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The Common Vector Approach and its Relation to
Principal Component Analysis

M. Bilginer Gllmez@lu, Vakf Dzhafarov, and Atalay Barkan&ember, IEEE

Abstract—The main point of the paper is to show the close re- common vector approach (CVA) can be used in isolated word
lation between the nonzero principal components and the differ- recognition.

ence subspace together with the complementary close relation be- In this section, short reviews of the previous work which

tween the zero principal components and the common vector. A . lude th tati f the diff b d th
common vector representing each word-class is obtained from the include the computation of thé difrerénce subspace an e

eigenvectors of the covariance matrix of its own word-class; that common vector [1] and, also a short review of the principal
is, the common vector is in the direction of a linear combination component analysis (PCA) and its application are given. In the
of the eigenvectors corresponding to the zero eigenvalues of the co-second section, it is shown that the common vector satisfies
variance matrix. The methods that use the nonzero principal com- e gjgenvalue-eigenvector equation of the covariance matrix
ponents for recognition purposes suggest the elimination of all the ding to th . | It is al h that
features that are in the direction of the eigenvectors corresponding corresponding 1o the zero elge_nva ues. It Is also shown tha
to the smallest eigenvalues (including the zero eigenvalues) of thethe common vector can be obtained from the feature vector of
covariance matrix whereas the common vector approach suggestsa certain word-class by subtracting all of its components that
the elimination of all the features that are in the direction of the  gre in the directions of the eigenvectors corresponding to the
eigenvectors corresponding to the largest, all nonzero eigenvalues,yn-earg eigenvalues of the covariance matrix. The comparison
of the covariance matrix. . .
of the CVA and the SELFIC (SELf-Featuring Information
Index Terms—Common vector approach, speech recognition, Comparison) which is the subspace method that uses the PCA
subspace methods. is provided with an example in two-dimensional (2-D) feature
space in the third section. In the fourth section, the experimental
|. INTRODUCTION studies for the TI-digit database are given. The conclusion part
. L . _gives the relation between the nonzero principal components
A ;/OICE signal (Izlontaltr;]s Inter- t‘?m? mtr_a—speakter f?' and the difference subspace together with the relation between
erences as well as the acoustical environment efiegls, ;o principal components and the common vector. This

and the phase or temporal d|ﬁ9rences. A method has b t also emphasizes the differences between the results of the
presented to subtract all the differences among the vari ELFIC method and of the CVA

utterances of isolated words pronounced by different speakers
in our previous work [1]. The difference vectors for each pifference Subspace
word belonging to a word-class in the training set constitute )
a unique difference subspace [1]. After all the differences forThe _fe_ature vectors_ for one of the_ word-classes in
each word belonging to a certain word-class in the trainir{Be training set are given as Imear!y independent v_ectors
set are subtracted and eliminated, only one vector containitg 22 -« s @m: where eachy; € R" (i = 1,2,...,m)is

the invariant features for each word-class remains, and We* 1 column vgc_tor af‘d” < n. This @-d|mgn3|onql feature
called this vector the “common vector” [1], [2]. Each commoriPace can be divided into am(- 1) Q|men_3|onal difference
vector, which is unique [1] for each of the words in the trainin upspaceB and an (lf m + 1) d|men5|onal orthogonal
set, represents the common properties of the correspon fierence subspacB- so that the direct sum of these two
word-class. However, in the test set, when all the differenc¥~>Paces would_cover the wholg featu_re space.

in the difference subspace are taken away, the leftover vectorgne way 1o define thgn@ — 1) dimensional difference sub-
are not unique, and we call those the “remaining vectors.” TﬁgaceB is to take the differences between the feature vectors,
experimental studies have shown that the remaining vector
usually closer to the common vector of its own word-class than
to the common vectors of other word-classes; therefore, the

B is spanned by these difference vectors. Since

by, bs, ..., b,,_1 are not expected to be orthonormal,
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B. Computation of the Common Vector where superscripgl’ denotes the transpose ang,. is the av-

