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Abstract. Tracking of spatially extended targets with variable shape,
pose and appearance is a highly challenging task. In this work we propose
a novel tracking approach using an incrementally generated part-based
description to obtain a specific representation of target structure. The
hierarchical part-based representation is learned in a generative manner
from a large set of simple local features. The spatial and temporal density
of observed part combinations is estimated by performing statistics over
temporally aggregated data. Detected stable combinations consisting of
multiple simpler parts encompass local, specific structures, which can
efficiently guide a spatio-temporal association step of coherently moving
image regions, which are parts of the same target. The concept of our
approach is proved and evaluated in several experiments.
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1 Introduction

Variable structure is hard to represent using models based on image statistics.
Therefore, many tracking algorithms encounter difficulties in scenes with artic-
ulated objects, targets undergoing pose variations and partial occlusions. Part-
based approaches [1, 2] avoid some of these problems by decomposing variable
structure into simpler parts, but often lack the flexibility to represent complex
deformable structures, given that they either rely on an a priori model or the
part-based model is too general (for example defined by a uniform grid of blocks).

This paper proposes an approach which (i) builds a target-specific part-based
model using a compositional framework [3] and (ii) employs the generated model
for tracking. Our main motivation is to achieve reliable data association and thus
robust tracking using a hierarchical system combining simple features into in-
creasingly more complex parts and capturing the statistics of parts. Obtained
parts with growing complexity represent specific entities occurring in images
more rarely. Partitioning of the parts into trajectories based on structural simi-
larity and motion coherence becomes feasible, since the combinatorial problem of
matching involves fewer parts with less ambiguity across frames of an sequence.
� Supported by the Austrian Science Fund under grants P18716-N13.
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Hierarchical systems ensure an efficient way to represent exponential vari-
ability present in the visual data. Recent works [3, 4] in visual object recognition
demonstrate that hierarchical grouping of simple features generates a finite set
of increasingly specific groups, able to represent structure of many object cat-
egories in a compact form. By applying the same concept to images of a video
sequence, tracking can be formulated in a statistically-driven manner recovering
specific parts occurring across multiple frames.

The paper is organized as follows. Sec. 2 introduces related work. Sec. 3
describes the basic concepts behind the proposed approach and Sec. 4 explains
the algorithmic steps generating the hierarchical representation. Sec. 5 describes
the association step enabling tracking. In Sec. 6 we discuss experimental results
for several image sequences and in Sec. 7 we draw conclusions.

2 Related work

Finding compact and informative representations able to handle the large com-
plexity encountered when representing image content (structure, texture, ap-
pearance, etc.) has been an active field of research for many decades. Hierar-
chical representations organizing low-level visual information into more complex
parts offer means to accomplish this task. Edge segments have been attractive
low-level features offering a high degree of geometric and photometric invari-
ance and encompassing a rich pool for building potential parts. Early works
(e.g. [5]) employ pre-designed rules to partition and group edge segments into
more complex entities. Partially driven by significant advances in visual object
recognition recent frameworks propose statistical, learning-based methodologies.
Opelt et al. [6] use object boundary fragments to detect multiple object classes
in presence of clutter and partial occlusions, where class-discriminative bound-
ary fragments are extracted and selected by Boosting. Agarwal and Triggs [7]
introduce a novel multilevel visual representation called “hyperfeatures”, where
local sets of image descriptors are gradually organized into more complex and
spatially sparse parts resulting in a system localizing several object categories.
Crandall et al. [8] propose a recognition approach where appearance models of
parts and spatial relations between parts are simultaneously estimated and used
to localize objects. Bouchard et al. [9] present a hierarchical part-based descrip-
tion encoding geometry and appearance of object parts, where learned models
vote in a bottom-up manner for object locations.

Hierarchical representation of structure for spatially extended targets in the
context of tracking has not been investigated in great detail yet. Ommer et al. [10]
present an approach where simple interest points are tracked in a frame-by-frame
manner. Interest points as simplest parts are represented by local descriptors,
which are used to analyze spatio-temporal relations between parts to learn com-
positional structured object models. In contrast to our work, Ommer et al. do not
use a hierarchical representation and propagate hypothesized part compositions
over consecutive frames. In our approach we apply similar concepts as presented
by Fidler et al. [4, 11] to hierarchically organize spatio-temporally aggregated
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low-level features in order to create compositions which can be associated and
tracked in an unambiguous manner.

