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Abstract This paper extends our previous work in rigid
object tracking using a spring system to track articulated
objects. The idea is to represent each part of an articulated
object with a spring system and connect them via articula-
tion points. Articulation points are detected automatically
by observing the motion of the object and integrated into the
spring systems of the rigid parts. Experiments with real and
synthetic video sequences show promising results and im-
provements over the rigid, previous approach. In a detailed
discussion the parameters of the approach are analyzed and
future plans are mentioned.

1 Introduction

In the context of this paper, the properties of a scene can be
divided as follows.

Intrinsic: They refer to the nature or the constitution of the
object and are considered wholly independent of any ex-
ternal factor or other object. For example: size, texture,
rigid or non-rigid, number and position of articulation
points, motion model, . . .

Extrinsic: These properties concern the environment (con-
text) of the object. For example properties describing
the influence of the environment on the object (i.e. back-
ground and occlusions) and the relationships between ob-
ject and environment (i.e. other objects).

Depending on the source for the properties they can be
separated in two categories.

Perception based: Values of properties are directly ex-
tracted from the image (e.g. edge segments, color
regions, corner points, histograms, . . . ).

Knowledge based: Information extracted from previous ex-
periences. It does not have to be present in the pool of
perception based features at that moment. For example:
structure of an object (rigid, articulated) and the space-
time continuum (occluded object did not disappear).

Tracking articulated objects undergoing non-rigid motion
and occlusions is a challenging task in computer vision. To
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solve this task one has to consider combining information
and knowledge about the target object and its environment.
This means covering both intrinsic and extrinsic properties
determined by perception and knowledge.

In [3], initial steps toward solving this tracking task have
been made. A spring system was employed to coordinate
the tracking of multiple features of a rigid object (recall
in Section 3). The spatial relationships between the fea-
tures encoded in the spring system increased the robustness
with respect to similar neighboring objects and considerable
amount of occlusions. The approach uses intrinsic object
properties and information from perception.

In [10], the focus was on automatically deriving the
model of an articulated object and its environment (back-
ground, other objects), to cover intrinsic and extrinsic prop-
erties. An important finding of this approach is that struc-
turally relevant features, like articulation points, are not al-
ways visually salient (trackable). Thus, searching for articu-
lation points only in the set of visual features is not feasible.

This paper is a first attempt in the plan to combine all
possible permutations of intrinsic and extrinsic properties
retrieved via perception and knowledge. There is a vast
amount of work in using statistical approaches to solve this
or a similar problem (Section 2). In our approach we try to
stress solutions that emerge from the underlying structure,
instead of using structure to verify hypothesis obtained by
other means. This paper is an extension of the approach
in [3], to track objects consisting of several rigid parts con-
nected by articulation points. Every part is represented by a
spring system encoding the spatial relationships of the fea-
tures describing it. The articulation points of the object are
found through observation of the behavior/motion of the ob-
ject parts over time. They are integrated into the spring sys-
tems of the connected rigid parts and their energy minimiza-
tion process and impose additional distance constraints.

This paper is organized as follows. In Section 2 a short
overview of the related work is given. Section 3 recalls the
work done in [3] to track rigid objects. In Section 4 the con-
cept of articulation and its integration is explained. Section 5
describes improvements of the approach in [3], in addition
to the articulation. Experiments are in Section 6, and Sec-
tion 7 discusses the parameters of our approach. Conclusion
and future plans are in Section 8.
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2 Related work

Related work in the narrow field of approaches employing
spring systems is [8, 7, 14, 12]. The idea to describe the
relationships of the parts of an object in a deformable con-
figuration - spring system - has already been proposed in
1973 by Fischler et al. [8]. Felzenszwalb et al. employed
this idea in [7] to do part-based object recognition for faces
and articulated objects (humans). Their approach is a sta-
tistical framework minimizing the energy of the spring sys-
tem learned from training examples using maximum likeli-
hood estimation. The energy depends on how well the parts
match the image data and how well the relative locations fit
into the deformable model. Ramanan et al. apply in [14] the
ideas from [7] in tracking people. They model the human
body with colored and textured rectangles, and look in each
frame for likely configurations of the body parts. Mauthner
et al. present in [12] an approach using a two-level hierarchy
of particle filters for tracking objects described by spatially
related parts in a mass spring system.

In comparison to the related work above we do not di-
rectly employ a statistical framework or look for hypothe-
ses for the target object in the whole image. This approach
solves the recognition and association problem by locally
minimizing the energy of the spring system.