If the common vector is called as,,,,, then each of the fea- €/29€ vector of all feature vectors in the word-class
ture vectors can be written as
Agque = (al +---+ arn)/m-
ai:ai,dif+aconl+6i (L:]-v 27"'7m)

Since the covariance matrix is real, symmetric and nonnegative,
wheree; is the error vector term. Even if all of the error vectorall of its eigenvalues are nonnegative, and its eigenvectors can
e; (1 =1,2, ..., m)areassumed to be zero, obviously there atg& chosen to be orthonormal; that is
m vector equations withng + 1) unknown vectors. Therefore
there are infinitely many solutions for the common and differ- &®u,; =A;u; and X; >0,
ence vectors. To obtain a unique solution for the common vect
one may make an assumption that the vecigrg s are the pro-
jections of the feature vectors onto the difference subspace
that is

r! . .
0wy = {Lifi=3; Oifi#j) for 4,j=1,2, ....n.

An error caused by dimensionality reduction can be defined and
minimized by making use of the orthonormality relation be-

a; gif = (a, 21)21 + (i, 22)22 + - + (A, Zn—1)Zm_1 tween the eigenvectors [7]

n n
where (a, z) = aiz1 + a2 + --- + a,z, denote the
(a 2) LT S Eror=3 > ujdu; =% >
scalar product ofa = (aj, a2, ...,a,) € R™ and = J =
z = (z,2,...,2,) € R™ Then a metric can be es- =kt =kt

tablished to minimize the squares of the norms of the errgjich is just the minimization of the metric
vectors in order to obtain a unique solution for the common
vector, that is

n
-1 T .
m m F =3 z:l llj @ll].
F:Z ||61||2 :Z ||ai_ai,dif_acorn||2 =
i=1 i=1

The maximization of the metriE' will yield

where||¢;|| = (e, )!/? denote the Euclidean norm of the . .
vectore;. It was shown that if the common vectar,,,, is chosen F _1 Z WLdu, — L Z )
max — 3 J J — 2 N
as =1 =1
Acom = & — A dif Vi=1,2...,m The minimum error is obtained by choosing the-(k) smallest

(zero in our case) eigenvalues and their corresponding eigen-
The common vector does not depend on the choice f vectors as the ones to @s_ca_rd [8]. Since the number of largest

. . (nonzero) eigenvalues is limited by the number € 1) when
on the choice of the orthonormal basis vector séBdf]. The X . :

) . .m. < n, the dimensiork of the subspace spanned by the eigen-
common vector represents the common properties or invariant- . ;
. . vectors corresponding to the largest eigenvalues can be extended

features of a spoken word. Since all of the feature vectors Wlthdn 10 (n — 1)

one class yields the same common vector, the recognition ra %’he PCA is used for classification purposes that are known
for this class will always be 100%; that is, the method guarantees
the subspace methods.

100% recognition rate for each class in the training set under fhe
conditionm < n. Obviously, ifm > n + 1, then the difference
subspace would span the whole feature space and the comrll-’?o

thenF is minimized andF',,,;;, = 0 [1].

nSubspace Method: SELFIC

vector would become a zero vector. The subspace methods for pattern recognition are introduced
by Watanabe [9] and widely used by Kohonen [10]-[12], and
C. Principal Component Analysis all the work is summarized by Oja [13]. One of these subspace

Obtaining the eigenvalues and eigenvectors of the covariaf@gthods is called SELFIC which uses the covariance matrix.
matrices for normal distributions is also known as the PCA & this method, the feature vectors are normalized first. Then,
the Karhunen—Loeve transforms (KLT). The PCA or KLT is alsthe average feature vector of the class is subtracted from each
known as the optimal linear dimensionality reduction. The goffature vector in the training set. In this method, the following

is to map vectorsy (i = 1,2, ..., m) in ann-dimensional Metric is maximized [9]:
space onto another set of vectors ik-dimensional subspace "
wherek < n. But this usually causes some loss of the informa- F=1 Z u]TQuj

tion which discriminates the different classes [6].
The covariance matri® of the feature vectors belonging to
a word-class is defined as whereQ is the class-correlation matrix amgs are its eigenvec-
m tors. Since the average feature vector of the class is subtracted
P — Z (; — Agve) (85 — Ague )T from each feature vector first, the correlation and covariance
- matrices will become the same for the SELFIC method, that is,

