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Abstract. Tracking of articulated objects is a challenging task in Com-
puter Vision. A highly target specific model can improve the robustness
of the tracking by eliminating or reducing the ambiguities in the asso-
ciation task. This paper presents a flexible framework, which allows to
build target specific, part-based models for arbitrary articulated objects.
The rigid parts are described by hierarchical spring systems in form of
attributed graph pyramids and connected via articulation points, which
transfer position information between the adjacent parts.

1 Introduction

Tracking the parts of articulated objects in video sequences is still a challenging
task with a lot of open problems. Promising approaches dealing with this task
employ part-based models and match this models into the image with the help
of statistics to maximize a probability function.

A possibility to build part-based models and describe the spatial relation-
ships between the parts of the target object in a tolerant, deformable way are
spring systems. Spring systems can be represented by graphs, where each part
of a target object is a vertex and the edges encode their spatial relationships.
Object recognition or tracking can be done by minimizing the energy in the
spring system to find the most likely configuration of the object parts in an im-
age. Spring systems have already been proposed in 1973 by Fischler et al. [1].
Felzenszwalb et al. employed this idea in [2] to do part-based object recogni-
tion for faces and articulated objects (humans). Their approach is a statistical
framework minimizing the energy of the spring system learned from training
examples using maximum likelihood estimation. Ramanan et al. apply in [3] the
ideas from [2] in tracking people. In [4], Mauthner et al. present an approach
using a two-level hierarchy of particle filters for tracking objects described by
spatially related parts in a mass spring system.

In this paper we also employ spring systems to encode the relationships in a
part-based model, but in comparison to the related work we try to stress solutions
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that emerge from the underlying structure, instead of using structure to verify
statistical hypothesis. The aim is to supply a flexible framework that allows to
build part-based models for arbitrary objects with varying number of rigid parts
and articulation points. Each rigid part is robustly tracked with the help of a
hierarchical spring system encoding the spatial relationships of coarse and fine
features. The articulation points in the model act as agents of the information
transfer between the parts of the object. They transfer position information
from reliable parts to ambiguous parts. The approach presented here refines and
extends our previous work in [5]. Possible applications are action recognition,
human computer interfaces, motion based diagnosis and identification, etc.

There is a vast amount of work in the field of tracking articulated objects and
motion analysis [6–8]. It would go beyond the scope of this paper mentioning all
of this work. In comparison to many related approaches our approach does not
need any training and we do not employ motion models. The presented approach
relies on the spatial relationships of object parts and their features, and hence
resulting distance constraints.

The paper is organized as follows: Sec. 3 explains how the hierarchical spring
systems are built. In Sec. 4 the task of articulation points is described. Sec. 5
sums up the presented concepts and describes their combination in tracking.
Sec. 6 presents experiments to prove and qualitatively evaluate the concept of
our approach and in Sec. 7 we draw conclusions.

2 The building blocks of the spring hierarchy

Articulated objects are made out of rigid parts connected through articulation
points. On each rigid part, multiple features are tracked through a mixture
of many independent trackers, one for each feature, and a spring system, one
for each part. The final position of each feature is decided based on the offset
vectors from the tracker and the spring system. This section recalls Mean shift,
the method used for the independent trackers, and the spring system.

2.1 Mean shift algorithm

The Mean shift algorithm [9] is employed to associate the features of the object
parts between consecutive frames. It does this by efficiently finding local maxima
in a probability distribution, and generating an offset vector pointing to the
corresponding position. The distribution encodes the probability that a given
feature from the previous frame is in a certain position in the current frame. To
compute the probability that a certain feature, the target, matches the feature
at a certain position, the following similarity measure is used (see Eq. 3).

Region covariance was introduced by Porikli and Tuzel as a feature for detec-
tion, classification and tracking in [10, 11]. It is invariant to scaling and rotation
up to a certain degree (depends on the feature selection) and allows the combi-
nation of multiple features in an elegant way. Furthermore, compared to other



region descriptors, region covariance is low-dimensional and can be efficiently
calculated using integral images.

The covariance feature is extracted out of an one dimensional intensity or
a three dimensional color image I. F is a W × H dimensional feature image
extracted from I, encoding a feature vector of size d at each position F (x, y):

F (x, y) = φ(I, x, y), (1)
where the function φ can be any mapping including e.g. intensity, color, gradients
and so on. A rectangular region of interest R ⊂ F can be represented by the
d × d covariance matrix

CR =
1

n − 1

n∑
k=1

(zk − μ)(zk − μ)T , (2)

where {zk}k=1..n are the d-dimensional feature vectors of the points in R and μ
is the mean over all points. The following distance measure is used to calculate
the similarity between two covariance matrices [11]:

ρ(C1, C2) =

√√√√
n∑

i=1

ln2 λi(C1, C2), (3)

where {λi(C1, C2)} are the generalized eigenvalues of C1 and C2.

