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Abstract. The discrete version of a continuous sur-
face sampled at optimum sampling rate can be well
expressed in form of a neighborhood graph contain-
ing the critical points (maxima, minima, saddles) of
the surface. Basic operations on the graph such as
edge contraction and removal eliminate non-critical
points and collapse plateau regions resulting in the
formation of a graph pyramid. If the neighborhood
graph is well-composed, faces in the graph pyramid
are slope regions. In this paper we focus on the graph
on the top of the pyramid which will contain critical
points only, self-loops and multiple edges connect-
ing the same vertices. We enumerate the different
possible configurations of slope regions, forming a
catalogue of different configurations when combin-
ing slope regions and studying the number of slope
regions on the top.

1. Introduction

There is a strong correlation between an image
and a geographical surface. A digital image can
be perceived as a geographical surface where the
height of a point in the surface is directly propor-
tional to the pixel intensity at that coordinate. The
critical points: maxima, minima and saddle from
the image correspond to the hills, dales and ridge in
terrain. Configurations of critical points and slope
lines of surfaces were discussed by Cayley [3] and
Maxwell [17]. Their observations are with respect to
the earth’s topography but play a significant role in
exploiting properties of smooth surfaces. Nackmann
Lee [15] represented and studied their possible con-
figurations in form of a graph for a Morse function
of two variables (also called 2D Morse function).

Edelsbrunner et al. [8, 7] attempt to capture
the topological aspect of the images by construct-
ing a hierarchy of increasingly coarse Morse-Smale

complexes and decompose a piecewise linear 2D-
manifold. Degenerated critical points were excluded
in that study. Categorization of critical points and
slope points was simplified in [4] with the use of Lo-
cal Binary Patterns (LBPs).

Cerman et al. [5] use LBP to orient the edges
of the neighborhood graph of an image. By using
contraction and removal operations on the edges of
the neighborhood graph, they generate progressively
smaller graphs. Stacking such smaller graphs forms a
graph pyramid, used for multi-resolution image seg-
mentation. A similar approach can be found in [19]
which uses a super pixel hierarchy for the formation
of the pyramid used for a similar purpose.

For a 1D Morse function, critical points x are
identified if its first derivative is null. For a 2D Morse
function, Critical points are determined by vanishing
first derivatives. To classify the critical points in 2D
we study the determinant of the Hessian matrixH . If
it is non-zero, then the point is a non-degenerate crit-
ical point. Otherwise, it is a degenerate critical point
which is excluded from a Morse function. The signs
of the eigenvalues of H are used to classify the point
in maximum, minimum or saddle points.

In [12, 11] the authors form a slope complex ex-
tending the model developed in [8, 7], to include de-
generated critical points. In this paper, we allow the
occurrence of degenerated critical points where ei-
ther the Hessian matrix is nilpotent or semi-definite.
If the Hessian matrix is nilpotent, the neighborhood
of the point is a plateau region, which is a local sur-
face patch of points with the same height. If the Hes-
sian is a positive semi-definite matrix, then one of it’s
eigenvalue is zero and the neighborhood of the point
contains a level curve inside a 2D surface.

In formation of the graph pyramid, the top level
of the pyramid is expected to be preserve only with
the critical points. Also there is no unique configura-



tion in which these critical points are connected. Eu-
ler’s formula [6, theorem 4.2.7] provides the lower
bound for the number of faces formed by connect-
ing the vertices, provided the number of edges are
known. It further get complicated when we allow
the self-loops. In this paper, we study all the dif-
ferent configuration of faces also called as slope re-
gions which are formed by connections of the criti-
cal vertices. We also present an approach to count
the number of slope regions in a given primal graph
which includes self-loops. In this paper we avoid use
of derivatives and instead use Local Binary Patterns
(LBPs) to determine the category of a point (mini-
mum, maximum, saddle or slope) in discrete domain
which is explained in Section 2 along with few other
necessary definitions. Section 3 introduces the proto-
types of slope regions with minimal number of edges.
In Section 4 we summarize the effect of contracting
the saddle components. Section 5 is dedicated to the
combinations of slope regions which form the basis
to represent a surface. We provide a formula to count
the number of slope regions of a surface to ski down
from its embedded graph in Section 6. We general-
ize the count made in [11] in the sense that in this
paper the primal graph can contain self-loops. Fi-
nally, Section 7 is devoted to conclusions and future
works. The appendix contains some examples of ap-
plying LBP pyramids on the digital images.