Related work in a broader field also includes the work
done in tracking and analysing the movements of articulated
objects - in the most cases humans. There is a vast amount of
work in this field as can be seen in the surveys [9, 13, 1, 2].
It would go beyond the scope of this paper mentioning all of
this work. Interesting to know is that early works even date
back to the seventies, where Badler and Smoliar [4] discuss
different approaches to represent the information concern-
ing and related to the movement of the human body. Our
approach is similar to the Eshkol-Wachmann notation.

3 Recall: Tracking rigid objects with a
spring system

In [3], deterministic tracking of multiple features of an ob-
ject is combined with a graph representation that encodes
the structural dependencies between the features. A spring
system is used to model the dynamic behavior of the struc-
tural dependencies.

To identify suitable features of a rigid object, the Maxi-
mally Stable Extremal Regions (MSER) detector [11] is ap-
plied to a region of interest. MSER extracts regions which
are well-defined (high color uniformity). An attributed
graph (AG), representing the structural dependencies, is cre-
ated by associating a vertex to each region. The correspond-
ing color histograms of the underlying regions are the at-
tributes of the vertices. With a Delaunay triangulation the
edges between the vertices are inserted and the spatial rela-
tionships between the regions are defined.

This approach uses the mode seeking property of the
Mean Shift algorithm to associate the vertices of the AG
over adjacent frames. Therefore, a Mean Shift tracker is ini-
tialized on each vertex of the graph and the color histograms
of the vertices become the target models q̂ for the tracker.
The implementation of the tracking with Mean Shift follows

the ideas in [6, 5].
During object tracking the color histograms of the AG

and “spring-like” edge energies of the structure are used to
carry out gradient ascent energy minimization on the joint
distribution surface (color similarity and structure).

3.1 Graph relaxation

The graph relaxation step introduces a mechanism which -
upon drift in the tracking results - imposes structural con-
straints on the mode seeking process of Mean Shift. It is
the realization of the spring system in this approach. As the
tracked objects are rigid, the objective of the relaxation is to
maintain the tracked structure as similar as possible to the
initial structure. Graph relaxation is used to minimize the
dissimilarity between the initial structure of the object and
the tracked structure. This is an energy minimization prob-
lem on the total energy Et of the structure.

Because the initial structure is considered as the “true”
object structure, the total energy of the structure in the ini-
tial state is 0. Due to the spatial tracking errors of the
Mean Shift tracker, during the tracking process E t usually
changes. The structural energy Et is computed using the
concept of “spring-like” edges between vertices

Et =
∑

e

k · |e, − e|2, (1)

where e, and e denote the deformed and undeformed edge
lengths and k is the elasticity constant of the edge (spring).
The variations of the edge lengths and their directions are
used to determine a structural offset component for each ver-
tex. The offset vector is the direction where a given vertex
should move such that its edges restore their initial length
and the energy of the structure is minimized. This structural
energy minimization offset vector �O is calculated for each
vertex v as follows:

�O(v) =
∑

e∈E(v)

k · (|e,| − |e|)2 · (−�d(e, v)), (2)

where E(v) are all the edges e incident to vertex v, k is the
elasticity constant of the edges in the structure and �d(e, v)
is the unitary vector in the direction of edge e that points
toward v.

In Figure 1(a) three possible states of an edge are shown.
The first state is the initial one. In the next state the edge is
contracted, so that the offset vector �O will force vertex B ′

to move, enlarging the edge length back to its initial length.
The third and last case shows an edge that is too long, so �O
will tend to contract it. Figure 1(b) shows how the sum of
the offset vectors of each edge would move vertex B ′ to its
structurally correct position B.

3.2 Combining Mean Shift and graph relaxation

Graph relaxation is embedded into the iterative process of
tracking with Mean Shift. For every frame, Mean Shift and
structural iterations are performed until a maximum num-
ber of iterations is reached εi, or the graph structure attains
equilibrium i.e. its total energy is beneath a certain threshold
εe. To compute the position of each region (vertex), Mean
Shift offset and structure-induced offset are combined using
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Figure 1: Edge relaxation examples. B is the initial state of the
vertex and B′ the deformed one.
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Figure 2: Rotation of rigid part around articulation point c. p1,
p2 and p′

1, p′
2 are the vertices at time t respectively t + δ.

a mixing coefficient g called gain (g = 5). The ordering of
the region selection during the iterations is randomized.

