
Estimating Graph Topology from Sparse Graph
Signals with an Application to Image

Denoising
Darshan Batavia

DAIICT, Gandhinagar.
Email: 201511027@daiict.ac.in

Aditya Tatu
DAIICT, Gandhinagar.

Email: aditya tatu@daiict.ac.in

Abstract—Graph signal processing is a framework that
allows us to work with general unstructured discrete data
that cannot be handled with classical Discrete signal pro-
cessing. The underlying graph topology plays a crucial role
in determining the definition of Fourier transform on graphs.
Graph topology for a given graph signal is not always
available and may also not be unique. In this paper we
address the problem of estimating graph topology from
signals that are sparse in the frequency domain. We estimate
the graph Laplacian matrix in an optimization framework
that minimizes errors in relations known to exist between the
graph signals and their Fourier transforms. We also propose
to use this algorithm for adapting an existing graph based
non-local image denoising algorithm, which is known to
perform well only for piece-wise smooth images. We provide
results on natural, texture and smooth images that support
our claim that with our topology estimation algorithm the
denoising algorithm is able to adapt to different image
structures. We compare our results with the graph based
non-local method and the state-of-art BM3D algorithm, using
different performance measures.

I. INTRODUCTION

With the development of Graph signal processing over
the last few years, graph-based modeling of various
forms of discrete signals1, from uniformly sampled 1D
signals to social network data has become popular[1], [2].
The underlying domain in some cases is unstructured
and may have complex interrelations. Graphs, defined
as a collection of vertices and edges, have provided an
appropriate modeling choice in these scenarios. In such
cases, data can be represented as collection of samples
with one sample at each vertex, and are typically called
graph signals. The weight of the edge connecting two
vertices contains information of their intrinsic relation.
For instance, the edge weight may be inversely propor-
tional to the geographical distance in case of climatic
data or it may be directly proportional to similarity of
intensity for neighboring pixels in an image.

There have been two popular approaches for Graph
signal processing, one based on graph Laplacian (spec-
tral graph theory)[1], the other using the adjacency ma-
trix (Algebraic signal processing) [2]. Both approaches

1Technically, graphs represent the domain of the discrete signals.

generalize a few properties of the Discrete Fourier Trans-
form, and have their own set of advantages and dis-
advantages. In both cases, the graph topology plays
a crucial role in the definition of the Graph Fourier
Transform (GFT).

For many graph signals, the graph topology is not
known, and an assumption based on the source of the
data is made about the topology. For instance, in case
of temperature at weather stations, stations within some
geographic distance are connected with an edge with
weight being inversely proportional to the geographic
distance. While in case of digital images, pixels in the 8
neighborhood are connected with an edge with weight
proportional to the similarity of the color. Thus, there are
several choices of graph topology available, and a right
choice needs to be made depending on the application.

A data-driven approach is to choose(optimize) adja-
cency relations between vertices such that it satisfies
assumptions made on the graph signals, for example,
the signals being low frequency (smooth). Following this
strategy, in this paper, we focus on learning the graph
topology from a collection of graph signals which are
assumed to be sparse in the frequency domain. It is
well known that classes of signals like audio and images
are sparse is frequency domain, hence the assumption is
practically motivated. The estimation of the underlying
graph topology is modeled as a matrix estimation prob-
lem, and we attempt to solve it using an optimization
framework.

We also discuss an application of our topology es-
timation algorithm for image denoising. Hu et al. [3]
proposed a Non-local Graph based Transform approach
(henceforth denoted by NLGBT) for depth-image de-
noising. In this patch based method, the edge-weights
between pixels for any patch was assumed to be pro-
portional to the similarity of the color as discussed
earlier. This was able to model the piece wise smooth
structure in a depth image, but is unable to adapt to
more diverse structures found in natural and texture
images. We use our topology estimating algorithm to
adapt their denoising algorithm for more diverse images.

978-1-5090-3649-3/17/$31.00 c⃝2017 IEEE

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 13:06:02 UTC from IEEE Xplore. Restrictions apply.

The paper is organized as follows: We first discuss
related work in estimation of graph topology, in the next
section. In section 3, we describe the proposed algorithm
for learning graph topology under the assumption that
the given collection of graph signals have a sparse fre-
quency domain representation. Section 4 provides details
of our adaptive Non-local Graph based image denoising
algorithm. In section 5, we describe our experiments for
estimating graph Laplacian, and image denoising. We
end this paper with a conclusion and discussion along
with possible extensions.