2. Basic definitions

A digital image P can be visually perceived as
a sampled version of a geographical terrain model
which is a continuous surface denoted by S. The
sampling frequency to choose the samples should
satisfy the Nyquist criterion with respect to the min-
imum distance between any two critical points. The
digital image P can be efficiently represented by a
dual pair of plane graphs. The primal graph or neigh-
borhood graphG = (V,E) is formed by vertices v ∈
V corresponding to pixels p ∈ P connected to the
four adjacent neighbors by edges e ∈ E. The dual
of the primal graph is the graph G = ( V , E) where
every dual vertex v ∈ V corresponds to a face in the
primal graph G and dual edges e ∈ E correspond
to the border separating the faces in theG [6, Section
4.6]. The gray value (g-value) of the pixel p is visu-
ally conceived as the height of the surface and it is
denoted by g(p) = g(v) where v is the correspond-
ing vertex of p. There are two operations: contraction
and removal defined on the edges of the graph. Con-

traction of edge [6, Section 1.7] in G will result in
merging the two vertices connected by the respective
edge. This is equivalent to the removal operation in
G. The removal of an edge (v, w) ∈ E disconnects

the two vertices v and w and merges the two faces
which is equivalent to contract e ∈ E in G. There
is a one-to-one correspondence between the edges of
G and G. By successively contracting and removing
edges, we form a stack of progressively reducing pla-
nar graphs (Gk, Gk), k ∈ {0, 1, . . . , n} where each
graph Gk+1 is smaller than the graph Gk [10, 1, 9].
The base level of the graph is the primal graph G0.

Definition 1. The orientation of an edge (i, j) ∈ E
in the primal graph G = (V,E) is directed from ver-
tex i to vertex j iff g(i) > g(j).

The edge e ∈ E connecting two vertices v, w ∈ V
where g(v) = g(w) are non-oriented. Note that we
define orientation of edges by considering only the
gray values as a feature of an image. The theory
stated in this paper remains same for the higher di-
mensional feature vector if the orientation of edges
is well defined for the domain.

The LBP value of an edge e ∈ E connecting two
vertices v, w ∈ V is defined by comparing the g-
values of the vertices. The LBP value of e is 1 if
g(v) > g(w) and it is 0 if g(v) < g(w). The LBP
code of vertex v ∈ V is obtained by concatenating, in
clockwise or counterclockwise orientation, the LBP
value of edges incident to v (edges connecting ver-
tices v, w ∈ V such that g(v) = g(w) are not con-
sidered when computing the LBP code of vertex v).
LBP codes are used for the classification of vertices
into maximum, minimum, saddle or slope point.

Definition 2. A vertex v in graph Gk is a local max-
imum ⊕ if its LBP code consists of only 1s.

Definition 3. A vertex v in graph Gk is a local min-
imum 	 if its LBP code consists of only 0s.

Definition 4. A vertex v in graph Gk is a slope point
if the circular permutation1 of it’s LBP code has ex-
actly 2 bit switches.

Definition 5. A vertex v in graph Gk is a saddle
point ⊗ if the circular permutation of it’s LBP code
has a number of bit switches greater than 2.

1Circular permutation consists of rotating the code clockwise
or counter-clockwise by 1 bit.



Fig. 1(a), (b), (c) and (d) are examples of a local
maximum, a local minimum, a slope point and a sad-
dle point respectively. The category of the vertex is
decided by the orientation of the edges incident on
the vertex and the categorization is independent of
the number of the incident edges. Thus the theory
can be generalized beyond the gray scale digital im-
ages, where the vertex may contain a vector of the
values (for example: RGB), provided that the metric
for the orientation of the edges is well defined.
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Figure 1. LBP categories and the orientation of the inci-
dent edges.

Definition 6. A path π is a non empty sub-graph of
G, consisting of an alternating sequence of vertices
and edges π = v1, e(v1, v2), v2, . . . , e(vr−1, vr), vr.
The LBP code of path π is obtained by consecutively
concatenating the LBP value of edge e(vi−1, vi) for
i ∈ {2, 3, . . . , r}. If there are no bit switches in the
LBP code of π then π is a monotonic path. A mono-
tonic path which contains at least one oriented edge
is a strictly monotonic path.

