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Abstract In this work, we propose an image-based pheno-
typing framework for the determination of quantitative traits
from mature Arabidopsis thaliana plants. Two-dimensional
(2D) images taken from the dried and flattened plants are
analyzed regarding their geometry as well as their branch-
ing topology. The realistic branching architecture is hereby
reconstructed from a single 2D image using a tracing
approach with a semi-circular search window. The center-
line segments of the tracing procedure are subsequently
merged and labeled basedon ahierarchical approach combin-
ing continuity properties with geometrical and topological
information determined during tracing. This paper covers
a detailed description of the proposed plant phenotyping
pipeline from the image acquisition process until the extrac-
tion of the quantitative traits. The framework is evaluated
using a set of 106 images and compared to a manual phe-
notyping approach as well as a semi-automatic image-based
approach. The most relevant results of this evaluation are
presented.
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1 Introduction

In this section, we present the necessity for image-based
plant phenotyping (Sect. 1.1), highlight relevant and inspir-
ing state-of-the-art approaches (Sect. 1.2) and define the
problem which is addressed in this work (Sect. 1.3).

1.1 Importance of plant phenotyping

Understanding the functional relation between the genotype,
environmental conditions and the resulting appearance of
a multicellular organism is crucial for different disciplines
in life science. For instance, in medicine, the likelihood for
certain pathologies when being carrier of a specific genetic
variation is of interest. In animal biology, the outward man-
ifestation (appearance, behavior) of different animal models
is in scope of basic research enabling conclusions in a variety
of fields [9].

In plant biology, the functional analysis of genes is often
motivated by an increasing demand of nutrition as well as in
ongoing climatic changes and its associated impacts on the
natural environment of organisms [47]. Linking the genetic
data of organisms with properties describing their appear-
ance, so-called traits, is the goal of researches from multiple
disciplines. While sequencing the genome of multicellular
organisms can nowadays be solved effectively, the current
bottleneck in large-scale functional genetic studies is the
manual determination of traits [11].

Advances in digital imaging technologies offer nowadays
the opportunity for high-throughput imaging [42] from dif-
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ferent plants or plant components at different scales ranging
from microscopic scale to larger scales (e.g., on the field)
[21,39,46]. High-throughput imaging techniques combined
with computer vision and image analysis methods can help
to overcome the current bottleneck in large-scale genetic
studies by providing frameworks/image analysis pipelines
for an efficient extraction of traits from different organ-
isms [41].

1.2 Recent developments in image-based plant
phenotyping

The digital image-based phenotyping of plants is a rather
new application in the field of computer vision and image
analysis. The automated determination of quantitative root
traits describing the root system architecture (RSA) was one
of the earliest studied problems in plant phenotyping. Hence,
the majority of current approaches deal with the determina-
tion of root plant traits of different plants like Arabidopsis
thaliana, maize or rice [23,41].

Traits of interest regarding the RSA are for example the
length of the main root, its curvature characteristics or the
root’s tip angle. These traits are observed over time (e.g.,
on a daily basis) during the early stages of growing and are
combined to gain knowledge regarding the root growth rate
[5,15,32,40]. A high temporal analysis of the root growth
behavior is presented in [43] where the ability of root to
react on gravity changes (root gravitropic experiments) is
investigated.

While the previous research extracts traits from plants
observed at different timestamps (days, minutes), other
works analyze the architecture only at a specific moment.
Besides the geometrical traits, also traits regarding the
branching network (e.g., network depth) are extracted in [2].
The reconstruction of a 3D root shape from multiple 2D
images for subsequent analysis is a topic of the approach
presented in [51].

A further major application in image-based plant pheno-
typing is the extraction of traits describing the appearance of
plant’s leafs and rosette development. Images are acquired
mainly from a camera systemmounted on a robotic arm from
the top view. After leaf segmentation, labeling and additional
post-processing, quantitative traits like the leaf area or the leaf
area distribution can be extracted [3,28–30,34]. To study the
leaf growth behavior, images are acquired over a specific
period of time.

Similar traits are also in focus for whole shoots (plant
parts which are growing above ground) of crop plants like
barley, wheat or pea. In [20,35], a 3D model of the plant
is reconstructed from RGB images of multiple views and
the traits like width, height or volume are calculated. An
approach for the determination of the traits concerning
the whole shoot of pea plant is presented in [18]. Three

optical projections are used to calculate, e.g., the area of
green components. The traits are extracted over a period of
21days.

Moreover, image-based phenotyping can be used to char-
acterize plant disease phenotypes [31].

As mentioned, there exists already a good amount and
variety of approaches for phenotyping plants based on dif-
ferent imagemodalities and applications. Nevertheless, there
exists only a limited number of methods concerning the
analysis of the plant’s shoot [1,12]. Especially when it comes
to non-leaf traits. Furthermore, there is a lack of methods for
the detailed (topological) analysis of networks of curvilinear
structures like root or stem systems in the field of image-
based phenotyping.