=1
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Q = ®. Therefore the SELFIC method turns out to have the Theorem 1: The following is true:
same metric with the PCA. IF is maximized, then

Bt C Kerd. (1)
m—1 m
Frax =3 Y W ®u; =1 Y Jla; — ag| Proof: See the Appendix. n
j=1 i=1 Theorem 2: The following is true:
:%()‘1+)‘2+"'+)‘7n—1+)‘7n)- Ker@CBJ—.
The classification is based on the maximization of the above Proof: See the Appendix. [
metric in the literature [9], [13] whereas it could also be done From the Theorems 1 and 2, one concludes that
by the minimization of the same metric, then it would be Kerd — BL.
Fuuin = 3 Z uf ®u; =3 (A 4 Amgr + 0+ An). From this last equality and remembering tBat is (n —m+1)
i=m dimensional, it follows that the last.( m 4 1) eigenvectors of
) o ) . the set{uy, u,, ..., u,} correspond to the zero eigenvalues.
In this case the minimum of the metric would be zero sincgnerefore
Am = Am+1 = -+ = A, = 0 which is missed in the earlier
work [9], [13]. B+ = spaf{u,,, Wpy1, ..., Up}.

Another critical point is that the normalization of the feature

vectors is not necessary. In fact, this should not be done becal S& elation Between the Common Vector and the Zero
the radially aligned classes will overlap on the hypersphere Wé?

NN . genvalues
the normalization procedure. The experimental results of the” ) .
SELFIC method are given in Section V. First of all, the following theorem should be given.
Theorem 3:Under the previous definitions for all j =
Il. RELATION BETWEEN THE COMMON VECTOR AND THE 11 2 -+, 71, the following is true:
EIGENVALUES OF THE COVARIANCE MATRIX & (a; — a;, apom) = 0. )

In this section, an approach which is different from the ap- . .
proach given in [1] to Egd the common vector will be givenF.) . Pr90f: Since(a; —a;) € B, then the following can be
Since the covariances characterize the variations of the vect\girg[ten'
about their mean, as long as < n, the nonzero eigenvalues of ,, a; = (a; —a;, 21)21 + -+ (& — A}, Zo1)Zm_1-
the covariance matri® should correspond to the eigenvectors
which form an orthonormal basis for the difference subspadé&e definition of the common vector states that
B. The orthogonal complemei+ in this case is spanned by
all the eigenvectors corresponding to the zero eigenvalues. Be-
cause the common vector is orthogonal to any vector in the difhe scalar multiplication of the last two equality gives (2)m
ference subspace, the common vector must be some linear comn the following theorem, it will be shown that the common
bination of the eigenvectors corresponding to the zero eigafector satisfies the eigenvalue—eigenvector equation for the co-
values of®, or else, the common vector can also be obtaine@driance matrix® for the zero eigenvalues.
by subtracting all of the projections of a feature vector onto the Theorem 4: The following is true:
eigenvectors corresponding to the nonzero eigenvalues from the m

feature vector itself. da,,, — Z (8 — Ague) (5 — Bave)  Bcom]
The following definitions will be necessary to prove the sub- o ’ R R

