Mahalanobis (simpli-
fied) and angle (whitened) with respect to Firstl is
statistically significant.

Now we will compare our results with the re-
sults of other researchers. The experiments de-
scribed in (Phillips et al., 1997, 2000; Navarrete
and Ruiz-del-Solar, 2002) showed that recognition
performance using PCA-based recognition method
with angle-based distance measure is better than
using the Euclidean distance, using the Euclid-
ean distance we can achieve larger recognition
rates than using Manhattan distance, Maha-
lanobis distance performs better than other
mentioned distances. The experiments with Man-
hattan, Euclidean, angle-based, Mahalanobis dis-
tances and different combinations described in
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Fig. 4. Recognition performance using different number of features. (a) Cumulative 100% recognition, (b) Firstl recognition,
(c) CMCA, (d) ROCA and (e) EER.
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Table 7

Descriptive statistics
Distance ID Mean Std. Dev. Std. Err. 95% Confidence Interval Min Max

Lower bound Upper bound

CMCA
1 54.4720 9.53966 0.21331 54.0537 54.8904 29.34 90.18
2 56.9940 10.33195 0.23103 56.5409 57.4471 30.04 96.77
3 84.0432 12.61411 0.28206 83.4900 84.5963 48.06 131.64
4 99.0460 21.02596 0.47015 98.1240 99.9680 39.82 174.45
5 101.7862 21.68936 0.48499 100.8350 102.7373 43.76 181.75
Firstl
1 89.6742 1.62365 0.03631 89.6030 89.7454 83.69 94.80
2 89.9774 1.59608 0.03569 89.9074 90.0474 84.16 94.56
3 85.1074 1.82273 0.04076 85.0275 85.1874 78.96 91.02
4 89.8616 1.60529 0.03590 89.7912 89.9320 83.92 94.56
5 90.3178 1.55792 0.03484 90.2495 90.3862 84.16 95.04
Cuml00
1 21.6412 3.72947 0.08339 21.4776 21.8047 4.50 30.30
2 24.1841 4.39684 0.09832 23.9913 24.3770 4.50 33.80
3 21.4187 2.00773 0.04489 21.3307 21.5067 11.10 27.90
4 43.6803 8.88014 0.19857 43.2909 44.0698 19.10 60.50
5 45.5153 9.21713 0.20610 45.1111 459194 19.10 62.20
EER
1 3.0896 0.87283 0.01952 3.0513 3.1278 0.97 6.80
2 3.3346 0.76055 0.01701 3.3012 3.3679 1.36 8.78
3 6.7445 1.29171 0.02888 6.6879 6.8012 3.35 15.17
4 3.7646 1.15688 0.02587 3.7139 3.8154 1.05 8.40
5 3.7791 1.18242 0.02644 3.7273 3.8310 1.17 8.85
ROCA
1 47.0447 19.52074 0.43650 46.1887 47.9007 11.69 170.44
2 449181 20.03766 0.44806 44.0394 45.7968 9.32 182.29
3 147.7803 43.57351 0.97433 145.8695 149.6911 56.38 451.57
4 85.7599 36.75803 0.82193 84.1479 87.3718 20.31 279.02
5 88.8438 37.94469 0.84847 87.1798 90.5078 19.53 288.80

(Yambor and Draper, 2002) showed that simpli-
fied Mahalanobis distance performs significantly
better than L1, L2 or angle-based distance if using
more than 60% of eigenfeatures. Our results also
showed that angle-based distance performs better
than the Euclidean distance. Simplified Mahalan-
obis distance performs better than the Euclidean,
Manhattan and angle-based distance measures
with respect to CMCA and EER. But the results
also showed, that weighted angle-based distance
performs better than simplified Mahalanobis dis-
tance with respect to ROCA and first one recog-
nition rate. Also the experiments showed, that the
proposed modified SSE-based distance performs

better than simplified Mahalanobis distance and
weighted angle-based distance with respect to
100% cumulative recognition. We also tested Chi
square and Canberra distances, but the results
were much worse than using the Euclidean or
other tested distance measure. The results using
Euclidean or SSE-based distance between whit-
ened feature vectors were worse than the results
using angle-based distance between whitened vec-
tors.