1.3 Aim of the work

This work deals with image-based phenotyping of themature
shoot system of plants. By the extraction of quantitative traits
in the mature state of development, the final architecture of a
plant can be analyzed. In this work, we present a framework
which analyzes 2D images of mature A. thaliana plants.

A. thaliana is a small, flowering plant and a popular plant
model for basic research which is widespread around the
world [19]. The plants in this work were growing in a natural
environment where the surrounding conditions were very
well known. For the purpose of manual analysis, the plants
were harvested and shipped to a lab where the subsequent
phenotyping took place. For an adequate shipping and stor-
ing, the mature plants were pressed. In the mature state, A.
thaliana mainly consists out of stems and siliques with some
remaining dried flowers and leafs. A sample image is shown
in Fig. 1.

Due to logistics and the single-shot 2D image acquisition,
parts of the plant appear as overlapping regions on the images.
Hence, in a segmented image, branching points would occur
without having a physical relationship in nature. The problem
addressed in this work is therefore defined as the reconstruc-
tion of the realistic plant architecture from single-shot 2D
images of plants which appear as a network of curvilinear
structures.

Prior applications of computer visionwere already dealing
with similar problems, e.g., when analyzing blood vessel net-
works, biological neural networks or aerial imaging [14,27].
Analyzing these structures is mainly carried out as two-step
approach: In a first step, the object is segmented before parts
of the network are grouped and labeled in a second step. Var-
ious methods were developed for the task of segmentation or
skeleton extraction of such networks [13,14,25,27,33,48–
50]. The amount of approaches which deal with the problem
of automated labeling and grouping of trees and sub-trees is
more limited [6,17,22,26,36,45].
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Fig. 1 Two-dimensional, top view, single-shot image of mature A. thaliana. In the mature state, the plant mainly consists out of stems and siliques.
An example for a branching region as well as for a crossing region is emphasized. The image corresponds to approximately 45 × 30 cm in real
world

The grade of complexity of the problem addressed in this
work is defined by the number of critical points as well as
imaging properties.Critical points are branching regions hav-
ing a physical connection in nature, termination points and
especially crossing (overlapping) regions. After reconstruct-
ing the plant’s architecture, quantitative traits regarding the
geometry of the plant (e.g., length) but also concerning the
network topology can be determined.

In our work, we focused on the feasibility of high-
throughput analysis for mature plants, which should also
minimize the time spend for preparation of the plants before
the images are acquired, thus we did not require to fix or/and
to untangle the plants. We have also abounded “traditional”
skeletonization-based methods for plant phenotyping [1,12]
after a preliminary study. A lot of branch and silique over-
lapping occurs thus skeleton-basedmethods cannot correctly
detect overlapped branches [1]. By untangling the plants,
these problems can be overcome, which means also more
time needed to prepare the plants before image capture.
Tracing algorithms are alternative methods in the analy-
sis of networks of curvilinear structures. Tracing is the
process of following a structure, mostly curvilinear or tubu-
lar, from a defined starting point until a termination point.
The advantage of tracing algorithms is the simultaneous seg-
mentation and determination of local properties along (and
only along) the structure. In this work, we propose the use
of an adapted tracing algorithm with a semi-circular search
window [8,48] to extract centerline segments of the net-
work in a first step. In a subsequent step, the geometrical
and topological properties of these segments are used to
hierarchically reconstruct the plant’s architecture based on

continuity principles. The hierarchical reconstruction allows
to deal with overlapping of branches and siliques in adequate
manner.

Along with the core task of reconstructing the plant’s
architecture, a framework is developed for an effective phe-
notyping of the plant which includes pre-processing steps
such as an automated spatial calibration but also generating
appropriate resulting images for a quick quality control.

Within this work, we show the ability of the proposed
framework to accurately extract geometrical traits in an
semi-automated fashion. An automated detailed topological
analysis is limited to the complexity of the network as well
as by the image properties. To the best of our knowledge, this
framework is the first approach dealing with the geometrical
and topological analysis of the mature stem structure of A.
thaliana plants using tracing approaches.

This work is an extension to our previous work presented
in [4]. We provide in this paper a more detailed descrip-
tion of the methodology, especially regarding the required
pre-processing steps. In Sect. 3.2, we present recent updates
to our tracing approach for a reduction of user interaction
along the steps of the proposed pipeline. Furthermore, we
extended the evaluation section by a second phenotyping
approach which was carried out by one of our collabora-
tors.