Aeom = A5 — <aja Zl>zl - <aja Zrn,—1>zrn,—1-

=1
seguent statements. m
The eigenvalues .of thg covarianqe matbare nonnegative _ Z [(a; — age) (0)] = 0. A3)
and they can be written in decreasing ordgr:> Ao > --- > =
An. Letuy, ug, ..., u, be the orthonormal eigenvectors corre- Proof: F T 3. the followi b . ]
sponding to these eigenvalues. roof: From Theorem 3, the following can be written:
Let Ker & be the kernel of the covariance matfix andB* a;+az+---+a, B
be the orthogonal complement of the difference subspce m —a ), acom ) =0.
That is
Since the first term in the parenthesis is the average o4;all
Ker ® = {x c R**. &x = 0}, (¢i=1, 2, ..., m), the following can be written:
Bl = {X c RN/Xll <X, b> =0 \V/b c B} . <(al - aa've)a acorn> =0. (4)

The kernel space ob is the space of all eigenvectors correSimilarly

sponding to the zero eigenvalues®f Further, since the space (25 — Bave),s Auom) = 0. (i=23,....,m). (5
B is (m — 1) dimensional, the spad®*' is (n — m + 1) dimen- : e Teom T

sional [14]. From (4) and (5), it follows that (3) holds. [ |
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B. Relation Between the Common Vector and the Nonzero common vectom,.,,, will correspond to the eigenvectors be-

Eigenvalues

The first (n — 1) eigenvectors of the covariance matrix cor
respond to the nonzero eigenvalues. Now it will be shown that
B is the span of the eigenvectors corresponding to the nonzeto

eigenvalues.
Theorem 5: The following is true:
B = Spar{ul, ug, ..., um_l}.
Hereuy, uo, ...,
the nonzero eigenvalues &.
Proof: For anyx € spafui, uz, ..., Wy—_1}

1
x1 B~ =spadu,,, Wnt1, ..., Up -

(BLY)t or x € B, sinceB is fi-
B [4]. Thus,

Therefore,x €
nite dimensional and thereforéB+)t =
spafu, uz, ..., uy_1} C B.

Since the spahu,, uo, ..
(m — 1) dimensions; from this, we get

Spar{ul, us, ..., urn—l} = B.

By combining the Theorems 3-5, any feature veatocan be
written as

a; = <ai7 111>111 +- 4+ <ai7 urn—l)“rn—l

+ <ai7 urn>urn + -+ <ai7 un>un (6)

or
a; =al +a;
where
ai =(a;, w)uy + -+ (&, Wn-1)uy- 1  a €B
and
af‘ =AQcom — <ai7 urn>urn + -+ <ai7 un>un af‘ S BJ_-
)

From (6), for any feature vectar;, the common vectos..,,,
can also be written as

*
Aecom — A — Q; .

As seen from the above derivations, the common vector can
be determined by using the eigenvectors corresponding to the

zero or nonzero eigenvalues of the covariance mabix8ut

longing to the ¢ — » + 1) zero eigenvalues of the covariance
matrix ®.

Numerical Examples
Example 1: Let the following feature vectors represent the
training set of a class:

a=[2/3 1 1/3]% ay=[1 2 0]*.

u,,_ are the eigenvectors corresponding tghen, the difference vectdr, will be

by=ay—a; =[1/3 1 —1/3".

The unit vector in the direction d§; is
b T
2, = m = [1/\/11 3/VI1 - 1/\/11} .
1

The common vectos,.,,,, is then

., W,,—1} and B have the same a_,,, =a; — (a1, z1)z; = ay — (ag, 21)2;

=[4/11 1711 7/11]F =[0.3636 0.0909 0.6364]".
The average vector is
Agre = (al + 32)/2 == [5/6 3/2 1/6]T

The covariance matrix is

1/18  1/6 —1/18
d=| 1/6 1/2 —1/6
~-1/18 —1/6  1/18

The covariance matrix has the following eigenvectors and eigen-
values

u; = [0.3015 0.9045 —0.3015]% AL = 0.6111

up = [0.9487 —0.3162 0] Ao =0

uz = [-0.0953 —0.2860 —0.9535]7 A3 =0.
The common vectaa,.,,, in this case is the following:

Acom =a; — (af u)uy = [0.3636 0.0909 0.6364]"

or
Acom =az — (azug)u; = [0.3636 0.0909 0.6364]".