A plateau is a connected, non empty sub-graph
GP = (VP , EP ) ⊂ G = (V,E) such that every edge
(v, w) ∈ EP of the plateau satisfies g(v) = g(w).
A level curve is a particular case of plateaus: It is
a path along which all the vertices have the same g-
value. Notice that a self-loop is also a level curve and
edges of level curves are not oriented. Observe that a
level curve can be a monotonic path but it cannot be
a strictly monotonic path since a strictly monotonic
path requires requires at least one oriented edge (i.e,
an edge with LBP value). After performing the con-
traction of the edges of a plateau, the sub-graph is re-
duced to either a single vertex or a set of level curves
incident to a common vertex.

A non-well composed configuration is modified
to a well-composed configuration [14] by adding a
dummy vertex which is a hidden saddle point [5].
Adding a hidden saddle includes addition of four
edges incident on the hidden saddle point which en-
sures that no two local extrema of same category be
part of the same face. It decomposes the respec-
tive face into four distinct slope regions with degree2

three each.
The LBP codes are embedded after the contraction

of all the edges in the plateau and adding the hidden
saddles. The successive operations of contraction on
edges may generate self-loops which are included in
the model we provide in this document.

Definition 7. A face in a surface embedded graph G
is a slope region S if all the pairs of points in the
surface corresponding to the face can be connected
by a continuous monotonic curve inside the face.

See the example of a slope region bounded by a
level curve in Fig. 2d. The slope regions and their
different configurations are discussed in [11, 12].

Remark 1. The boundary δS of the slope region S
can either be decomposed into exactly two monotonic
paths or a level curve [11, Lemma 1].

Remark 2. Properties of a slope region: Saddle
points can only exist on the boundary δS of the slope
region S with additional edges incident to the saddle
point outside the slope region. Saddle points cannot
exist in the interior S \ δS of the slope region S [11,
Lemma 2].

A well-composed sampled surface is a well-
composed digital picture [13] which samples a con-
tinuous surface. The following property holds.

Lemma 1. All the faces in the primal graph Gk af-
ter contraction of plateau regions in a well-composed
sampled surface are slope regions.

Proof. After collapsing the plateau region to a sin-
gle vertex, the vertex is encoded by a LBP code
which may result in a maximum, minimum, saddle
or a slope point. If the plateau collapses into a level
curve, a walk on level curves do not require an orien-
tation of its edges. A contraction operation in the in-
terior of graph will reduce the degree of the two face
sharing the contracted edge. So after contracting the

2The degree of a face in primal graph is the number of edges
surrounding the face.



plateau region, the maximum degree of a face in pri-
mal graphGk will be four. After both the above men-
tioned operations (contraction of plateau and adding
hidden saddles), the maximum degree of a face is
four with a constraint that no two extrema of same
category share the same face. In simple words, no
two local maxima and no two local minima are on
the same face. Thus we obtain an acyclic configura-
tion of faces of degree 3 or 4 composed of not more
than one maximum and one minimum. The remain-
ing vertices are composed of slope points and / or
saddles. The border of such face will always be com-
posed of two distinct monotonic paths, i.e. the face
is a slope region according to Remark 7.

Lemma 2. The minimum possible degree of a face to
be a slope region is three.

Proof. If the degree of a face is reduced to two, it
simply means that the two vertices are connected by
double edges and one of the edge can be removed to
simplify the graph and eliminate redundant informa-
tion.

3. Minimal slope regions

In this section we enumerate the different possible
configurations of slope regions which can be gener-
ated with a minimum number edges and the incident
vertices are only critical points, also called minimal
slope regions.

As mentioned in Lemma 2, the minimum num-
ber of oriented edges to form a slope region is three.
Fig. 2 shows the possible configurations of minimal
slope regions. Fig. 2a is a simple triangle which can
be generated by categorizing the vertices A,B and C
as maximum ⊕, minimum 	 and a saddle point ⊗ in
random order. Fig. 2b is a non-simple triangle where
vertex A can be a maximum or a minimum and has
a self-loop encapsulated by the multiple edges con-
necting vertex A and B. This self-loop needs a further
inside sub-graph S, otherwise it is redundant and re-
moved by simplification. Fig. 2c is the reverse of
Fig. 2b, where the face with multiple edges connect-
ing vertices A and B is encapsulated by the self-loop
attached to vertex A. Also in this case there must be
a further sub-graph D between the double edges to
avoid redundancy. Fig. 2d is the simplified version
of Fig. 2c where one of the edge connecting vertices
A and B is removed.

The motivation behind enumeration of minimal
slope regions is to represent a sampled surface with

slope regions formed by the critical points only. In
this way, we can move ahead to our goal of counting
the minimal number of slope regions (faces) in the
primal graph Gk which also includes self-loops.
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Figure 2. Configuration of slope regions with minimum
number of vertices and edges.