II. RELATED WORK

A graph 𝒢 is a collection of N vertices (sites) S =
{1, . . . , N} with edges between vertices represented in
an adjacency matrix A ∈ RN×N such that each entry Aij
contains the edge-weight of the edge between vertices i
and j. Aij = 0 indicates the absence of the corresponding
edge. For undirected graphs, A is symmetric, the diag-
onal matrix D denotes the degree matrix: Dii = ∑N

j=1 Aij,
and L = D− A denotes the unnormalized graph Laplacian
(henceforth Laplacian). A real-valued graph signal is a
function x : S → RN , such that xi represents the signal
value at vertex i. A collection of m real-valued graph
signals is given by a matrix X ∈ RN×m, where each row
i corresponds to the slice of the collection on vertex i,
while each column k corresponds to the kth signal on
the graph. The kth graph signal from the collection will
be denoted by X[k], while the kth graph signal at vertex i
will be denoted by xi[k]. For an undirected graph 𝒢, the
Laplacian L is always diagonalizable with the matrix of
eigenvectors V = [v1 . . . vN]: L = VΛVT , where Λ is a
diagonal matrix of eigenvalues. The matrix VT is defined
as the GFT matrix. For directed graphs, GFT is defined
as the matrix V−1, where V is the matrix of generalized
eigenvectors V that transforms the adjacency matrix into
its JNF J: A = V JV−1, as shown in [2]. It is thus clear
that graph topology plays a crucial role in determining
GFT and therefore other signal processing concepts, tools
and algorithms.

Surprisingly, estimating the graph topology has not
received the attention it deserves. In case of graph sig-
nals from geographical sensors, typically sensors within
a particular distance of each other are connected with an
edge which has an edge weight inversely proportional
to the geographical distance, or for blogs on the internet,
they are connected based on hyperlink references to each
other[2]. In case of patches in an image, each pixel is
modeled as a vertex of a graph and neighboring pixels
are connected with an edge-weight proportional to sim-
ilarity of the color at the vertices under consideration[3].
In [4], the authors model the graph signals as samples
drawn from a Gaussian MRF, in which case they assume
the adjacency matrix of the graph to be the precision
matrix (inverse of the covariance matrix) estimated from
the collection of graph signals.

In [5], graph signals are assumed to be generated via
a causal time series process. The kth graph signal is
assumed to be a result of a linear recurrence relation
between previous q graph signals and noise: X[k] =

q

∑
i=1

Pi(A, c)X[k− i] +W[k], where Pi(A, c) is a graph filter

expressed as a polynomial in the adjacency matrix with
coefficient vector c, while W[i] is a random noise process.
The algorithm is based on an optimization framework
that minimizes the error between the two sides of the
above model.

Assuming that the given collection of graph signals are
low frequency(smooth), Dong et al.[6], propose a method
to estimate the Laplacian matrix. Intuitively, a smooth
graph signal has similar values on strongly connected
vertices. Thus, for a given graph signal x, lower the

value of xT Lx =
1
2 ∑

i∼j
Aij(xi − xj)

2, smoother will be

the graph signal. By posing the above constrains in an
optimization problem that encourages sparser Laplacian
estimates, a graph Laplacian that describes the given
graph signal collection using lower frequency basis is
estimated. In [7], the authors propose an approach to
recover adjacency and Laplacian matrix from the spectral
templates. The authors assume that the eigenvectors of
the ground truth Laplacian is available, which simplifies
the problem to a great deal. Estimation of graph topology
(adjacency or Laplacian matrix) can be expressed as an
estimation of kernel K ∈ RN×N which maps the relation
between the graph signals at two different nodes on
R. Different assumptions on the graph signal imply a
different kernel and provides a different topology as
explained in Chapter 8 of [8].

For many signals, for example images, the high fre-
quency components are present and convey important
information. Hence the assumption of smoothness is
violated in such cases. It is more appropriate to assume
that the signal is sparse in an appropriate basis. In this
work, we try to estimate the graph topology, given a
collection of signals X which are assumed to be sparse
in the frequency domain (GFT domain). We show results
on simulated data, and as an application we show that
using the topology learnt from our algorithm, one can
adapt the NLGBT image denoising algorithm to different
classes of images.