The common vectot,.,, is also the summation of the projec-
tions of any feature vectat; or a; onto theu, andus

Acom = (afug)ug + (a{ug)ug = (agug)ug + (agug)ug
=[0.3636 0.0909 0.6364]".

Example 2: Let the feature vectors be

it must be noted that the common vector does not include in-
formation in the directions corresponding to the nonzeroeigen- a; =[1 2 0|7 ay;=[1 1 0% az=[0 0 1]¥
values. The CVA also saves computation time by selecting zero

or nonzero eigenvalues whichever is the smaller set.

belonging to the same class.

Remark: Similar derivations can be carried out when the set The difference vectors between these feature vectors will be

of feature vectorda,, aq, ..

., a,, } are linearly dependent. If
7 out ofm feature vectors in one class are linearly independent,
the difference subspadd will have (- — 1) dimensions. The

bl :al—agz[O 1 O]T

b2 Iag—agz[—l -1 1]T
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The orthonormal basis vector set that will define the subspace *2

B = spadbi, bz}
d;

d1=b1 212—2[0 1 O]T
[l
do

dy =by — <b27 Z1>Z1 Zy =
[[dz|

=[-1v2 0 yve)".

The common vectoa..,, can be obtained from any of the
feature vectora,; i = 1, 2, 3
»=1[0.5 0 057
»=1[0.5 0 057
2 =10.5

[

Acom =a1 — {ay, 2121 — (A1, 22)2
Acom =a2 — {Az, 21)Z1 — (A2, 22)2
Acom =a3z — (as, 21)z1 — (as, 22)z 0 0.5]%.
The average vectat,,,. is
Age = 5 (a1 + a2 +a3) = [2/3 1 1/3]%.
The covariance matrix is
2/3 1 —2/3
¢ = 1 2 -1
-2/3 -1 2/3

The eigenvalues o® areA; = 3.1196,0.2137,0.0000 and the
corresponding eigenvectors are

u; = [—0.4389 —0.7840 0.4389]T A1 = 3.1196
u; = [0.5544 —0.6207 —0.5544]T Az = 0.2137
uz = [-0.7071 0 —0.7071]" Az = 0.
The projections ofi; ontou; andu, are the following:
(aTup)u; =[0.8809 1.5735 —0.8809]"
(aFup)uy =[—0.3809 0.4265 0.3809]%.
Their summation is
(afu)u; + (afup)uy = 0.5 2 —0.5]%.
The common vector in this case is
Apom = A1 — (aful)ul — (afug)ug =[0.5 0 0.5]T

which is in accord with the theorem.

3 oa?
2
x ot
o (2
1xal xa}
aiom 2 2
Ao 83 X
0 1 2 3

Fig. 1. Application of the SELFIC method and the CVA in 2-D feature space.

I1l. COMPARISON OF THECOMMON VECTOR AND THESELFIC
METHOD FORCLASSIFICATION

In this section, the common vector and the SELFIC method
which uses the nonzero principal components are compared for
the classification of two classes which are shown in Figs. 1 and
2 in 2-D feature space. In Fig. 1, one of the classg}) (has
the feature vectors af} anda3, and the other clas€f) has
the feature vectors of? anda3. The common vectors of two
classes are also shownas,,, anda?_, in Fig. 1.