2.2 Spring system as a graph

An attributed graph (AG) is a possible data structure for a spring system. The
attributes of the vertices of the graph are the features and their correspond-
ing positions. We use covariance matrices as the features (Sec. 2.1), but other
features can also be used (e.g. 3D color histogram features [5]).

Given the features, the edges of the AG are obtained by a Delaunay triangu-
lation. A fully connected graph (connected each vertex with each other vertex
in the graph) could also be used but it would increase the complexity of the
optimization process.

The elastic behavior (tolerance to variations in the structure) of a spring
system can be modeled by graph relaxation. As the tracked object parts are rigid,
the objective of the relaxation is to maintain the tracked structure as similar as
possible to the initial structure. Thus the aim is to keep the edge lengths as
similar as possible to the initial length. The total energy of the spring system is
0 in the initial state and increases with the deformation of the structure.

The variation of the edge lengths in the AG and their directions are used to
determine a structural offset for each vertex. This offset vector is the direction
where a given vertex should move such that its edges restore their initial length
and the energy of the structure is minimized. This structural offset vector O is
calculated for each vertex v as follows:

O(v) =
∑

e∈E(v)

k · (|e,| − |e|)2 · (−d(e, v)), (4)



where E(v) are all edges e incident to vertex v, k is the elasticity constant of
the edges in the structure, e is the edge length in the initial state and e, at a
different point in time. d(e, v) is the unitary vector in the direction of edge e
that points toward v. For more details see [5].

3 Building the hierarchical spring system

Each rigid part of a target object is described and tracked in a coarse-to-fine
manner. Each part is described by a two level spring system represented by an
attributed graph pyramid [12].

As shown in Fig. 1(a), the top level is described by one covariance feature
Ct, extracted out of a region of interest (ROI) covering the whole object part.
The bottom level consists of several features, which are from the same ROI (see
Fig. 1(b)). A Harris corner detector is applied on the ROI to find promising po-
sitions for the region covariance features {Cb}i=1..n of the bottom level. Around
each corner point a small ROI is built to calculate Cb (e.g. 9 × 9 pixels).

(a) (b) (c)

Fig. 1. Extracting region covariance features. (a) Feature of top level. (b) Features of
bottom level. The white edges are the edges of the AG. (c) Attributed graph pyramid.

The AG pyramid is built as follows (see Fig. 1(c)). In the top level of
the pyramid: one vertex to which the coarse feature Ct of the whole rigid part
is assigned. In the bottom level all fine features Cb. The edges in the bottom
level of the pyramid are inserted with a Delaunay triangulation. The vertex in
the top level is connected with every vertex (child) in the bottom level. The
spring system is initialized with the state in the first frame, meaning that the
total energy of the spring system is considered 0 in this configuration.

4 Articulation points: Agents of the information transfer

An articulation point connects several rigid parts. It allows them to move in-
dependent from each other, but forces them to always keep the same distance.
From this follows that the movement of a rigid part in the image plane is con-
straint to the circle centered at the articulation point and spanned by the radius
corresponding to its size (in 3D it is a sphere). Fig. 2 visualizes this concept.
It would be possible to connect every point with the articulation point, but to



Fig. 2. Distance constraints imposed by articulation points.

reduce the complexity we only built a spring system with two reliable vertices
in the bottom level and with the top vertex.

Articulation points can be initialized manually or automatically by observing
the articulated motion of the target object [5, 13] parts.

Deriving the position of the articulation points: In the frame in which
the position of the articulation point is initialized, for each adjacent part and
each pair of features of the bottom level of the part, a local coordinate system is
created. The coordinates of the articulation point in this coordinate systems is
stored. Having the position of any two features is then enough to reconstruct the
position of the articulation point, and thus at any time, each part can generate
a hypothesis for the position of all adjacent articulation points. This hypothesis
is produced with the local coordinate system of the two most reliable features
(see Sec. 4.1) – further on named reference vertices – of each part.

The hypothesis of all connected parts of an articulation point are combined
with a weighted sum, where the weight for each hypothesis depends on the relia-
bility of the corresponding part (see Sec. 4.1). With this weighting, the influence
of ambiguous parts (e.g. occluded parts) on the position of the articulation point
is low and for reliable parts high.