III. PROPOSED WORK

Let X ∈ RN×m be the given collection of m graph
signals on an N vertex graph. Each of the m signal is
assumed to be sparse2 in the frequency domain with no
more than k frequencies contributing. Let H = VTX ∈
RN×m denote the matrix of GFT coefficients of each
signal in X. The unknows in our case are H, V, Λ and

2Typically, we consider 30− 50% nonzero elements.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 13:06:02 UTC from IEEE Xplore. Restrictions apply.

L. The relation between the unknowns and the known -
the collection X are:

X = VH (1)

XT LX = HTΛH (2)

These two relations yield the following optimization
problems to estimate the unknowns:
Problem 1: Estimating GFT and sparse GFT coefficients.

(V̂, Ĥ) = arg min
V∈O(N),H

∣∣X−VH∣∣2F + β∣∣H∣∣1, (3)

where O(N) denotes the set of all N×N real orthogonal
matrices, ∣∣ ⋅ ∣∣F and ∣∣ ⋅ ∣∣1 denotes the Frobenius norm
and the ℓ1 norm of the argument (column-wise ℓ1 norm
if the argument is a matrix), respectively.
Problem 2: Estimating Laplacian.

L̂ = argmin
L
∣∣HTΛH − XT LX∣∣2F + γ∣∣L∣∣2F (4)

s.t. Lij = Lji ≤ 0, ∀i ∕= j,

trace(L) = N, L.1 = 0,

where γ is the parameter for controlling the sparsity. The
constraints on L ensure that it has the properties of a typ-
ical graph Laplacian: symmetric, positive definite, and
are borrowed from [6]. A sparser Laplacian estimate is
preferred by adding a sparsity cost and the condition on
trace eliminates trivial solutions. The eigenvalue matrix
Λ used in Equation (4) is the eigenvalue matrix of an
intuitively chosen initial Laplacian matrix L0.
We now discuss the details of the two problems given
above.

A. Estimation of Eigenvector basis and frequency domain
representation H

The eigenvector matrix V and the GFT coefficient
matrix H are obtained by solving Problem 1 with an
alternating minimization strategy, i.e, fixing one variable
estimating the other, and vice versa. Assuming an esti-
mate Ĥ for the GFT coefficient matrix H, the eigenvector
matrix V can be estimated by solving:

V̂ = arg min
V∈O(N)

∣∣X−VĤ∣∣2F.

The solution to this problem is well-known and is ob-
tained via the SVD of the matrix ĤXT . Given that P
and Q be the left and right singular vector matrices of
ĤXT , the estimate of V is V̂ = QPT , as shown in [9].
Equipped with an estimate of V, we solve the following
sparse optimization problem to estimate H:

Ĥ = arg min
H∈RN×m

∣∣X− V̂H∣∣2F + β∣∣H∣∣1 (5)

Note that the sparsity regularizer is applied to each
column of H (GFT coefficient vector of each signal in
the collection), hence each column of H is optimized
independently. This ℓ1 - regularized least-square opti-

mization is solved using Gradient Projection for Sparse
reconstruction (GPSR) [10]. Methods like Matching pur-
suit (MP), orthogonal matching pursuit (OMP) [11] or
block coordinate descent method can also be used for the
same. Eigenvector matrix V̂ and the frequency domain
representation Ĥ are alternatively minimized till the
error ∣∣X− X̂∣∣2 converges, where X̂ = V̂Ĥ.

B. Estimation of the Laplacian matrix L

Using the relation xT Lx =
1
2

n

∑
i=1

n

∑
j=1

(xi − xj)
2 Aij, and

comparing only the diagonal elements of XT LX with di-
agonal elements of HTΛH, we rewrite the optimization
problem in Equation 4 as follows:

ˆvech(A) = arg min
vech(A)

∣∣diag(HTΛH)− B vech(A)∣∣22
+ γ∣∣vech(A)∣∣1, (6)

where vech(A) is the column concatenation of the lower
triangular subset of the adjacency matrix, and B ∈
Rm× N(N−1)

2 is the following matrix:

B =

⎡
⎢⎢⎢⎢⎣

d1
12 . . . d1

1N d1
23 . . . d1

2N . . . d1
(N−1)N

d2
12 . . . d2

1N d2
23 . . . d2

2N . . . d2
(N−1)N

...
...