First of all, let us apply the CVA to classify each of the fea-
ture vectors. The direction of the eigenvector corresponding to
the zero eigenvalue for each class is the same as the direction of
the common vector; that is, the direction of the eigenvector cor-
responding to the zero eigenvalue for the cl@sss the vertical
direction, and so is the direction of the common veethy,, in
Fig. 1. The directions for the clags® are the horizontal direc-
tions in Fig. 1. The Euclidean distance between the projection
of all feature vectorsz() of a given class@”) onto the eigen-
vector corresponding to a zero eigenvalue of the same class and
the common vector,,,) of the same class gives a zero value.
But the Euclidean distance between the projection of all feature
vectors &) of a given class@’) onto the eigenvector corre-
sponding to a zero eigenvalue of the other cla®s ¢ # 4) and
the common vectoraf,,,) of the other class gives the values of
3,1, 2 and 1 (all of which are greater than zero) for the fea-
ture vectorsl, al, a anda3 respectively. Therefore, since we
consider the minimum values of the distances obtained for each
feature vector for classification purposes in the CVA, all of the

The alignment oh...,, andus is easily seen to be the samefeature vectors are correctly classified. A 100% recognition rate

and the following is true:

Acom = (a{ug)ug = (agug)ug = (ag:ug)ug

=[0.5 0 0.5]".

is always guaranteed for the training set of the classes unless
they yield the same common vector. Also, a feature vector may
be unrecognized if one of the feature vectors of a given class is
aligned with the line combining two feature vectors of the other
class.

The calculation of the covariance matrix and its eigenvalueslf the SELFIC method, an application of the PCA, is applied
and eigenvectors is not necessary for both the common veatgthout normalization of the feature vectors, the projection of

and the SELFIC approach. Since the common vector is the p
jection of any of the feature vectors onto the indifference su

edl-feature vectors of a given class onto the eigenvector corre-
bponding to nonzero eigenvalue of the same class must be de-

space, the common vector can be obtained by just a subtractemmined. For the example considered here, the values of 0, 2, 3,

of the difference projection from the feature vector itself.

and 0 are obtained in magnitudes for the feature veethra’,
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X2

wherel denotes the class. The Euclidean distance between the
common vector and the remaining vector is used as the decision
criterion, and it is given as

C* = argllnin Hai;’re'rn - aiO'an (8)

that is, if the feature vectai, belongs to the class?, the dis-
tance betweea,l,j,,,ﬁm andal_,  is expected to be a minimum
just as it is the case for the training set.

In the recognition process of the SELFIC method, the digits
in the database are classified according to maximum value of

the following criterion:

com

k

C* = argmax E (azgué»)2
!

j=1

Experimental studies on the Tl digit database have shown that
the remaining vector is usually closer to the common vector
Fig. 2. Direct application of the SELFIC method and the CVA afte®! ItS OWN word-class than it is to the common vectors of the
normalization. other word-classes, and therefore, it can be used in isolated word
recognition [1]. In the analysis of the Tl database, at first, si-

a? anda3 respectively. Also the projection of all feature vectorLEnce redgigns a,t the beginning and at the gnd Ef eahcr:ddigit sre
of a given class onto the eigenvector corresponding to nonz&rdove hyfusmg energy an zfero-crossm? thresholds. T ﬁn
eigenvalue of the other class must be determined to classify (H& SPeech frames consisting of 256 samples are pre-empha-

feature vectors. Then the values of 1, 1, 3 and 3 are obtairiged and analyzed to calculate the 11th-order root-melcep pa-
in magnitudes for the feature vectark al, a2 andaZ, respec- rameters. Thus the feature vector for each repetition of each

tively. Thereforea! andaZ2 are misclassifiech?, not classified:; digit is constructed with these parameters. After this process,

andal, correctly classified since we consider the maxima Je longest feature vector in the Tl database has 407 parameters
these values obtained for each feature vector or features{ = 407), and the shortest feature vector has 110 pa-

In the SELEIC method with normalization. the feature Vectorrglmeters. Therefore, the dimensions of the feature vectors which
are mapped onto the unit circle as shown in Fig. 2. Then tﬁgve fewer than 407 parameters are extended to 407 by inserting

nonzero principal components are considered to classify ed@Rd0M values obtained with the command *randn” in Matlab.

feature vector on the unit circle. In this case, the feature vectJ@e covariance matris for each digit is then a 40¥ 407 ma-

a} anda? are correctly classified, but the feature vectaysand trix. The fcova(;labnce r_natni’ afnd its elgenvaluelsj ar_ld Z'%envec'
a2 are misclassified. tors are found by using 224 feature vectors obtained from 224