4. Contraction of saddle components

Consider a graph Gk with all faces being mini-
mal slope regions. The sub-graph formed by a con-
nected component of saddle points can only have a
tree structure [11, Remark 3]. In this section, we
summarize the effect of contracting each saddle tree
to a single point.

Lemma 3. The number of faces of graphGk remains
the same after contracting all the connected saddle
components of Gk.

Proof. According to Lemma 1, all the faces in the
primal graph Gk of a well-composed sampled sur-
face are slope regions. The proof of Lemma 3 for a
sub-graph of Gk composed of adjacent slope regions
sharing saddle points can be extended to the whole
graph Gk. Consider a sub-graph of Gk formed by
a tree of saddle points and their incident edges and
neighborhood vertices as shown in Figure 3a. Con-
traction of an edge in this saddle tree removes exactly
one edge and one vertex. Substituting these values
in Euler’s formula, the number of faces will remain
constant. It can be verified in Fig. 3b where the edges
of the saddle tree are contracted into a single saddle
point. The number of slope regions (faces) in Gk re-
mains the same.
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Figure 3. Sub-graph formed by a saddle tree before (a)
and after (b) contraction

5. Combinations of slope regions

In this subsection we construct sub-graphs by
combining different configurations of minimal slope
regions mentioned in Section 3.

1. We start by generating a sub-graph formed by
considering multiple occurrences of configura-
tion Fig. 2a. We get a sub-graph with alternating
sequence of maxima and minima surrounding a
single saddle point as shown in Fig. 4
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Figure 4. Saddle surrounded by 8 slope regions.

The slope region T in Fig. 4 is a simple triangle
formed by critical points only. The lower limit
of the number of slope regions T that can share
the same saddle point is 2, while the upper limit

is the total amount of slope regions on the sur-
face.

2. The combination of self-loop and double edge
configurations is more tricky. If we encapsulate
configuration Fig. 2d inside Fig. 2b, we get a
configuration of self-loop S+ and S− encapsu-
lated by an alternating sequence of maxima and
minima as shown in Fig. 5a, 5b respectively.
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Figure 5. Combining self-loops and double edges.

3. The self-loops attached to saddles show a sim-
ple (S×+, S×−) configuration (Fig. 6) and a
more complex configuration involving the sim-
ple slope region T. The simple configurations
can be combined similar to the self-loops at ex-
trema:

In this case, the orientation of S×+ and S×− is
opposite to each other to yield an outside dou-
ble edge between the saddle and the extremum.
The pending edge connected to the saddle out-
side the slope region must be complemented by
the opposite extremum. It can be completed by
a cycle around ⊗ similar to the simple triangles
T above.

The complex configurations (S×+,T,T) and
(S×−,T,T) (Fig. 7) have on the outside a
self-loop attached to the saddle. The self-
loop of S×+ can be encapsulated into an S×−-
configuration and the self-loop S×− into an
S×+- configuration. In both cases the outside is
a double edge connecting two different extrema.
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Figure 6. Combining self-loop and double edges attached
to a saddle ⊗.

Hence it can be combined easily with any of the
other configurations with alternating extrema on
the outside.
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Figure 7. Combining simple slope region T with self loop
and double edges attached to S×+ and S×−

4. Alternatively, any of the configurations bounded
by a double edge can be recursively embed-
ded into a self-loop generating one more of the
above primitive self-loop configurations. The
completion towards the outside is then analo-
gously as in the primitive configurations.

6. Number of slope regions

LetGk be a graph composed of only critical points
and with saddle trees being contracted. Then, the

slope regions (faces of the graph) are separated by
single edges only. Hence it makes sense to count the
number of edges which serve as boundary between
the two slope regions instead of counting the slope
regions itself.

From now on, a (⊕,	)-edge of Gk is an edge
connecting a maximum and a minimum. A (⊕,	)-
bridge of Gk is a (⊕,	)-edge satisfying that its re-
moval would disconnect the graph Gk.

Theorem 4. Given a graph Gk made of critical
points only with all the slope regions composed of
maximum three edges, we apply following operations
on Gk:

1. delete all (⊕,	)-edges inside the boundary of
graph Gk,

2. keep all (⊕,	)-edges on the boundary of graph
Gk,

3. keep all (⊕,	)-bridges, and

4. delete self-loops between S×+, S×−.