3 Concept of our approach

Our approach starts with extracting simple oriented edge segments from a se-
quence of images. A local spatial configuration of multiple oriented edge segments
– denoted further on as combination – encodes local structure. The main objec-
tive of the proposed approach is to select a set of temporally invariant combina-
tions by statistical analysis, and to reliably associate them to form trajectories.
Association exploits the stability (temporally invariant structure) and the high
specificity (low occurrence frequency) properties of selected combinations. As can
be seen in Fig. 1 the hierarchical representation is built in a bottom-up process,
while the motion estimation (tracking) is carried out in a top-down manner.

The input of the bottom-up process are oriented edge segments detected
in several consecutive frames of a video sequence. Starting at level 1, the edge
segments are grouped together in combinations of two. By examining the tem-
poral statistics of combinations, their number is reduced by retaining only the
stable combinations. Then spatial statistics of edge segments for each remain-
ing combination is examined, and combinations whose segments represent stable
structures (i.e. occurring multiple times at the same relative positions) are kept.
After the steps of temporal and spatial statistics, the stable combinations for
level 1 are found and the process continues with level 2. Each stable combina-
tion is extended by an additional segment (selected from the pool of neighboring
segments one-by-one) and the statistical analysis (temporal and spatial) is re-
peated. The incremental generation of edge combinations is carried out until a
desired top level is reached, where only few, specific combinations remain, e.g.:
level 3 in Fig. 1, or no more stable combinations are found (see Sec. 4).

The generated set of specific combinations at the top level is used in a top-
down process to estimate the motion model of foreground objects. Combinations
of segments at the top level are distinctive and in the best case they appear only
once in an image. Hence, an association of combinations occurring at different
time instances becomes feasible, providing an estimate of the underlying motion
model. The motion models estimated by associating combinations at the highest
level of the hierarchy, can be used to guide the association step of combinations
at lower levels (with less specificity) yielding a dense structural description of
foreground objects. Foreground objects are delineated by grouping stable com-
binations, which obey the same motion model (for details see Sec. 5).

4 Building the hierarchical representation

Each level Li of the hierarchical representation contains MLi stable combinations
C = {c1, c2, . . . , cM} of i+1 segments. A segment sl represents one of O possible
edge orientations S = {s1, s2, . . . , sO}. To avoid an exponential complexity of
ON for N levels, the combinations of segments are built in the following way:
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Fig. 1. Concept of our approach.

Each combination ck of level Li consists of i edge segments forming the
primary part pprim and one segment representing the marginal part pmar. For
example in level L2 the primary part pprim consists of a set of segments {s1, s2}
and the marginal part pmar of the segment s5. Except level L1, the primary parts
of the combinations are the stable combinations of level Li−1. So the number of
possible combinations for level Li is MLi−1 · O.

4.1 Detection of segments

The structure of foreground objects and background is described by oriented
edge segments. A filter bank consisting of oriented Gabor filters (8 orientations
in 0◦-180◦, σ = 0.7) is used for detecting local edge segments. Each frame is fil-
tered using the oriented filter bank and the magnitude of filter responses (with-
out sign) is computed for each orientation. The image is divided into a set of
non-overlapping rectangular neighborhoods along a dense grid. In a given rect-
angular neighborhood of a size D – small enough to capture important shape
details such as the shoulder silhouette of a human – the locally dominant orien-
tation is determined by analyzing all filter responses within the neighborhood for
all orientations and finding the orientation with the maximum response. Local
maxima with a value smaller than Tm are considered as noise and are ignored.
In our approach we used the values Tm=15 and D=10 pixels, the latter being
approximately 1

10 of the foreground object’s height.

4.2 Building Levels

As mentioned in Sec. 3 the hierarchical representation is built in a bottom-up
process. The stable combinations for each level are selected by temporal and
spatial statistics as described in the following.

Level i: For each of the F frames all possible combinations of pprim and pmar are
enumerated within local windows B consisting of multiple local neighborhoods
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D. In order to avoid prohibitive complexity due to the combinatorial nature of
the enumeration task, the size of the local analysis window is defined to be small
at lower levels of the hierarchy and increased at higher levels (see Tab. 2).

The local window is centered over each stable combination of level Li−1,
representing the primary part pprim. Then all possible combinations of pprim

with an additional segment pmar are formed. After all new combinations are
built, temporal and spatial statistics are applied to select the stable combinations
of level Li.

Level 1: As there are no stable configurations from a previous level for level L1

at the bottom of the hierarchy, local analysis is performed differently than in the
other N −1 levels. The local analysis window is slid over all local neighborhoods
in all frames starting in the top left corner with a step size equal to D. Within
the sliding window at the actual position, all possible combinations are built,
where the edge segment with the lower index defines pprim (e.g.: s1) and the
segment with the higher index becomes pmar (e.g.: s5).