The paper is structured as follows. In Sect. 2 an overview
of the image acquisition setup as well as a more detailed
description regarding the plants is given. In Sect. 3, we
introduce the framework which was developed and describe
the methodology. The paper is concluded with experiments
(Sect. 4) and a conclusion (Sect. 5).
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2 Imaging the mature A. thaliana shoot system

In this section, wewill discuss the acquisition setup for imag-
ing mature A. thaliana (Sect. 2.1) and the proposed model of
the mature A. thaliana plant (Sect. 2.2).

2.1 Image acquisition setup

Imaging the mature state of plants which are growing in
different regions of the world is a challenging task in
terms of logistics. A trade-off between time consumption,
cost-effectiveness as well as resulting limitations for high-
throughput phenotyping has to be achieved. In this work,
the images were taken as part of a project entitled The
molecular basis of local adaption in A. thaliana led by Ben-
jamin Brachi (Bergelson Lab, University of Chicago, US).
The main intention of acquiring the images was a subse-
quent manual phenotyping. The use of computer vision and
image analysis methods for digital phenotyping was not the
main focus as no suitable framework was present at that
moment.

The images of the plants were acquired indoors using
a consumer digital camera (Nikon D700, digital single-
lens reflex; focal length: 60mm; f -number: f /13; exposure
time: 1/125s) with 12.1megapixels (4284×2844pixels) and
stored as TIFF (tagged image file format) in RGB color
mode with 8-bit color depth. The camera is fixed and two
additional Bowens flash lights were used to maintain equal
lighting conditions. The pressed plants were placed on a
black velvet board to establish a high contrast between
object and background. A velcro scale as well as a vel-
cro wipeable number tag were added to the velvet for later
analysis. Each plant is imaged once (single shot) and is
completely visible, i.e., the shoot system, the rosette and
the roots. A sample image from the dataset is shown in
Fig. 1.

The benefits of this setup are the relatively low costs and
the suitability for large-scale imaging. Due to logistical rea-
sons (different harvesting locations), the plants were dried
and pressed for shipping. Hence, some traits concerning the
architecture of the plant cannot be reliably extracted, e.g.,
the original branching angles. Furthermore, the occurrence
of crossing regions in the plant itself as well as in the 2D
images leads to an increase of the complexity of the recon-
struction process.

A 3D image acquisition setup would not automatically
yield to a more promising analysis of the plants as they were
already manipulated before the images are acquired. A com-
plete and clear reconstruction of the mature plants would
only be possible with on-field imaging technologies, having
the drawback of high costs.

2.2 Model of the mature A. thaliana shoot system

The mature A. thaliana shoot system mainly consists out
of stems and siliques. This appearance can be modeled as
a network of curvilinear structures similar to blood vessel
networks or biological neural networks. Hence, to simplify
the task of analyzing the mature plant’s shoot system, some
constraints regarding the plant itself as well as regarding the
constant image acquisition setup are defined.

The plants’ stems and siliques are defined as piecewise
linear (curvilinear) structures and their medial axis is repre-
sented by connected line segments. The stems and branches
appear as bright structures on a dark background, their cross-
wise intensity profile approximates aGaussian profile and the
intensity changes along the stems and siliques are smooth.
The stems and branches’ diameters decrease coming closer
to the plant’s end points and do not change abruptly. The
siliques show a stronger variation in diameter compared to
regular stems.

The region of the rosette is defined as the origin of all main
stems and the plant forms a tree-like structure for which side
branches are building further sub-trees. The rosette is only
of importance for finding the origin of the shoot system, but
is not relevant in terms of phenotyping the shoot system.
The same holds for the remaining roots which are sometimes
present on the images.

The topological information of the plant is characterized
by the physical connection between different parts of the
plant (e.g., siliques, leafs, flowers, branches). Each of these
parts can further be described by its geometrical charac-
teristics such as size, shape, spatial location or orientation.
The term “architecture” of a plant comprises the topolog-
ical as well as the geometrical information and describes
the different components of the plant regarding to space and
time [16]. Characteristics describing the architecture of a
plant are denoted in the following either as geometrical or
topological traits. For, e.g., the number of siliques (on dif-
ferent stems) is considered as a topological trait, whereas
the individual silique’s length is considered as a geometrical
trait. Regarding topological characteristics, the architecture
of the plant can range from simple plants (low number of crit-
ical points, e.g., branching regions) to complex plants (high
number of critical points).

3 Mature plant phenotyping framework:
components and methodology

In this section,we propose a phenotyping pipeline for the pur-
pose of the extraction of quantitative traits from 2D images of
mature A. thaliana plants. The framework fulfills the tasks of
pre-processing the images, extracting centerline segments of
the plant’s shoot system and reconstructing the realistic stem
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Fig. 2 Overview of the proposed mature plant phenotyping framework

architecture before the quantitative traits are calculated. An
overview of the proposed pipeline is show in Fig. 2. This
section is divided according to the three major steps of this
pipeline.