In order to achieve larger recognition per-
formance we can try to combine different dis-
tance measures as it was done in (Yambor and
Draper, 2002). Also we can perform algorithmic
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Table 8
Mean differences and significance values
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Distance ID 1  Distance ID 2 CMCA Firstl Cum100 EER ROCA
1 2 —2.52199* -0.30319* —2.54300* —0.24499* 2.12662
0.000006 0.000000 0.000000 0.000000 0.250291
1 3 —-29.57116* 4.56678* 0.22245 -3.65495* —100.73560*
0.000000 0.000000 0.801765 0.000000 0.000000
1 4 —44.57398* —-0.18735 —22.03920* —-0.67508* -38.71515*
0.000000 0.002906 0.000000 0.000000 0.000000
1 5 —47.31414* —0.64362* —23.87410* —0.68954* —41.79910*
0.000000 0.000000 0.000000 0.000000 0.000000
2 3 -27.04916* 4.86998* 2.76545* —3.40997* —102.86222*
0.000000 0.000000 0.000000 0.000000 0.000000
2 4 —42.05199* 0.11584 —19.49620* —-0.43009* —40.84177*
0.000000 0.169208 0.000000 0.000000 0.000000
2 5 —44.79215* —0.34043* -21.33110* —0.44455* —43.92572*
0.000000 0.000000 0.000000 0.000000 0.000000
3 4 —15.00282* —4.75414* —22.26165* 2.97988* 62.02044*
0.000000 0.000000 0.000000 0.000000 0.000000
3 5 —17.74299¢ —5.21040* —24.09655* 2.96542* 58.93650*
0.000000 0.000000 0.000000 0.000000 0.000000
4 5 -2.74017* —0.45626* —1.83490* —-0.01446 —3.08394
0.000001 0.000000 0.000000 0.993103 0.026595
Table 9
Recognition using 30% of features (127) and combined distance measures
Distance measure Rank (%) of images needed to extract in order to CMCA, Firstl EER, % ROCA,
achieve some cumulative recognition percent 0-10* recogni- 0-10*
80 85 90 95 100 tion, %
SSE (mod.) 0.2 0.5 0.9 3.5 21.3 84.11 83.45 7.09 144.36
Mahalanobis (simplified) 0.2 0.2 0.5 0.9 239 54.57 87.94 3.07 45.19
Angle (weighted) 0.2 0.2 0.5 1.4 26.0 57.15 88.42 3.31 44.08
SSE (mod.) + Mahalanobis 0.2 0.2 0.5 0.9 16.8 49.54 87.94 3.07 38.97
(simplified)
SSE (mod.) + angle 0.2 0.2 0.5 1.4 15.8 50.55 88.42 3.31 36.63
(weighted)
Mahalanobis 0.2 0.2 0.5 1.4 24.8 56.81 88.42 3.31 41.79
(simplified) + angle
(weighted)

combination (Perlibakas, 2002) by sorting all
images using one distance measure (e.g. modified
SSE-based distance) and then resorting some part
(e.g. 25%) of images with the smallest distances
using another distance measure, for example sim-
plified Mahalanobis or weighted angle-based dis-
tance. The results of such algorithmic combination
are presented in Table 9. As we can see from
the table, using such combination we can achieve
better performance with respect to CMCA, ROCA
and 100% cumulative recognition. But it must be

noted that in order to achieve better results using
combined method than using not combined meth-
ods we must choose an appropriate percent of
resorting.

5. Conclusions
In this publication we compared 14 distance

measures and their modifications for principal
component analysis-based face recognition method
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and proposed modified sum squared error (SSE)-
based distance measure. Recognition experiments
were performed using the database containing
photographies of 423 persons. The experiments
showed, that the proposed distance measure is
among the first three best measures with respect to
different characteristics of the biometric systems.
The best recognition results were achieved using
the following distance measures: simplified Ma-
halanobis, weighted angle-based distance, pro-
posed modified SSE-based distance, angle-based
distance between whitened feature vectors. Using
the proposed modified SSE-based distance we
need to extract less images in order to achieve
100% cumulative recognition than using any other
tested distance measure. We also showed that
using the algorithmic combination of distance
measures we can achieve better recognition results
than using the distances separately.
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