Temporal statistics: The task of temporal statistics is to estimate the den-
sity of combination occurrences over F frames by binning and to retain most
frequently occurring combinations.

The density of combination occurrences is captured in form of a 3D his-
togram H , where the histogram is spanned by the primary part indices pprim, the
marginal part indices pmar and the frame numbers f . Combinations frequently
appearing across multiple frames are selected by a threshold Tf – representing a
certain percentage of frames – and retained. The result of temporal statistics is a
set of temporally stable combinations consisting of edge segments in an arbitrary
spatial arrangement (see Fig. 1).

Spatial statistics: The combinations remaining after temporal analysis form
the input for spatial statistics. Fig. 2 visualizes the creation of a co-occurrence
histogram of segments which encodes spatial relations. For each temporally sta-
ble combination the primary part pprim of the combination is centered at (0, 0)
and the spatial distribution of corresponding marginal part pmar – relative to
pprim – is built in form of a two-dimensional histogram.

The obtained set of spatial distributions is used to select combinations with
frequently occurring spatial edge configurations within F frames. Mean shift
mode seeking is used to locate the most (up to four) significant modes of the
distribution. Modes with densities below a threshold Tp and corresponding com-
binations are discarded. The outcome of spatial statistics is a set C of combina-
tions corresponding to spatially stable edge configurations.

Fig. 3 shows bar diagrams displaying the effect of temporal and spatial statis-
tics on the number of stable combinations and all occurrences of those combina-
tions. Tab. 1 complements the information from Fig. 3(a) with the number of all
possible combinations. For all experiments in Sec. 6 the parameters described in
this section are set to the values of Tab. 2.
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Fig. 2. The concept of spatial statistics. At the top different spatial edge configurations
of a given combination are shown. At the bottom the obtained spatial distribution
(relative to the centered primary part) of marginal parts is shown.
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(a) Stable combinations. (b) All occurrences of combinations.

Fig. 3. Example numerical results of statistics. (a) Number of stable combinations
after temporal (blue, dark) and spatial statistics (yellow, bright). (b) All occurrences
of stable combinations after temporal (blue, dark) and spatial statistics (yellow, bright).

Level All combinations After temporal statistics After spatial statistics

1 36 32 32

2 288 49 44

3 2304 93 91

4 18432 146 142

Table 1. The numerical data of the combinations of bar diagram (a) in Fig. 3 (third
and forth column) and the number of all possible combinations (second column).

Level D B Tf Tp

1 10 3 · D × 3 · D 70% 1.0

2 10 3 · D × 3 · D 70% 1.0

3 10 5 · D × 5 · D 50% 1.0

4 10 5 · D × 5 · D 50% 1.0

Table 2. Values of parameters for experimental results for each level.
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5 Tracking using the built hierarchy

Our proposed object tracking approach involves three steps. First, a temporal
association between the obtained combinations is carried out using robust statis-
tical estimation (see Sec. 5.1). Secondly, combinations following the same motion
model are grouped together spatially, thus delineating the tracked object in each
image frame (see Sec. 5.2). Thirdly, hierarchical construction of combinations in
overlapping space-time volumes is repeated (see Sec. 5.3).

5.1 Temporal association of combinations

Reliable association of combinations requires that combinations are (i) stable and
(ii) highly specific. The previously described statistical analysis captures com-
binations which occur in multiple image frames of the analyzed spatio-temporal
volume. Combinations with an increasing number of segments are more specific
and occur less frequently. Given the set of formed combinations, we consider the
estimation task of an underlying motion model as a regression problem. In order
to keep the complexity of motion model estimation step low, we assume a linear
motion model within the analyzed time span (typically 20 frames).

Robust regression is performed using the RANSAC algorithm [12]. Estima-
tion is started at the highest level of hierarchy, where combinations are the most
specific and their spatio-temporal distribution best exhibits the underlying linear
structure. Typically, despite of the high specificity of combinations, the space-
time distribution of a given combination contains multiple structures, therefore
the regression task is challenging.