3.1 Pre-processing

In this subsection, the basic steps of the image pre-processing
are described.

3.1.1 Gray-scale transformation

Due to drying of the plants, the color information provided
by the RGB images was unevenly in one image and over the
whole dataset. Hence, the RGB images were transformed to
8-bit gray-scale images by extracting the R-channel of the
RGB color space as the color information could not be used
as an additional contrast for parts of the plant.

Another reasonable gray-scale transformation was achie-
ved using the L-channel after transforming the RGB image
into the L*a*b* color space. Certainly this transformation
has to be considered as computationally more expensive.
Nevertheless, in this work, a trade-off between the achieved
contrast and the computational time was made using the R-
channel over the L-channel.

3.1.2 Automated region-of-interest (ROI) identification

There are three ROIs identified in each image: the plant ID
sign, the scale and the plant itself. The automated identifi-
cation of these regions in each image I is achieved by the
following procedure:

1. Down-sampling of I to I
′
by 1/8 of its initial size (3rd

level of a Gaussian image pyramid).
2. Transformation to a binary image B

′
by calculating the

maximum of the bit-planes 5–8 from I
′
at each position

〈x, y〉

B
′
(x, y) = max

bit=5...8
I

′
bit(x, y). (1)

With the chosen subset of bit-planes, this operation is
equivalent to a gray-level threshold at level 15.

3. For each connected foreground region in B
′
, the perime-

ter, the centroid and the bounding box are determined.
The connectivity was chosen to be 8.

4. After filtering out small regions (perimeter is less than
5% of the maximum), the remaining regions are sorted
by their centroids’ horizontal position of the plants. The
arrangement of the ROIs in each image was constant dur-
ing acquisition, hence the ROIs could be assigned to the
regions in B

′
.

5. The bounding box of each region in B
′
was rescaled to

the initial size of I and the ROIs were extracted.

3.1.3 Automated spatial calibration

To get a relation between real-world metric units, e.g., mm,
and pixel values a spatial calibration is needed. In this work,
the spatial calibration is achievedby theuse of the scalewhich
is present on the black velvet board during acquisition.

The cropped image of the scale bar ISB is extracted by
the process described in automated ROI identification above.
Mainly three colors are present in ISB: white (ruler units),
mid-gray (ruler background) and black (velvet board). With
use of these constraints, the process for the automated spatial
calibration can be described as follows:
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1. Binarization of ISB by a fixed threshold t which was set
to 175.

BSB (x, y) =
{
1 if BSB (x, y) > t

0 else
. (2)

2. To calculate the distance between the scale graduations,
remaining unwanted objects in BSB, such as numbers
have to be removed. This is done bymorphological recon-
struction operation ρ:

B
′
SB = ρmask (marker) . (3)

Thebinary imageBSB is used as amask, themarker image
is calculated by morphological eroding (�) of BSB with
a structuring element SE. A horizontal line with a width
of 1/3 of ISB was used as the structuring element.

3. Only the scale graduations remain in B
′
SB by the previ-

ous operations. For each foreground region in B
′
SB, the

centroid is calculated in a first step before the distance
between neighboring scale graduations is determined.
The average Euclidean distance and the a prior-known
real-world metric unit is subsequently used for the final
calculation of the conversion factor.

The procedure of automated spatial calibration is done for
each image which is analyzed by the framework.

3.2 Centerline extraction

The centerline of an object is an efficient representation to
analyze it in terms of geometry as well as topology. Tracing
or line following approaches extract the centerline of a “thin”
object by iteratively traveling along the object using a certain
search window. The algorithm is initialized at certain start-
ing points, so-called seed points and terminates if specific
(stopping) criteria are fulfilled. In this work, a tracing algo-
rithm using a semi-circular search window, similar to the one
in [8,13], is used for extracting the centerline of the plants’
stems.Local features like tracingdirection or radius are deter-
mined already during the centerline extraction process and
can be used for the plant reconstruction process.

3.2.1 Seed point identification

The initial set of seed points to start the iterative tracing pro-
cedure can either be chosen manually or by an automated
procedure. Automated procedures focus mainly on the iden-
tification of ridges/edges along scan lines (grid) [7,13] or in
the neighborhood of the ROI [17].

In thiswork,we propose to use two sets of seed points. The
first set of seed points SI is used for initializing the tracing
procedure and for the analysis of the branching network of the

plant. A second set SII is used to guarantee the completeness
of the centerline extraction process.

Automated identification of SI The rosette of the plant is
the region where the stems originate and therefore is suit-
able to start the reconstruction of the plant. Therefore, an
initial seed point is wanted on every stem leaving the rosette
(denoted as main stems). An automated method to identify
ridge points on the main stems is proposed as follows and
motivated by the subsequent tracing procedure itself:

1. The location of the rosette is expected in the lower part of
the image. Hence, the search area is reduced to the lower
third of the image. The image is down-scaled to one half
of its original size.