The resulting graph is plane, all dual faces are slope
regions and it cannot be further reduced without de-
stroying the property that all faces are slope regions.
The total number of slope regions corresponds to the
sum of the following entities:

|{ edge (⊕,	) such that ⊕ ∈ V⊕ and 	 ∈ V	}|
+|{ edge (⊗,⊗) such that ⊗ ∈ V⊗ and

(⊗,⊗) = (S×+, S×−)}|.
(1)

Remark that (1) counts for inner (⊕,	)-edges the
merged slope regions but only one slope for outer
(⊕,	)-edges and (⊕,	)-bridges. Multiple (⊕,	)-
edges count only one slope.

Proof. Deletion of an edge does not change the pla-
narity of a graph.

We show that the deletion of a (⊕,	)-edge or of
the self-loop merges two slope regions into a new
face which is a slope by considering the cases sepa-
rately. A (⊕,	)-edge of Gk may be a (⊕,	)-bridge
or it may be an inner (⊕,	)-edge of Gk. In the
first two cases the (⊕,	)-edge bounds a single slope.
Notice that a bridge need not be an outer edge and is
therefore separately mentioned.

An inner (⊕,	)-edge in a triangular mesh is ad-
jacent to two other triangles each being a slope with
the same two local extrema. Hence the quadrilateral



formed after the removal of the (⊕,	)-edge is also
a slope. The argument remains true after the first
(⊕,	)-edge of multiple (⊕,	)-edges is removed.
Therefore all multiple (⊕,	)-edges can be removed
and the merged slope regions still share the same two
extrema in a single slope.

The special configurations involving self-loops
enumerated in Section 3 need to be considered with
care: Self-loops attached to extrema inherit the prop-
erty of being extremal from their anchor vertices.
They separate inner and outer faces which are both
either lower or higher than the self-loop. Every path
connecting a point in the inner face with a point in the
outer face must cross the self-loop which is extremal
and, hence, the path cannot be monotonic.

However, self-loops attached to saddles surround
either a higher slope S×+ or a lower slope S×−. S×+

can be embedded only inside S×− and S×− only in-
side S×+. In both cases the removal of the self-loop
generates a face which contains one minimum and
one maximum and is a valid slope.

Finally we proceed to show the given count of
slope regions (1). We have shown in Lemma 3 that all
edges attached to saddles do not have any influence
on the number of slope regions. All edges between
two saddles can be contracted without reducing the
number of slope regions and saddles except self-
loops cannot form cycles. The first part combines the
first three cases while the count of self-loops attached
to saddles follows the above arguments.

7. Conclusion

In this paper, we have formed a catalogue of dif-
ferent slope configuration which can be formed using
critical points. We further enumerated all the possi-
ble combinations of slope regions which forms the
basis to represent a surface. Then we provide a for-
mula to count the number of slope regions in a graph
of a surface. One possible extension of counting the
number of slope regions is to serve as an objective
quality measure of an algorithm of multi-resolution
image segmentation.
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8. Appendix

In this section, we show examples of multi-
resolution image segmentation using combinatorial
graph pyramid. Due to lack of flexibility in the reg-
ular pyramid [2], irregular pyramids [18] were intro-
duced. Irregular pyramids can be stored in various
data structures like adjacency graphs, dual graphs,
combinatorial maps, etc. We use a stack of combina-
torial maps to form combinatorial pyramids [10, 1].
Similar to graphs, we define the operation of contrac-
tion and removal of edges in the combinatorial pyra-
mid. Edges are removed or contracted in the primal
graph as long as the resulting faces continue to be
slope regions. Formation of graph pyramid may re-
sult in generation of the self-loops and multiple edges
between the vertices. Hence it becomes important to
count the number of slope regions in primal graph
(dual vertices) which essentially are the number of
segments at the given level of the graph pyramid,
which was the main task of this paper.

We used the Berkeley Image Segmentation
Dataset [16] which consists of images of size 481 ×
321 = 154401 pixels. That means, at the base level
of the graph pyramid, there are 154401 vertices and
153600 faces. The results below show the original
image and the processed image with more than 90%
reduction of slope regions. It can be clearly observed
in Fig. 8 and Fig. 9, that the texture information in
the image is preserved and the contour effect can be

seen on the region with smooth gradient.

(a)

(b)

Figure 8. (a) Original image of size 481×321 with 154401
regions and (b) has 9264 regions i.e. 94% reduction.



(a)

(b)
Figure 9. (a) Original image of size 481×321 with 154401
regions and (b) has 15440 regions i.e. 90% reduction.