If the CVA is applied to classify each of the feature vecto petitions of each digit (112 speakers say each digit twice) in

on the unit circle (after normalization), still the Euclidean dish'® raining setry = 224). 223 eigenvalues, that isy(— 1)
tance between the projection of all feature vectors of a giv&igenvalues, outof 407 eigenvalues are found to be nonzero and
class onto the eigenvector corresponding to a zero eigenvalutt-:r_@freSt 407-223 = 184) of the eigenvalues are zle2ro. Since the
the same class and the common vector of the same class gf/@§nvalues change abruptly, €.g., fm’m%fé 107" 10 0.219

a zero value. But the Euclidean distance between the projéd. the digit eight, the values undérx 10" are assumed to

tion of all feature vectors of a given class onto the eigenvectpf 26r0- In fact, the number of zero eigenvalues is always equal

corresponding to a zero eigenvalue of the other class and Eﬂél07 __,2,23 = _184 for all classes..The common vector for
h digit is obtained from (7) by using the eigenvectors corre-

common vector of the other class gives the values greater t . : - o .
zero. Therefore, all of the feature vectors are correctly clas§|90m“ng to 184 zero eigenvalues. If the decision criterion given

fied since the minimum distances are used for classification'h(8) iS applied to the training set, a recognition rate of 100%
the CVA is obtained for each digit. If the test set formed from 226 repeti-

tions (113 speakers say each digit twice) is used in the recogni-

tion process, recognition rates of 97% and 96%, which are the

best performances on the test set, are obtained on the average for
When all the differences in the difference subspaces are takR8 normalized and nonnormalized feature vectors respectively.

away from the words in the test set, the leftover vectors at@e results are given in Table | for each digit.

called the remaining vectors [1], [3]. In fact for a feature vector |f the SELFIC method is applied to the TI database, the max-

a, of an unknown word-class, the remaining vectsf (.,,) imum recognition rate of 91% in the average is obtained by

IV. EXPERIMENTAL STUDY FOR ISOLATED WORK RECOGNITION

can be written as using the eigenvectors corresponding to the 115 largest of the
m—1 n 223 nonzero eigenvalues for each digit in the training set. The
a;,?rem —a, — Z (aT, u§.>u§. — Z (aZ, u§.>u§. maximum recognition rate of 75% on the average is obtained

J=1 i=m by using the eigenvectors corresponding to the 74 largest eigen-
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TABLE | is obtained by eliminating all the features in the differ-
CORRECTRECOGNITION RATES IN AVERAGE OBTAINED BY USING COMMON ence subspacE. This also eliminates all the components
VECTORAPPROACH AND THESELFIC METHOD EXPRESSED ASPERCENTAGES .
of a feature vector that are along the eigenvectors cor-

TRAINING SET TEST SET responding to the nonzero eigenvalues of the covariance
matrix.
CoM. VECT. | SELF \  COM. VECT. | SELF Seemingly contradictory, these two results stem from the fact
Nor. | NNor. l Nor. | Nor. | NNor. | Nor. that the goals in using the PCA and the CVA are completely
One 100 | 100 93 a7 97 55 different; that is, the PCA is used for reducing the dimensions
Tvo 100 | 100 95 97 06 78 whereas the C\(A is used fo_r recognmon purposes. Thesg two
results are true in case the dimensioaf the feature vectors is
Three | 100 | 100 | 97| 93, 93/ 82 larger than or equal to: which is the number of data available
Four 100 | 100 43 97 90 25 for any class in the training set or when some of the eigenvalues
Five 100 | 100! 100 95| 96| 80 of the covariance matrix are zero. This case is true for many
. speech and pattern recognition applications.
Six 1004 100} 94} 99| 96| 83 These conclusions may be pushed a little further. The
Seven | 100 | 100 | 100 98| 98| 91 common vector that also corresponds to the zero eigenvalues
Eight 100 | 100 96 97 97 64 of the covariance matrix contains the invariant features of
Nine 100 | 100 91 o7 o7 20 any class which is highly important from the recognition
or discrimination point of view. This result is important for
0w 100 | 100 | 100 96 v6 93 information scientists since classes with a huge number of
Zero 100 | 100 95| 100 99 88 features can be represented with unique common vectors, each
Average | 100 100 91 97 96 75 of which is unique for its class and contains all the common

invariant features of its own class.