2. The image is binarized as proposed in Sect. 3.1.2 by (1).
3. The rosette is identified by its morphological difference

compared to stems.While the stems aremodeled as piece-
wise linear objects, the rosette and its overlapping leafs
aremodeled by an elliptical or circular shape. The diame-
ter of the rosette is expected to be higher than thewidth of
the biggest stem occurring in the image. An approximate
segmentation of the rosette is achieved using repeated
morphological opening using a disk-shaped structuring
element. During each repetition, the disk diameter is
decreased by 1 pixel. The procedure is repeated until only
one connected component is present in the opened image.
The initial diameter of the disk is set to 20 pixels.

4. On basis of the centroid p = 〈px , py〉 and the equiva-
lent diameter deqv, a semi-circular neighborhood in the
growing direction is considered to identify possible ridge
points. Specifically, a semi-circular gray-value profile
G (r,p)with radius r frompointp in an image I is defined
as a sequence of n equally spaced samples taken along
the circumference [8]:

G (r,p) = {ci , i = 0, 1, . . . , n − 1}, (4)

ci = I
(

px + r · cos (i · δθ) , py + r · sin (i · δθ)
)
, (5)

δθ = π

n − 1
. (6)

5. The profileG (r,p) is subsequently filtered by aGaussian
filter (size = 13, σ = 1). The profile is determined for
different scales of r starting with deqv and incremented
by 5 pixels. The sampling rate n is set to deqv · π . At
each scale, the maxima along the profile are identified
and if the number of maximums remains constant for 5
iterations the location of the first maximum is the initial
seed point set SI . If this condition is not fulfilled for 25
iterations, the seed points have to be selected manually.

Automated identification of SII The second set of seed
points is used in the case that a stem is missed during the
tracing procedure which would result in an incomplete cen-
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Fig. 3 The geometric determination and extraction of the local features
at a centerline point

terline map of the plant. A quadratic grid is positioned in
the center of the image, where the length of one square is
set to approximately half of a silique length which were 75
pixels in this work [4]. Ridge points are detected along this
grid. The set of valid ridge points is refined by not consid-
ering points below the lowest (y-position) seed point in SI
and where the intensity value is below 20% of the maximum
intensity value. This approach helps us to overcome one of
the limitations described in our previous work [4], which is
the need for a manual selection of additional seed points in
case the tracing procedure turns out incomplete.

3.2.2 Iterative tracing

The tracing procedure can be split in four phases: Initial-
ization, estimation, identification and validation [8]. These
phases are iteratively executed until a certain stopping crite-
ria are fulfilled, discussed in the next section. A geometric
description of these phases is shown in Fig. 3.

Initialization Each iteration k is initialized at a point pk .
While in the beginning, the set of seed pointsSI is used as ini-
tial points, additional points are determinedduring the tracing
procedure when detecting neighboring centerline points or
branching points.

Estimation The location of the next centerline point pk+1
is estimated by a dynamic semi-circular search window (see
Fig. 4) which guarantees a constant look-ahead distance in

Fig. 4 A semi-circular template is propagating along a stem until a
branching point is detected. The intensity profile along the semi-circular
circumference of the search window is shown for the detection of the
branching point. The triangles indicate the identified candidate points

all directions. The gray-value profile G
(
rk,pk

)
along the

circumference of a semi-circle with radius rk at pk in the
image I is defined according to (4).

Since I is defined in the discrete space, the values of ci

are determined using the nearest pixel values. The gray val-
ues along the circumference are smoothed using a Gaussian
filter (size = 13, σ = 2). The radius rk must be defined big
enough to cover different stem widths and must be small
enough to not detect points along neighboring structures.
Therefore rk is adapted dynamically at each iteration by [8]:

rk = ρ · [
max{Rk, Rk+1}

]
. (7)

Rk and Rk+1 are the radius of the stem at the current and the
next centerline point position. The constant factor ρ should
be defined bigger than 1 to guarantee the coverage of the
whole width of a stem. In this work, ρ was set to 2.

123



M. Augustin et al.

Fig. 5 Different types of candidate points can be identified: stempoints
(qa, qc), outlier points (qd) and non-stem points (qb)

Identification The stems appear as bright structures on
a dark background and thus the intensity profile forms a
Gaussian-like shape. To identify a centerline candidate point
qk , the intensity profile G

(
rk,pk

)
is probed for local max-

ima (see Fig. 4). Figure 5 shows an overview of different
points which have to be considered and differentiated along
the circumference of the search window: Stem points, outlier
points and non-stem points.