...
...

...
dm

12 . . . dm
1N dm

23 . . . dm
2N . . . dm

(N−1)N

⎤
⎥⎥⎥⎥⎦ ,

where dk
ij = (xi[k]− xj[k])2. This reduces the constraints

of symmetry and then Equation 6 can be solved using
GPSR [10]. The adjacency matrix A and the graph Lapla-
cian matrix can be later recovered using the duplication
matrix Mdup as mentioned in [12] :

Mdup.vech(A) = vec(A) and L = D− A,

where Mdup is a matrix which produces vec(A) - the
vectorized form of symmetric adjacency matrix A from
the lower triangular matrix vech(A). The complete al-
gorithm is summarized as Algorithm1 Before discussing
the experiments, we discuss an application of Algorithm
1 for adaptive image denoising.

IV. APPLICATION IN IMAGE DENOISING

Image denoising is one of the classical problems in im-
age processing. Recent advances in this field are based on
non-local patch based approaches [13]. In this paradigm,
denoising is performed by first collecting similar patches
throughout the image, transforming the ensemble or
the average via a suitable transform and using various
thresholding algorithms in the transformed domain.

A. Nonlocal Graph based Image Denoising

Authors in [3] propose a graph based image denoising
method, which we summarize for sake of complete-
ness. To begin with, for every (overlapping) patch in
the image, similar patches are clustered from which

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 13:06:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Estimating Laplacian from sparse frequency
domain signals

1: Input: Graph signal X and parameters β, γ.
2: Initialize: i ← 1. L0 as a natural graph Laplacian,

find its eigenvector matrix V and eigenvalue ma-
trix Λ using eigenvalue decomposition and calculate
Ĥ0 = VTX

3: while ∣∣X− X̂∣∣2F decreases do
4: V̂i = QPT , where Q and P are obtained by SVD of

Hi−1XT

5: Solve for Ĥi using equation (5)
6: X̂ = V̂ Ĥ
7: end while
8: Estimate Laplacian L̂ by solving equation (6)
9: Output: Laplacian matrix L̂ for graph signal X

an average patch is computed. A graph is constructed
for the average patch by connecting the 8 neighbors
of every vertex (pixel) with an edge having weight
proportional (Gaussian kernel) to the similarity of colors
of the corresponding pixels. Using the GFT via the
Laplacian of this graph, GFT coefficients are computed
for every patch in the collection. Hard thresholding via
spectrum shrinkage [14] on these coefficients leads to
denoising. The denoised patches are then reconstructed
by applying the inverse GFT. Since each pixel belongs
to several denoised patches, the final pixel is computed
using a weighted averaging of all computed denoised
patches with weight being proportional to the sparsity
of the thresholded GFT coefficient. Filtered noise is then
added back to the denoised image to retain the edge
information as given in [15]. For details, see [3].

B. Proposed approach: Adaptive NLGBT

The approach mentioned by authors in [3] works
well for piece wise smooth images, for example depth
images, but fails to perform well with natural and
texture images. The main reason for this is that the
chosen graph topology fails to adapt to the underlying
image structure. We propose to use the graph learnt for
each cluster of similar patches using Algorithm1. The
transform used for denoising is then given by the GFT
defined using the Laplacian provided by Algorithm1.
The motivation behind learning the Laplacian matrix is
to adapt the underlying image structure for the graph
based image denoising algorithm. In order to reduce
the number of variables, we restrict Algorithm1 to learn
edge weights only for 8 neighbors for each pixel. The
value of β to be used in Algorithm1 is empirically set
to be inversely proportional to the number of edges in
the NLGBT method with edge weight below a threshold
obtained by Otsu’s method. Intuitively, edges with lower
weights indicate presence of discontinuities and hence
higher number of contributing frequencies. The adap-

tive NLGBT algorithm (henceforth ANLGBT) for image
denoising is given in Algorithm2.

Algorithm 2 Adaptive NLGBT (ANLGBT)

1: Input: Noisy image y, scalar δ for Iterative regular-
ization, number of iterations iter.

