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Abstract This paper introduces a new method to rep-
resent the surface of objects using two dimensional com-
binatorial maps. The classical definition of two dimen-
sional combinatorial maps is extended here by adding
a “back face” that corresponds to the non–visible part
of the object. As a first step, every object in the scene
is extracted in one image pyramid, where levels are re-
lated by means of coordinates. Finally, an algorithm
to complete the description of the surface is presented.
Such representation is translation, rotation and scale
invariant. It will allow to update information about
movements and parts of the object that become visible,
reducing the complexity and the computational time.

1 Introduction

A large amount of computational resources is required
to deal with image and video data. The main advantage
of hierarchical structures is the rapid computation of a
global information in a recursive manner. Thus, an hi-
erarchical structure (like image pyramids) might be the
answer to the time and space complexity in computer
vision systems.

From a single image frame, the visible front surface
of an object can be represented in terms of combina-
torial maps or graphs. This extracted map (or graph)
embeds the topological structure of the object, and de-
scribes in an efficient way its visible features. In or-
der to efficiently represent the object in a hierarchical
manner, a combinatorial pyramid [2] (or a dual graph
pyramid [13]) can be constructed above the initial map
(or graph).

The benefit of using combinatorial maps, is that they
combine the advantages of dual graphs with an explicit
orientation of the boundary segments of the embedded
object. Moreover, the combinatorial map formalism is
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Figure 1: Image pyramid

defined for any dimensions.
Nevertheless the use of such a complex structure im-

plies some drawbacks. The extension of combinatorial
maps to higher dimensions (3D, 4D, . . . , nD) is feasible,
but at the price of much higher memory costs [7].

In addition, in many applications in computer vision
due to the fact that inner parts are usually not visible,
what we really need to deal with is the surface of the
object.

The goal of this paper is to extend the classical two
dimensional combinatorial maps, in such a way that
they represent two dimensional manifolds. This new
representation is translation, rotation and scale invari-
ant.

The inclusion of this new structure in the environ-
ment of image pyramids will be very useful when for
example a three dimensional object is moving in a video
sequence, and at each moment, some parts are occluded
or partially visible.

The paper is structured as follows: In Section 2 we
introduce the concepts of combinatorial maps and com-
binatorial pyramids. In Section 3 the description of an
object of the initial image using a single pyramid is out-
lined. In Section 4 we present the procedure in which
the invisible part is added to the previous representa-
tion in order to complete the object surface. The paper
concludes in Section 5.
1
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2 Recall on combinatorial pyramids

Image pyramids are a stack of images with decreasing
resolutions [4] (see Figure 1). Such pyramids present
many interesting properties within the Image Process-
ing and Analysis framework such as [1]: Reducing the
influence of noise by eliminating less important details
in lower-resolution versions of the image, making the
processing independent of the resolution of the regions
of interest in the image, converting global features to
local ones, reducing computational costs for many com-
putations, etc.

The construction of the pyramid hierarchy follows
the philosophy to reduce the amount of data at each
higher level of the hierarchy by a reduction factor λ > 1
while preserving important topological properties like
connectivity and inclusion. Every cell in level k is linked
with cells on level directly below k− 1. Those cells are
called its children and cells on the level directly above
k + 1 its parent(s). The highest level of the pyramid is
called its apex.

There exist different topological representations for
structured objects that can be used in the hierarchical
framework of image pyramids. These representations
are dual graphs, combinatorial maps and generalized
maps [11]. Image pyramids that contain these struc-
tures are called topological pyramids [12].

Combinatorial maps define a general framework,
which allows to encode any subdivision of nD topologi-
cal spaces orientable or non-orientable with or without
boundaries. They were introduced in [6], at first as
a planar graph model, and extended in [14] in dimen-
sion n to represent orientable or not-orientable quasi-
manifolds.

Informally speaking, a combinatorial map is a math-
ematical model describing the subdivision of a space,
and encoding all the cells of the subdivision and all the
incidence and adjacency relations between the different
cells. In this way, the topology of the space is fully
described.