As the experiments in [3] demonstrated, the joint use of
Mean Shift and structural constraints significantly improves
tracking in the presence of occlusions or in cases when mul-
tiple similarly colored nearby objects are tracked on pat-
terned background. The calculation of the 3D color his-
tograms for the Mean Shift iteration represents the biggest
part of the computational costs. Because of this, one could
say that the complexity of the algorithm scales linearly with
the number of regions.

4 Articulation: Bending the structure

Articulated motion is a piecewise rigid motion, where the
rigid parts conform to the rigid motion constraints but the
over all motion is not rigid [2]. An articulation point con-
nects two rigid parts. The parts can move independent to
each other, but their distance to the articulation point re-
mains the same (see Figure 2). This paper considers articu-
lation in the image plane (1 degree of freedom).

4.1 Imposing articulation

As before (Section 3), rigid parts are tracked using a compe-
tition between the tracker (Mean Shift) and the graph struc-
ture (spring system). Two vertices of each rigid part are
connected with the common articulation point 2. These two
reference vertices constrain the distance to the articulation
point, of all other vertices in the same part.

Each rigid part is optimized iteratively including all ar-
ticulation points it is connected to, but independently from

2One could consider connecting all vertices of a part, but this would
unnecessarily increase the complexity of the optimization process.

all other (rigid) parts. Transfer of “information” between the
parts of the articulated objects is achieved through the artic-
ulation points, as they are present in the computation of all
incident parts.

Important features of the structure of an object do not
necessarily correspond to easily trackable visual features,
e.g. articulation points can be occluded, or can be hard to
track and localize (e.g. textured regions for trackers of ho-
mogeneous blobs, and vice-versa). Articulation points are
thus not associated to a tracked region (as opposed to tracked
features of the rigid parts).

The position of the articulation point can be given or
compute as explained in Section 4.2. To derive the posi-
tion of the articulation point in each frame of the video,
the following procedure is applied. First, in the frame in
which the position of the articulation point is detected, a
local coordinate system is created for each rigid part by
using the reference vertices. In Figure 3 this concept is
shown, where p1,p2, c, X, Y are the tracked vertices, artic-
ulation point (rotation center) and coordinate system at time
t; p′

1,p
′
2, c

′, X ′, Y ′ at time t+δ; o is the offset (translation),
and θ is the rotation angle. The position of the articulation
point, in that coordinate system, is computed and associated
to the part.

At any time, having the tracked reference vertices enables
determining the local coordinate system and the position of
the articulation point relative to that coordinate system.

Algorithm 1 Algorithm for tracking articulated objects.
1: PROCESSFRAME

εe threshold total energy of structure
εi threshold maximum number of iterations

2: i← 1 � iteration counter
3: while (i < εi and Et > εe) do
4: for every rigid part do
5: define region order depending on B
6: for every region do
7: do Mean Shift iteration
8: do structural iteration
9: calculate mixing gain g

10: mix offsets depending on g and set new position
11: end for
12: end for
13: calculate current position of articulation point
14: for every rigid part do
15: define region order depending on B
16: for every region do
17: do Mean Shift iteration
18: do structural iteration including articulation point
19: calculate mixing gain g
20: mix offsets depending on g and set new position
21: end for
22: end for
23: i← i + 1
24: Et ← determine total energy of spring system
25: end while
26: end

For each frame the steps in Algorithm 1 are executed.
First there is an independent optimization of each rigid part
(see Section 3). This is followed by estimating the position
of the articulation point using the reference vertices of each
part. Then the hypothesis of the parts for the position of the
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Figure 3: Encoding and deriving of articulation point in the local coordinate system, during two time steps: t and t + δ.

articulation point are combined using the gain a:

ai =
Zi

m∑
k=1

Zk

Zi =
vi∑

j=1

Bij (3)

where Zi is the sum of all Bhattacharyya coefficients (see
Equation 6) of parts i with vi regions/vertices, and ai is the
gain for part i weighting its influence on the position of the
articulation point. ai depends on the correspondence of its
color regions with the target models. Afterward each part is
optimized including the articulation point at the determined
position.

4.2 Determining the articulation point

The following approach is used to compute the position
of the articulation point. The determined position is then
mapped to the local coordinate systems and used for track-
ing as mentioned above.