Validation Each candidate point qk is validated by deter-
mining its local features. The accuracy of the features
depends on the tracing direction as well as on small intensity
variations across the stems. To gain a higher accuracy regard-
ing the location, the first estimate q

′
k is refined as follows (see

Fig. 3 for illustration) [8,17,44]:

1. Calculate tracing direction for q
′
k

u
′
k = q

′
k − pk

‖q′
k − pk‖

. (8)

2. Detect edge points (ek,L and ek,R) along two linear inten-
sity profiles PL and PR perpendicular to the direction u

′
k

by finding the gradient’s maxima. The length PL and PR

is chosen to be the same value as rk .
3. The location of q

′′
k is calculated as the medial point

between the edge points. The radius Rk+1 is determined.
4. The final tracing direction uk is refined by

uk = q
′′
k − pk

‖q′′
k − pk‖

. (9)

Table 1 Geometrical and topological properties of a STEL are deter-
mined during extracting the centerline by iterative tracing

Geometrical properties

pk Location of current STELk in pixel
units

uk Tracing direction (unit vector) at pk

Rk Radius of the stem at pk

ek,L, ek,R Edge point positions

sk Normalized intensity level at pk

γk Percent dynamic range from
perpendicular intensity profile at pk

Topological properties

ID A unique ID for each STEL

Parent ID of the previous STEL

Type Regular (one child),
branching/crossing (two or more
children), root (no parent/seed
point), termination (no child), outlier
(no parent)

The final position of the validated point pk+1 can be influ-
enced by a parameter α (=0.9 in this work) which regulates
the step size according to:

pk+1 = pk + α · uk . (10)

A centerline point, denoted asSTEL (STem-ELement), com-
prises local geometrical as well as topological properties
which are extracted during the tracing process. The prop-
erties are defined in Table 1.

3.2.3 Centerline representation and stopping criteria

To avoid tracing of already traced stems, a centerline repre-
sentation is used. The centerline representation is a binary
image with the size of the plant’s image I (initialized with
pixel values equal zero). After each iteration, the pixel values
of the current stem segments are set to one. Two neighbor-
ing STELs are thereby connected using the Bresenham line
drawing algorithm [10].

The centerline of the plant’s stems is extracted by exe-
cuting the previously described steps iteratively until at least
one of the following criteria is fulfilled:

• Any of the pixels of the search window is outside the
image range.

• No valid candidate points are identified.
• More than one valid candidate point is identified (branch-
ing/crossing).

• Connection between the current point pk and one of the
current candidate points qk intersects the actual center-
line image.
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• Percent dynamic range falls below 10 %.

3.3 Plant reconstruction

The centerline extraction process leads to a set of uncon-
nected centerline stem segments whose geometrical and
partial topological properties are given by their STELs. The
branching topology ofA. thaliana is not known and therefore
cannot be described as an a priori model. Furthermore, the
local knowledge at critical regions during tracing is not suffi-
cient for an appropriate reconstruction during the centerline
extraction process. This demands an additional step which is
the reconstruction of the plant out of the centerline segments
from the tracing procedure. After reconstructing the realistic
architecture out of the 2D information, the quantitative traits
are calculated.

3.3.1 Grouping and labeling

In this work, we propose a hierarchical, graph-based recon-
struction process. An overview of this process is shown in
Fig. 6.

Fig. 6 Hierarchical reconstruction of the plants’ architecture. The base
layer consists of the centerline segments from the tracing procedure.
The top layer represents the plant with use of branches and branching
points. The root node is shown by a triangle, end nodes are represented
by circles and branching points are represented by “+”-signs

Filtering Centerline segments which are shorter than 5
pixel are removed. The remaining centerline segments are
represented as nodes V and possible connections between
two segments as edges E. The set of edges E and nodes V is
represented as an undirected graph G = (V,E).

Clustering Assuming that each centerline segmentVi can
be connected to any other centerline segment V j , we obtain
a complete graph. As a segment at the very top of the image
is unlikely to be connected to a segment at the very bottom
we are looking for a representation with a reduced set of
possible connections. At this level, each centerline segment
is represented by an edge Si and a set of possible connec-
tions between adjacent centerline segments as (cluster) node
CNi . The set of possible connections is reduced by exploit-
ing the topological information gained during tracing (STEL
relations). Furthermore, we defined heuristic rules and an
Euclidean distance to integrate unrelated segments which are
present after tracing.