After the position of the articulation point is computed, the articulation
“transfers” position information from reliably to ambiguously tracked parts
through its distance constraints (circles). This is done in spring systems, where
the articulation point is connected to the reference vertices and the top vertices.

4.1 Computing the reliability of features and parts

The reliability of a feature b depends on the number of incident edges in the
spring system Ib, the energy of the incident edges in the spring system Eb and the
similarity Sb (see Eq. 3) of the covariance feature Cb to the template covariance
feature from the first frame:

Rb = Ib · αI + Eb · αE + Sb · αS

Ib = E(v)
E , Eb =

∑
e∈E(v)

k·(|e′|−|e|)2

TEp
, Sb = ρ(Cb,Ct)

ρmax
.

(5)



E(v) are all edges incident to vertex v (feature), E is the number of edges in
the spring system, TEp is the total energy of the spring system, and ρmax is the
highest similarity in the same part as feature b. In our experiments: αI = 0.2,
αE = 0.4, αS = 0.4. The reliability of a part p is:

Rp = Dp · αD + Ep · αE + Sp · αS

Dp = Fp

F , Ep = TEp

TE
, Sp =

∑
b∈p

ρ(Cb,Ct)

Fp

(6)

is computed out of the size Dp of the part p, the energy of the part Ep, and the
similarity Sp of the covariance features in comparison to their templates. Fp is
the number of features of part p, F is the number of all features, and TE is the
energy of all spring systems. In our experiments: αD = 0.2, αE = 0.4, αS = 0.4.
Intuitively the two measures model the mixture of “seeing” and “knowing”.

5 Tracking as a hierarchical optimization process

Tracking is done in a coarse-to-fine manner – from top to bottom level of each
part (summarized in Algorithm 1).

Algorithm 1 Algorithm for tracking articulated objects.
1: processFrame
2: associate top vertex of each part with Mean shift
3: associate bottom vertices of each part with Mean shift and structural offsets
4: select reference vertices for each part
5: calculate current position of articulation points
6: transfer position information over articulation points to top and bottom levels
7: end

The first step is to associate the top vertices of each part using the positions
from the previous frame and applying Mean shift to a probability distribution
built with the similarity measure in Eq. 3.

In the next step the bottom vertices of each part are associated by combining
Mean shift offsets and structural offsets. The structural offsets are generated out
of the spring systems of the bottom levels and the spring systems connecting each
bottom vertices with the corresponding top vertices. For each feature (vertex)
depending on its reliability value Rb a mixing gain g = 0.5 − (Rb − 0.5) is
computed and used to combine the offsets.

Then for each part the two vertices with the highest Rf are selected to gen-
erate the hypothesis for the positions of the articulation points. The hypothesis
of the parts connected to a articulation point are mixed with a weighted sum
depending on the reliability value Rp of each part.

In the last step, the position information between the parts is transfered
over the articulation points to the top and reference vertices which forward the



information to the vertices not directly connected. This transfer is again done
in a combined iterative process with Mean shift and structure.

6 Experiments

In all experiments we use prior knowledge about the structure of the object to
initialize the ROIs and the articulation points. The spring constant k is set for
edges in the bottom level to 0.2 and for edges connecting to the articulated point
or to the top vertex to 0.5.

In experiment 1, the lower and upper arm of a human are successfully tracked
through articulated motion (see Fig. 3). Experiment 2 in Fig. 4 shows frames
with scissors. One part of the structure is completely occluded, but the position
of the articulation point (red star) is robust and the structure relaxes when the
occlusion is gone. In experiment 3 one can see the tracking of 4 parts connected
with 3 articulation points (see Fig. 5).

Frame 10 Frame 70 Frame 280 Frame 305

Fig. 3. Experiment 1: Tracking a human’s upper and lower arm in articulated motion.

Frame 210 Frame 285 Frame 355

Fig. 4. Experiment 2: Tracking through occlusion.

7 Conclusion

This paper presented an approach for describing and tracking of articulated ob-
jects consisting of several rigid parts connected with articulation points. The
object parts are described in a coarse-to-fine manner in an AG pyramid, where



Frame 20 Frame 150 Frame 440 Frame 490

Fig. 5. Experiment 3: Tracking 4 parts of a human with 3 articulation points.

the features are region covariance matrices and the spatial relationships between
the features are enforced during the tracking through a hierarchical spring sys-
tem. Position information is transfered between the parts over the corresponding
articulation points depending on the reliability of the parts and their features.
Open issues are dealing with pose changes and the corresponding changes in the
structure, optimizing the information transfer in big structures and automati-
cally initializing the structure.
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