For discrete time steps (e.g. frames of a video) the mo-
tion of an articulated object can be modeled by considering
rotation and translation separately:

p′ = translate(rotate(p, c, θ),o),

where p is the vertex at time t and p′ is the same vertex at
time t + δ. p′ is obtained by first rotating p around c with
angle θ and then translating it with offset o. More formally,

p′ = (R ∗ (p − c) + c) + o, (4)

where R is the 2D rotation matrix with angle θ given by:

R =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

Equation 4 can also be formulated using homogeneous co-
ordinates replacing R, c,o with a single matrix.

To compute the position of c at time t it is enough to
know the position of two rigid parts A and B, each repre-
sented by two reference vertices, at times t and t+δ: pi,p′

i,
0 < i � 4, where pi is the position of a vertex at time t and
p′

i is the position at time t + δ. The vertices of part A are
identified by i ∈ {1, 2} and of B by i ∈ {3, 4}. The previous
relations produce the following system of equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

p′
1 = (RA ∗ (p1 − c) + c) + o

p′
2 = (RA ∗ (p2 − c) + c) + o

p′
3 = (RB ∗ (p3 − c) + c) + o

p′
4 = (RB ∗ (p4 − c) + c) + o

,

where RA and RB are the 2D rotation matrices of the parts
A respectively B, with angles θA, respectively θB . Solving
the system gives c,o, sin(θA), cos(θA), sin(θB), cos(θB).
The position of the articulation point c is computed in the
first frames and used further on as mentioned above (see
Section 4.1).

5 Improvements on spring system

In the course of the current approach the spring system of [ 3]
has been improved with respect to the ordering of the re-
gions in the iterative process and the calculation of the gain
for mixing the offsets of Mean Shift and structure.

The ordering of the regions during the iterations depends
now on the correspondence between the candidate model p̂
of the current frame and the target model q̂ from the initial-
ization. Both models are 3D color histograms in the RGB
color space. They are normalized by the constant C such
that

m∑
u=1

q̂u = 1, (5)

where m is the number of bins. The similarity between
the models can be determined by the Bhattacharyya coef-
ficient [6]:

B =
m∑

u=1

√
p̂u · q̂u. (6)

With this similarity measurement the regions are ordered
descending so that the regions where the candidate model is
very similar to the target model are processed first. This
ordering, in comparison to the randomized ordering, has
the advantages that regions which are represented very well
come first, and regions which are occluded are processed at
the end.

The second improvement of the spring system is the cal-
culation of the gain. In [3], the gain was set to 0.5 so both
Mean Shift and the spring system had the same influence on
the resulting positions. This gain is “fair” but not the best
choice. It would be more reasonable to calculate the gain
separately for each region depending on its candidate model
p̂ and the resulting Bhattacharyya coefficient B. In the im-
proved version of the spring system the gain is calculated as
follows:

g = 0.5 − (B − 0.5). (7)
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Figure 4: Improvements on spring system for rigid parts/objects. Top: old approach [3], bottom: improved approach (Section 5).

g weights the offset of the spring system and 1−g the offset
of Mean Shift.

Experiment: Figure 4 shows an experiment with a real
video sequence. It is a challenging sequence because the
pattern on the t-shirt is undergoing partly non-rigid mo-
tion, meaning it is not only translated and rotated, but also
squeezed and expanded (crinkles of t-shirt). As can be seen
in the first row of Figure 4, the “old” version of the spring
system has problems tracking the target object, because the
ordering of the regions and the gain do not adapt to the sit-
uation. The second row shows that the improved version of
the spring system is more robust.

6 Experiments

The following experiments use synthetic sequences to ac-
curately analyze the behavior of this approach when track-
ing articulated objects. A advantage of using synthetic se-
quences is the knowledge of ground truth and the controlled
environment. In all sequences the size of the search win-
dows of Mean Shift is equal to the bounding boxes of the
regions detected by MSER. The synthetic pattern contains 7
regions and is 50×100 pixels and occlusion is 100×100 pix-
els. The experiments differ in the parameters used to trans-
late and rotate the patterns and the occlusion (see Table 1).

Experiment 1: In this experiment the patterns are trans-
lated 6 pixels in every frame (see Table 1 and Figure 5).
Due to this big movement and the full occlusion of the left
pattern in frame 8, separately tracking the two patterns fails.
Mean Shift is not able to correctly associate the regions after
the occlusion, because the search windows are not at good
starting positions and too small. Our new approach using
the estimated articulation point is able to successfully track
the regions through this sequence. The distance constraint
imposed by the articulation point is the reason why even
though there are big to full occlusions, the positions of the
occluded regions can be reconstructed by the spring system
without visible features. The graphs in Figure 6 show the
spatial deviation of each region over time from ground truth.