A more formal definition, describes a n dimen-
sional combinatorial map as a (n + 1)-tuple M =
(D,β1, β2, ..., βn) such that D is the set of abstract el-
ements called darts, β1 is a permutation on D and the
other βi are involutions onD. An involution is a permu-
tation whose cycle has the length of two or less. In the
case of 2D, combinatorial maps may be defined with the
triplet G = (D,α, σ), where D is the set of darts, σ is a
permutation in D encoding the set of darts encountered
when turning (counter) clockwise around a vertex, and
α is an involution in D connecting two darts belonging
to the same edge:

∀d ∈ D,α2(d) = d (1)

Figure 2 shows an example of a combinatorial map.
In Table 1 the values of α and σ for such a combinatorial
map can be found. In this example counter clockwise
(CCW) orientation has been chosen for σ. Note that
every border cell is adjacent to the background/infinite
region (Bg).
2

Figure 2: Example of a digital image and a combinatorial
map encoding the partition

A combinatorial pyramid is a hierarchical stack of
combinatorial maps successively reduced by a sequence
of contraction or removal operations [3]. Combinato-
rial pyramids combine the advantages of dual graph
pyramids with an explicit orientation of the boundary
segments of the embedded object thanks to the per-
mutation σ [2]. Moreover, using combinatorial maps,
the dual graph is both implicitly encoded and updated.
Finally, the combinatorial map formalism is defined in
any dimensions.

3 Extracting objects from a combinatorial
pyramid

Given an image pyramid, we would like to describe a
single object contained on it. Let us recall that our
aim is to obtain a complete representation of the ob-
ject’s surface. This representation must be translation,
rotation and scale invariant.

The first step will consist in adding coordinates to
the structure. The second step is to extract the pyra-
mid that describes the object from the pyramid of the
complete picture.

3.1 Relation between pyramid levels
In order to add coordinates to the structure, each
cell (faces in case we are considering the dual map,
or vertices in case we consider the primal) in the
base level of the pyramid is attributed with the
coordinates of the corresponding image pixels. For
higher levels the coordinates of each cell are computed
by inheritance from the surviving child to the parent.
But storing all this information along the structure,
will cause a big amount of redundant data. To avoid
this fact, we compute and store at each level only the
difference between the coordinates in one level with
the coordinates in the level above, following the idea
of the Laplacian pyramid [5]. This difference is called
the child’s correction vector:

d(c) = p(parent(c))− p(c), (2)

where d(c) is the child’s correction vector, p(c) are the
child’s coordinates and p(parent(c)) are the parent’s
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dart 1 -1 2 -2 3 -3 4 -4 5 -5 6 -6 7 -7 8 -8 9 -9 10 -10 11 -11
α -1 1 -2 2 -3 3 -4 4 -5 5 -6 6 -7 7 -8 8 -9 9 -10 10 -11 11
σ -11 10 5 -1 7 -8 -6 3 -3 -10 -7 1 -4 -5 11 9 8 -9 -2 6 2 4

Table 1: Values of α and σ for the combinatorial map in Figure 2
coordinates.
The original position of each cell can be recon-

structed accurately by adding all the correction vectors
from the apex. When the object is translated, such
translation is applied to the coordinates of the apex.
After that, the coordinates of the rest of the cells are
reconstructed in the new position using the correction
vectors in a top-down process, making the object rep-
resentation invariant to translation.

In order to make our representation rotation and
scale invariant, the orientation of the object is added as
an attribute in the apex cells [9] as well as a scale fac-
tor. Such information replaces the previous one stored
in the correction vectors. The orientation correction
vector is called θ(c).