2: Initialization: ŷ(1) = y;
3: for k = 1 to iter do
4: Step A. Patch Clustering
5: Step B. Estimate number of contributing frequen-

cies for setting sparsity of H
6: Step C. Learn Laplacian matrix for the cluster

considering 8 adjacent neighbors using algorithm
1

7: Step D. Transform spectrum shrinkage
8: Step E. Image update
9: Step F. Iterative regularization:

ŷk+1 = ŷk + δ(y− ŷk)
10: end for
11: Output: The denoised image

V. EXPERIMENTS

We first describe the experiments for estimating graph
topology for graph signals that are sparse in the fre-
quency domain, followed by results obtained using the
ANLGBT algorithm.

A. Estimating Graph topology

Our experiments are performed on randomly gener-
ated graphs with 10 vertices (N = 10), with 35% ran-
domly selected edges from the complete graph present.
The edge weights are generated using a uniformly dis-
tributed random number. The graph signal collection it-
self is generated by randomly generating sparse columns
in H, with sparsity varying between 30 − 50%, from
which the signal collection is obtained using X = VH,
where V is the eigenvector matrix (inverse GFT) of the
ground truth graph Laplacian. The initial Laplacian is
the precision matrix computed from the graph signals.
Two examples of ground truth graphs and graphs es-
timated using Algorithm 1 with m = 1000 are shown
in Figure1, from which it is evident that the algorithm
does a good job in determining the graph topology.
We next evaluate the performance of our algorithm for
different values of m, i.e., the number of graph signals
in the collection. We use four different performance
measures for this purpose: precision, recall, f-measure
and relative Frobenius error in L. One can expect more
accuracy with more data. Average measures obtained
over 100 experiments for m = 500, 1000 and 1500 each,
are tabulated in Table I. It would be incorrect to conclude
that our algorithm yields a high error in the relative
Frobenius error in L, as compared to the f-measure. This
can be attributed to the fact that even a small error in

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 13:06:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: (left column) Ground truth graphs and (right
column) Corresponding estimated graphs. Note that the
graphs have been shown as binary(unweighted) graphs.

edge weight will contribute towards the relative error
while it is likely not to contribute to the f-measure error.

m Precision
(Ideally 1)

Recall
(Ideally 1)

f-measure
(Ideally 1)

∣∣L− L̂∣∣F
∣∣L∣∣F

(Ideally 0)

1500 0.7692 0.6897 0.7273 0.4
1000 0.6552 0.7037 0.6786 0.55
500 0.55 0.71 0.62 0.64

TABLE I: Graph estimation performance for N = 10 and
averaged over 100 experiments for each value of m.

B. ANLGBT results

All images used in this section are gray-scale and
have 200 × 200 pixels. We add Gaussian noise with
variance (σ) 5 and 10, higher noise variance is typically
not observed in practice. The number of similar patches
in an image for every patch is fixed to 20. Examples
of denoised smooth, natural and texture images using
BM3D, NLGBT and ANLGBT algorithm is shown in
Figure 2, followed by a few zoomed-in images in Figure
3. An objective evaluation using PSNR, FSIM and SSIM
measures for various images is provided in TableII. We
have carried out similar experiments with noise variance
10, but do not provide the results here due to lack of
space. The performance of ANLGBT is still found to be
better or comparative with the best for texture images,
but lags behind BM3D in case of natural images by
approximately 2 db on average, and by about 4 db for
smooth images.

VI. DISCUSSION AND CONCLUSION

In this paper we have presented a framework for
learning graph topology, given a collection of graph

signals which are sparse in frequency domain. The al-
gorithm does provide a decent solution as far as the f-
measure is concerned, but there is room for improve-
ment. A major issue with the algorithm is accuracy of
the estimated eigenvector matrix V̂, which is known to
be sensitive. Provided with the ground truth eigenvector
matrix, our algorithm provides an f-measure between
0.95-0.98.

As an application we use our graph topology esti-
mation algorithm to adapt the NLGBT image denoising
procedure on natural and texture images. The ANLGBT
algorithm outperforms the NLGBT and BM3D algo-
rithms for noise variance 5, which is a realistic scenario.
As of now, the number of similar patches for any patch
has been kept to 20, and we believe the performance
of the algorithm will improve by including a higher
number of similar patches.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other
irregular domains,” IEEE Signal Processing Magazine, vol. 30, no. 3,
pp. 83–98, 2013.