Experiment 2: This experiment differs from experiment
1 by a higher rotation between the frames (see Figure 7).

The approach without the articulation point has the same
problems as in experiment 1. Our approach is able to suc-
cessfully track and re-assign the regions after occlusion, but
this time the spatial deviation is higher (see Figure 8) and
the spring system needs more time to minimize its energy.
The reason for this is the higher rotation offset between the
frames. The articulation point only brings in distance con-
straints and no motion model or other knowledge about the
behavior of the object parts.

Experiment 3: In experiment 3 the rotation offset is 6◦

per frame and the duration of the occlusion is higher (the
translation offset was reduced to assure that Mean Shift is
able to track the parts if there is no occlusion). This very
high rotation offset leads to the result that our approach with
articulation also fails (see Figure 9). The cause is already
mentioned in the experiment above: there is only distance
and no motion information.

7 Discussion

This section discusses the main parameters of our approach.

Tracker: The choice of Mean Shift for the tracker is based
on its iterative nature, and its ability to provide the position
of the target object based on a search started from a given
position. These two properties fit very well into this ap-
proach as the spring system optimization is also iterative,
and it is possible to re-initiate Mean Shift at any given state
of a vertex in the spring system. Another tracker with the
same properties could also be used.

Structure: The current approach extends the rigid struc-
ture to handle articulation. This only imposes a distance
constraint and does not consider any information related to
the motion of the parts. We propose to approximate the re-
laxation (energy minimization) process on the graph of the
whole object with local processes on each of the rigid parts,
including the incident articulation points. Instead of keep-
ing the articulation points fixed in the local optimization one
could consider giving them a movement liberty inverse pro-
portional to the object parts on the other side. Also the crite-
ria for the selection of the two reference vertices of the parts,
connected with the articulation point has to be considered:
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Table 1: Parameters of Experiments. The offsets define the amount of translation and rotation in every frame of the synthetic sequences.
Translation offsets are in pixels and angle offsets are in degree.

experiment x-offset φ-offset occlusion x-offset occlusion y-offset
1 6 2 20 20
2 6 4 20 20
3 4 6 10 10

Frame 7 Frame 9 Frame 10 Frame 12

Figure 5: Articulation experiment 1. Top row: frames without articulation point, bottom row: with articulation point. The green vertices in
the graphs represent the reference vertices.
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Figure 6: Spatial deviation in pixels without (a) and with (b) articulation point for experiment 1.

Frame 7 Frame 9 Frame 11 Frame 12

Figure 7: Articulation experiment 2. Top row: frames without articulation point, bottom row: with articulation point.
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Figure 8: Spatial deviation in pixels for experiment 2 without (a) and with (b) articulation point.

Frame 6 Frame 8 Frame 10 Frame 14

Figure 9: Articulation experiment 3, with articulation point.

e.g. taking vertices with highest connectivity and best visual
support. Depending on the structure of the parts using only
two vertices might not be enough to quickly propagate the
information from the articulation point to every vertex of the
part.

As shown in figure 9 the structure of the objects (struc-
ture in motion) without any information about its behavior
(structure of motion) is not enough to solve complicated
cases with whole parts being occluded. One can consider
adding motion models to the parts, or consider additional
information, to handle those cases.

Context: During an occlusion it is not possible to know
for sure how the occluded object part is behaving. It could
continue its movement, increase or decrease its speed or
even stop the movement completely. Instead of estimating
the positions of the invisible features we plan to use higher
level knowledge like spatio-temporal continuity to observe
the occluded part reappearing around the borders of the vis-
ible occluding object.

8 Conclusion

This paper presents a structural approach for tracking articu-
lated objects. The spatial relationships between the parts of
the object are encoded into a spring system. The position of
the articulation points is derived by observing the articulated
object. Integrating the articulation point into the optimiza-
tion process of the spring system leads to improved tracking
results in videos with big transformations and occlusions. In
the future we plan to make our approach invariant to scaling
and perspective changes of the target object and to cope with
disappearing, appearing and reappearing features. The pur-

pose is to add more knowledge about the environment of the
object and its relations.
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