θ(c) = o(parent(c))− o(c), (3)

where θ(c) is the child’s orientation correction vector,
o(c) is the child’s orientation and o(parent(c)) is the
parent’s orientation.
Once we have performed this process, all the informa-
tion about position and orientation of the object is con-
centrated in the apex. Given the position and orienta-
tion in the top level the coordinates of each cell can be
obtained by means of the following formulas:

xc = xp + λ ∗ r(c) ∗ cos(op + θ(c)) (4)
yc = yp + λ ∗ r(c) ∗ sin(op + θ(c)),

being xc, yc, xp, yp the coordinates of the child and
the parent respectively, λ the scale factor, r(c) the child-
parent euclidean distance, op the parent orientation and
θ(c) the child’s orientation correction vector.

One of the advantages of this representation is that
for example in the analysis of video sequences it is not
necessary to compute one pyramid for each frame; it is
enough to apply all the transformations in the apex and
then the computation of the correction vectors allows
an accurate reconstruction of the whole pyramid in a
top-down process.

3.2 Cutting out objects
In order to separate the data structure for each (mov-
ing) object, we would like to have one pyramid per ob-
ject in the image and one for the background, keeping
the connection between them by the coordinates previ-
ously added. This representation will allow to update
movements and properties in an independent way.

In a sequence of video frames it may happen that
some objects in the scene move and others remain in
the same position. Having one pyramid per object al-
lows to update only the information corresponding to
the moving objects. This fact decreases the number of
updates in the structure from frame to frame and the
processing time with the advantage that the connectiv-
ity between the objects and the background is always
preserved by means of the stored coordinates in the
apex of each pyramid.

In order to extract the object from the image pyra-
mid, we first need to identify it. Several segmentation
methods can be used for that purpose [10, 15], allowing
to distinguish cells that belong to the object. Once
those cells have been determined, the corresponding
combinatorial map that represents the desired object
at each pyramid level is extracted. Every cell that is
not part of the object, will be considered as part of
the background. Consequently, the border cells of the
object will be adjacent to the background. Removal
operations need to be performed on the initial map in
order to delete parts that do not belong to the object.
At each level a new combinatorial map that only cor-
responds to the desired object is obtained by adding
to a removal kernel [3] the darts that do not belong
to the object. After that we also have to update the
information that relates two levels in the pyramid.

Our method may also be useful for articulated ob-
jects since it is possible to concentrate the information
of each rigid part in the apex. The transformations can
be applied to the apex of the moving part, and at the
end only the part of the structure that has moved will
be updated.

3.3 Preservation of connectivity

A significant advantage of using topological pyramids
is that the connectivity is always preserved. This is
not always true for other image processing tools (e.g.
Photoshop). For instance, when some rotations are ap-
plied, these tools have to use some kind of interpola-
tion or re-sampling when the coordinates are not inte-
gers. Figure 5 shows an example where a thin line is
rotated. Figure 5b contains the result obtained using
Photoshop. The red stars mark the new rounded co-
ordinates of each point and the black squares are the
position of the points estimated by the processing tool.
Note that in that case the rotation results in a discon-
nected line (or in a thicker line if bilinear interpolation
or anti-aliasing is applied) (see Figure 5b). Using our
approach, although the position of the points change
with the rotation, the relation between the cells in the
graph remains the same since the edges of the graph
always connect the same vertices. The black stars in
Figure 5c point out that there is a connection between
those points in the graph. In our case it is possible
to apply again the same rotation in the other direction
3
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Figure 3: Object surface completion process

Figure 4: Object surface completion example

dart 1 -1 2 -2 3 -3 4 -4 5 -5 6 -6 7 -7 8 -8 9 -9 10 -10 11 -11 12 -12
σstep1 5 7 -1 -4 1 8 -7 -6 3 6 -8 -2 2 -3 4 -5 5 -7 8 -2 -1 4 -3 6
σstep2 9 7 11 -4 1 8 -7 -6 3 -12 -8 -10 2 -3 4 -5 5 -11 12 -2 -1 10 -9 6

Table 2: Values of σ and α of the complete combinatorial map in Figure 4
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and obtain the original line while in other cases it is
impossible since the line has been destroyed.