GroupingThe classification ofmerging segments to a path
is based on continuity principles as we can expect smooth
variation in termsof shape and texture along the stems.There-
fore, the cost term c

(
Si ,S j

)
is proposed based on the edge

direction similarity θ
(
Si ,S j

)
. To strongly weight resulting

tortuous paths, the tortuosity τ
(
Si ,S j

)
of the resulting path

is weighted with the exponential function and multiplied by
the linkage distance dl between Si and S j . Hence, the cost
function therefore is defined as

c
(
Si ,S j

) = θ
(
Si ,S j

) + dl · eτ(Si ,S j). (11)

The edge direction similarity θ
(
Si ,S j

)
between two seg-

ments Si and S j with corresponding directions ui and u j is
defined as in [45]

θ
(
Si ,S j

) = arccos

(
ui · u j

|ui | · |u j |
)

. (12)

The tortuosity of the resulting path is calculated as the ratio
between the path length li j and the Euclidean distance di j

between the resulting path’s endpoints

τ
(
Si ,S j

) = l12
d12

. (13)

The grouping process follows a trace-back principle which
means that the tree is constructed from the exterior regions
to the interior regions. Furthermore, the cluster nodes are
visited from less complex tomore complex nodes and the cost
function is determined subsequently. The number of possible
edge-pairs in a cluster is defined as the grade of complexity.
A tree T = (BP,B) containing branches Bi and branching
pointsBPi is iteratively build byminimizing the cost function
in (11).
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3.3.2 Geometrical and topological traits

After reconstructing the plant’s realistic architecture, the
quantitative traits are determined. Topological traits are used
to quantify the “network topology” of the plant and describe
the relation between different plant parts. Therefore, we
define different branch types from which their occurrence
is determined:

• NMS: number of (main) stems (MS)which originate from
the rosette area.

• NSIL: number of terminating branches (siliques—SIL)
containing the seeds and having a characteristic width
variation.

• NL: number of terminating branches (leaf—L) which are
not classified as siliques.

• NSB: number of side branches (SB) originating from a
main stem or another side branch.

The geometrical traits are calculated for each branch Bi :

• lB: path length of the branch’s centerline calculated by the
number of odd No and even Ne Freeman (8-directional)
chain codes along the centerline:

lB = Ne + No · √
2. (14)

• dB: the Euclidean distance between the branch’s end
points [26].

Silique detection The majority of the exterior parts of
mature A. thaliana are siliques. Furthermore, siliques gener-
ally tend to have a higher variation in width and the lengths
of siliques on one plant is more evenly distributed than the
length of other leaf parts. For this reason, the path length,
the average width and the standard deviation of the width of
the exterior branches combined with outlier detection meth-
ods are used to differentiate between siliques and other leafs.
If the number of leafs on a plant is greater or equal 20, the
robust Minimum Covariance Determinant estimator is used
(outlier detection based on all three features) [38]. Other-
wise the Median Absolute Deviation is used based on the
branches’ path lengths [37].

4 Experiments and evaluation

To evaluate the performance of the proposed phenotyping
framework for mature plants, a set of 106 images was used
(see Sect. 2). The extracted traits by the proposed plant
phenotyping framework (PPFW) are compared to a semi-
automatic analysis usingFiji Simple Neurite Tracer [24] (GT
Fiji) and amanual phenotyping approach (GTUK). Theman-
ual analysis of the plantswas done by one of our collaborators

in Norwich, UK before the framework was developed. One
expert determined hereby traits like the number of siliques
or length of the siliques by visual inspection. To get a more
detailed analysis, especially regarding the geometrical traits,
the second analysis GT Fiji was carried out. Furthermore,
the framework is analyzed regarding the throughput and the
amount of manual corrections which are needed along the
phenotyping pipeline.

4.1 Throughput of the proposed plant phenotyping
framework

In addition to the accuracy of the extracted traits using a
phenotyping framework also their need for manual inter-
ventions vs. the throughput of the system is crucial when
it comes to a laboratory use. A manual correction to rise
the throughput rate along the analysis is provided for the
pre-processing as well as the centerline extraction process.
For the step of plant reconstruction, only a manual quality
control by visual inspection is provided and the user decides
whether he accepts the result of the reconstruction process or
if he wants to exclude the results from the trait analysis. The
framework was implemented in the MathWorks® Matlab®

environment.1

4.1.1 Pre-processing

During the automated ROI identification as well as the auto-
mated spatial calibration, there were no manual corrections
needed for all 106 images.

4.1.2 Centerline extraction

During the automated seed point identification for SI (see
Sect. 3.2.1), 7 clicks are needed to overcome false positives
and negatives. The F-value without a manual correction was
97.01 %.

4.1.3 Plant reconstruction

The plant reconstruction process is mainly evaluated for the
completeness of the reconstruction. In some cases, wrongly
made local decisions in a cluster node lead to missing of
some plant parts as the grouping process yields to multi-
ple separated (sub)trees instead of one tree per main stem.
Hence a quantitative trait extraction would not make sense in
those cases. Therefore, the completeness of the reconstruc-
tion is evaluated by visual inspection of a resulting image
overlaid on the original image (see Fig. 10). Incompleteness
was noticed in 16 out of 106 images, which corresponds to
a throughput rate of 84.91 %.