Obviously, the method fails when the number of feature vec-
values for each digit in the test set. If the eigenvectors corf@rsm is at least one larger than their dimensienshat is, the
sponding to all 223 nonzero eigenvalues are used in the test B#thod fails whenn > n + 1. This is a subject under investi-
the recognition rate decreases to 70%. In the SELFIC meth@ation, butin our future work, it will be shown that the common
the dimensions of the feature vectors which have fewer than 4gctora.....,, will be just the projection of the average vectq..
parameters are also extended to 407 by inserting random val@égll the intra-class feature vectors onto the indifference sub-
The results of the SELFIC method are given in Table | for eagpace under certain conditions.
digit.

APPENDIX
V. CONCLUSIONS Proof of Theorem 1:If any x € B+, thenx1B. From

Throughout this paper, the CVA is discussed, and the relatigﬁre the following scalar multiplication must be zero:

between the CVA and the principal components is given. The (a; —a;, xy =0 for L,j=1,2,...,m
relation between the common vectoy,,,, and the eigenvectors o
of the covariance matrix of any feature vector set is established
by the theorems in Section Il. Two numerical examples are pro-
vided in the same section. The mostimportant conclusion is thafTherefore

(a; — Agwe, X) =0 for 1i=1,2 ..., m.

the common vector satisfies the eigenvalue-eigenvector equa- m

tion of the covariance matrix corresponding to the zero eigen- Px = Z [(ai — Ague) (A5 — aa've)Tx]

values, i.e., the common vector is orthogonal to all the eigenvec- i=1

tors that correspond to the nonzero eigenvalues of the covariance m

matrix. =3 [(a — Agve){@; — Ague, X)] =0
The following results should be highlighted. i=1

1) The PCAis usually carried out to reduce the dimensiongx € Ker®. Since the element € B+ was arbitrary, then (1)
of a given feature vector set. The features that are eling-true.

inated correspond to the smallest (including zero) eigen- Proof of Theorem 2:If &, = a;, — ag,. for
values of the covariance matrix. This may cause somelass = 1,2, ..., m, and if the matrix A is defined as
of information which discriminates the different classesA = (a, ..., a,,), then the covariance matri$ can be

The SELFIC method which is used for discriminatingvritten as
classes and which is just a direct application of the PCA -
verifies this situation. P =AA".
2) The CVA method is used for discriminating classes. Ac- Let u; be one of the eigenvectors corresponding to a zero
cording to the CVA, the process in the SELFIC method. !
: L .er|1genvalue. Thus
must be reversed to increase the power of discriminatio

between the different classes; that is, the common vector Pu; =0
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or
AATui =0.
By premultiplying the above equality with?', we get
u’AATw; =0
or
|ATw|| =0.
From here
é{ui = éguz =- = ésllli =0 (Al)

(10]

(11]

(12]

(13]

[14]

It can be easily shown that the space spanned by

{a1, ag, ..
hand, the dimension @ is also (n — 1) and sincey; € B then
according to (A1) we obtain; LB or equivalentlyu; € B+.

values must belong tB-. Since the set of the eigenvectars
corresponding to zero eigenvalues is the basis of&gthen

English editing of the manuscript, and the three anonymous re-
viewers for their critical comments, which greatly helped i
prove the presentation of the paper.

., &4,} has n — 1) dimension. On the other

Thus all the eigenvectora; corresponding to zero eigen-

Ker® c B*.
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