Figure 5: 50◦ rotation of a thin line

4 Object surface completion

Once we have the visible part (front face) of the object
described using a combinatorial map, we would like to
complete it with the non visible part of the object sur-
face. To do this, we use one or more invisible surface
patches in order to completely cover the surface of the
volumetric object.

The main idea is to create a combinatorial map that
is identical to the initial one, and that will conform
the back face. These two maps (front and back) will
be glued together, sharing the border cells. Therefore,
only darts that are not adjacent to the background,
are duplicated and conform the back face. Darts that
are adjacent to the background (border of the object)
will be common to the front and back faces (see Figure
3). In order to correctly cover every face of the object
surface, we must use counter orientation for front and
back maps. Thus, in case we use for example σccw for
the front maps, the back ones will be defined in terms
of σcw.

The pseudo-code of the algorithm applied to every
level of the pyramid is presented below. In this
pseudo-code Bg represents the background face. The
function B relates every dart with its corresponding
one at the back face and vice versa.

Given a combinatorial map G = (D,α, σccw), where
G contains n edges
Step 1:
for every edge of the map, formed by the darts d and
−d (where d = α(−d)) do

if d is not in Bg and −d is not in Bg then
Add two new back darts b and −b to D
α(b) = −b , α(−b) = b
σ(b) = σcw(d) , σ(−b) = σcw(−d)
B(d) = b , B(−d) = −b

else
B(d) = d , B(−d) = −d

end if
end for
Step 2:
for every dart t ∈ D do

if B(t) = t and B(σ(t)) = σ(t) then
σ(t) = B(σcw(t))
end if
if t is a back dart and B(σ(t)) 6= σ(t) then
σ(t) = B(σcw(t))

end if
end for

In the first step of the algorithm, we include the
darts that conform the back face, and initialize their
σ and α values (see Figure 4). These darts are related
with their correspondent front darts by the function B.
For instance, in Figure 4 B(3) = 9 and B(1) = 1. In
the second step, σ must be updated, in order to be
consistent with the newly added darts. In Table 2, the
values of σ that have to be updated are marked in red.

After applying this algorithm each level of the pyra-
mid is a map, presenting the closed surface of the ob-
ject in multiple resolutions. The pyramid representa-
tion can cope with this structure and the same opera-
tions can be applied as in the case of an image. In order
not to store so much information, the back face can be
contracted to a single cell.

As new visible parts of the surface would reveal pre-
viously invisible parts, the object representation will
be incrementally updated automatically from observ-
ing the target object in a video sequence. This requires
the registration of the visible parts and the replacement
of some invisible patches. For this purpose, some of the
existing methods dealing with multi-view integration
might be useful [8, 17].

When some hidden parts appear, the new topological
structure will be added into the previous 2D manifold
to obtain the updated object representation [9]. The
new view could imply more complexity on the topology
of the object (like when the handle of a cup becomes
visible) or could also imply the simplification of the for-
mer topological structure (for example a twisted torus,
can be perceived from some view points as a double
torus, see Figure 6).

Figure 6: Two different views of a twisted torus

When all the observable parts of the object have been
integrated in the object model, the topological struc-
ture of the target object is complete. This is the pro-
cess defined as topological completion [16]. Due to the
fact that only visible parts of the object are considered,
parts that never become visible will not be included on
its representation. Therefore the word “complete” is
applied here in a non rigorous sense.
5
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5 Conclusion

A new representation of object surfaces using two di-
mensional combinatorial maps has been presented in
this paper. This representation is translation, rotation
and scale invariant and preserves the topological prop-
erties of the visible parts of the object. In this way we
reduce the complexity and the amount of stored data,
that would be higher in case of using pure three dimen-
sional structures.

Another major advantage is that the computation
time in the analysis of video sequences is considerably
reduced due to the reduction of updates from frame to
frame since the movement of the objects modifies only
one cell in the structure (the apex). This last advantage
allows to deal with real time processing requirements.

As future work we plan to develop efficient meth-
ods to update this structure as new visible parts of the
object become visible, and make experimentations and
comparisons to other methods.
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