[2] A. Sandryhaila and J. Moura, “Discrete signal processing on
graphs,” Signal Processing, IEEE Transactions on, vol. 61, no. 7, pp.
1644–656, 2013.

[3] W. Hu, X. Li, G. Cheung, and O. Au, “Depth map denoising
using graph-based transform and group sparsity,” in Multimedia
Signal Processing (MMSP), 2013 IEEE 15th International Workshop
on. IEEE, 2013, pp. 001–006.

[4] C. Zhang, D. Florencio, and P. A. Chou, “Graph signal processing
- a probabilistic framework,” Tech. Rep., April 2015.

[5] J. Mei and J. M. Moura, “Signal processing on graphs: Modeling
(causal) relations in big data,” arXiv preprint arXiv:1503.00173,
2015.

[6] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Learning
laplacian matrix in smooth graph signal representations,” IEEE
Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173,
Dec 2016.

[7] S. Segarra, A. G. Marques, G. Mateos, and A. Ribeiro, “Network
topology identification from spectral templates,” arXiv preprint
arXiv:1604.02610, 2016.

[8] E. D. Kolaczyk, Statistical analysis of network data: Methods and
Models. Springer, 2009.

[9] O. Sorkine, “Least-squares rigid motion using svd,” Technical
notes, vol. 120, no. 3, p. 52, 2009.

[10] R. D. Nowak, S. J. Wright et al., “Gradient projection for sparse
reconstruction: Application to compressed sensing and other in-
verse problems,” IEEE Journal of selected topics in signal processing,
vol. 1, no. 4, pp. 586–597, 2007.

[11] T. T. Cai and L. Wang, “Orthogonal matching pursuit for sparse
signal recovery with noise,” IEEE Transactions on Information The-
ory, vol. 57, no. 7, pp. 4680–4688, 2011.

[12] K. M. Abadir and J. R. Magnus, Matrix algebra. Cambridge
University Press, 2005, vol. 1.

[13] A. Danielyan, V. Katkovnik, and K. Egiazarian, “Bm3d frames
and variational image deblurring,” IEEE Transactions on Image
Processing, vol. 21, no. 4, pp. 1715–1728, 2012.

[14] D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation
by wavelet shrinkage,” vol. 81, no. 3, pp. 425–455, Aug. 1994.
[Online]. Available: http://www.jstor.org/stable/2337118

[15] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative
regularization method for total variation-based image restora-
tion,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 460–489,
2005.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 13:06:02 UTC from IEEE Xplore. Restrictions apply.

Quality measure Algorithm

PSNR
BM3D 35.150 35.555 33.687 33.486 39.602 42.886

NLGBT 36.778 37.292 34.891 34.766 42.529 43.993
ANLGBT 36.864 37.527 36.036 35.602 42.627 41.990

FSIM
BM3D 0.9636 0.9626 0.9407 0.9259 0.9831 0.9924

NLGBT 0.9666 0.9687 0.9531 0.9396 0.9846 0.9923
ANLGBT 0.9744 0.9732 0.9730 0.9682 0.9863 0.9885

SSIM
BM3D 0.9384 0.9377 0.7936 0.7880 0.9812 0.9892

NLGBT 0.9533 0.9554 0.8476 0.9006 0.9834 0.9902
ANLGBT 0.9828 0.9225 0.9094 0.9422 0.9845 0.9848

TABLE II: Performance measures of denoising algorithms for natural, texture and smooth images, with σ = 5.

Fig. 2: Denoising examples for a piece-wise smooth, natural and texture image, for σ = 5. (Column 1) Original
image, (Column 2) Noisy image, (Column 3) BM3D results, (Column 4) NLGBT results, (Column 5) ANLGBT
results. ANLGBT tends to preserve texture and other details better - observe the grass region and texture of each
brick in the cameraman and brick image, respectively. Also refer Figure3.

Fig. 3: Close-up of denoising results of a natural and texture image, with noise variance 5. (Column 1) Original
image, (Column 2) Noisy image, (Column 3) BM3D results, (Column 4) NLGBT results, (Column 5) ANLGBT
results. Observe the preservation of texture using ANLGBT.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 05,2021 at 13:06:02 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