For each combination at the highest level we estimate the best fitting motion
model. The slope of motion estimate encodes motion direction and magnitude
in the image space. Motion vector estimates are accumulated – in a similar man-
ner to layered motion representations [13] – in a two-dimensional vector space
spanned by velocity components along x and y. Mode seeking is performed to
find the underlying trend, i.e. peaks defined by velocity components of frequently
occurring motion models. Detected peaks encompass combinations belonging to
stationary background and moving foreground objects. Since the number of sta-
ble combinations at the highest level is low, the obtained set of coherently moving
combinations defines a spatially sparse object description. In order to obtain a
spatially more dense set of stable combinations, we perform RANSAC estimation
also at lower levels of the hierarchy. Sampling is guided by the motion model es-
timated at the highest level: motion model estimates which do not belong to any
of the previously detected modes of accumulated motion vectors are discarded.
In this manner, the estimation step is able to recover motion paths of less stable
and less distinctive combinations at lower levels of the hierarchy and to provide
a dense structural representation of targets (see example in Fig. 4(a)).

5.2 Spatial grouping of associated combinations

The obtained set of combinations obeying the same motion model is used to
spatially delineate the tracked object. Since a given stable combination is not
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(a) Space-time plot. (b) Incremental spatio-temporal tracking.

Fig. 4. (a) Space-time plot showing all stable combinations describing a moving object
and obeying the same motion model. (b) Illustration depicting the incremental spatio-
temporal object tracking. Different colors indicate distinct stable combinations defining
object trajectory segments in consecutive overlapping space-time volumes.

necessarily present in every frame, missing instances of combinations are gener-
ated by interpolating the location of each segment using the underlying motion
model. Due to the interpolation step, the tracked object is described in each
frame by the same number of stable combinations and spatial grouping can be
carried out for each frame. Spatial delineation is performed by computing the
convex hull of centroid locations of segments belonging to stable combinations.

5.3 Incremental space-time processing

As the shape of a tracked target can change, usually varying sets of stable combi-
nations represent the target structure at different time instances. Therefore, we
perform the described hierarchical construction of combinations in an incremen-
tal manner. We aggregate edge segments from overlapping space-time volumes
(see Fig. 4(b)) and form stable combinations in a given volume independently.
Assuming kinematic smoothness of target motion, trajectory segments obtained
for individual volumes are associated using the estimated motion models and
spatial proximity.

6 Experiments and Discussion

We used three video sequences to prove our concept and qualitatively evaluate
the performance of our approach. Video sequences 1 and 2 are parts from PETS
2006 and 2000 dataset.

In sequence 1 a moving pedestrian is segmented and tracked as foreground
object. The obtained convex hull – spanned by segments belonging to stable
combinations – covers image regions, where spatio-temporal stability was found,
therefore heavily articulated parts, such as the feet are not part of the obtained
target representation (see Fig. 5). Stationary structures (tiling on the ground)
belonging to the background are delineated as well (not shown) explaining re-
covered motion with a zero velocity model.
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Frame 1 Frame 15 Frame 30 Frame 45 Frame 60

Fig. 5. Convex hull of the tracked object in sequence 1.

Sequence 2 shows a car tracking example. At lower levels of the hierarchy
combinations formed in the image region of the moving target have similar struc-
tures as combinations detected at stationary objects in the background. Never-
theless, stable combinations constructed at higher levels are target-specific and
delineate coherently moving parts in an unambiguous manner. Fig. 6 shows some
frames of the sequence with the tracking results.

Frame 1 Frame 15 Frame 30 Frame 45 Frame 60

Fig. 6. Convex hull of the tracked object in sequence 2.

Sequence 3 depicts two pedestrians where one partially occludes the other
for a certain number of frames. Target-specific stable combinations found be-
fore and after the occlusion event follow the same motion model and thus they
become associated with the same trajectory. The interpolation step of part lo-
cations generates observations which are missing during occlusion. Both targets
are segmented correctly and tracked in a stable manner, as shown in Fig. 7.

Frame 5 Frame 22 Frame 51 Frame 72 Frame 81

Fig. 7. Convex hull of tracked object of sequence 3.

As the proposed representation for tracking employs no prior model, it can
be applied to track arbitrary targets, rigid and non-rigid objects. In absence of
a prior model, feature selection for the tracking task is completely data-driven
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and unbiased, implying that all detected features and their combinations – when
stable and following a common motion model – are used to estimate the structure
and motion of a target.

7 Conclusion

This paper introduces first concepts of a novel tracking approach, where the
structure of a target is represented by edge segment combinations, which are
formed in a hierarchical analysis framework. The obtained structural models
represent specific entities, which can be reliably associated between frames of a
space-time volume. Combinations are formed in a fully data-driven manner and
they integrate all available low-level features representing temporally invariant
target structure and coherent motion. The framework is applicable to multiple
interacting targets and presented grouping and tracking results show promising
performance. In future we plan to achieve rotation invariance of our description
to improve the performance with articulated objects and change the temporal
association in a way so that nonlinear motion models are possible.
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