1 http://www.mathworks.com/products/matlab/.
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Table 2 Comparison regarding the branches’ lengths (path length lB)
and number of branches (NB)

Method Trait Branch type

MS SB SIL

GT Fiji lB [Px] 1971 (±737) 615 (±408) 179 (±24)

NB 102 148 3051

PPFW lB [Px] 2017 (±762) 236 (±188) 168 (±21)

NB 100 545 2701

GT UK lB [Px] – – 129 (±23)

NB – – 2912

PPFW
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Fig. 7 Scatter plot comparing the GT Fjiji and the PPFW MS lengths
(Pearson’s r = 0.99 (p < 0.01))

4.2 Measurement of the plant size

The accuracy of the final traits is evaluated using the 90
images where the grouping process was judged positive. The
lengths of certain branch types (MS, SB and SIL) are aver-
aged per plant and compared to GT Fiji. Furthermore, the
lengths of the siliques are also compared to manual pheno-
typing (abbreviated with GT UK) as this trait was already
evaluated for the given dataset before the framework was
developed.

4.2.1 Comparison with GT Fiji

The evaluation concerning the stems’ lengths is summa-
rized in Table 2. The average relative error between the
results of PPFW and GT Fiji concerning the MS length
is (3.64 ± 3.25) %. The average relative error concerning
the siliques’ lengths between these two measurements was
determined to be (6.57 ± 4.71) %. Scatter plots showing the
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Fig. 8 Scatter plot comparing the GT Fiji, GT UK and the PPFW
siliques’ lengths

individual measurements for this comparisons are shown in
Figs. 7 and 8.

The evaluation regarding the side branches shows a
much higher deviation between GT Fiji and PPFW (see
Table 2). This is explained by extensive overlapping which
are present in the very exterior regions (e.g., siliques) of the
plants. Thereby the overlapping is wrongly resolved as one
new (mostly short) side branch and terminating branches
instead of only terminating branches. During the trait extrac-
tion, this leads to an overestimation of number of side
branches and an underestimation of number of siliques (see
Table 2).

Furthermore, this is also an explanation of the underes-
timation of the siliques’ lengths which is noticeable in the
scatter plot (Fig. 8) and the underestimation of the averaged
side branches’ lengths in Table 2.

4.2.2 Comparison with GT UK

During the manual phenotying study, the siliques’ lengths
were determined for each plant. The average silique length
for all plants was hereby determined with (128.73 ± 22.54)
pixels and all together 2912 siliques were counted (see
Table 2). The scatter plot in Fig. 8 shows a comparison
between the GTUK and the GT Fiji. One can notice an offset
of the linear regression line which shows an underestimation
of the siliques’ lengths during the manual phenotyping. This
effect can be explained by different definitions of silique
length. While in the GT Fiji approach, the silique length
was defined from the branching point to the tip, it was mea-
sured from the beginning of the carpel to the silique’s tip in
the GT UK approach. Apart from this it can be noticed that
the measurement during the manual phenotyping approach
has a lower resolution compared to the results of GT Fiji.
The Pearson’s correlation coefficient r between GT Fiji and
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Fig. 9 The number of siliques are compared between GT Fiji, GT UK
and PPFW

the PPFW for the siliques’ lengths was determined with
r = 0.90 (p < 0.01). Between the independent GT mea-
surements, r was determined with r = 0.82 (p < 0.01).
This shows a high inter-operator variability for the given
dataset.

4.3 Number of siliques

To identify the number of siliques on a plant is of interest for
biologists. As the siliques contain the seeds, their size and

number are an important indicator in terms of reproduction of
a plant. To evaluate the silique counting ability of PPFW, we
determined the relative error compared to the GT Fiji and to
GT UK. The mean relative error between GT Fiji and PPFW
was determined (11.81 ± 10.14) % and (11.08 ± 11.16) %
between GT UK and PPFW. The scatter plot for comparing
the individual number of siliques for each plant is shown in
Fig. 9. Thedeterminednumber of siliques is shown inTable 2.
It can be noticed that the number of siliques is underestimated
by the proposed framework. One can also notice that the
precision decreases with an increasing number of siliques
on a plant. This let us conclude that an automated analysis
of this trait is limited to plants with lower morphological
complexity.

4.4 Images for quality control

To allow an effective judging of the quantitative trait extrac-
tion process, the resulting labeled skeleton and the critical
points identified are overlaid on the (inverted) original
images. Five exemplary results are shown in Fig. 10. Start-
ing points are marked with a green triangle near the rosette,
termination points with a red triangle and branching points
with a magenta colored “+”-sign. Side branches are labeled
in different colors while siliques are colored with a light
blue and other leafs with a dark blue. The correspond-
ing table of traits for the images in Fig. 10 is shown in
Table 3.

Fig. 10 Exemplary output for five images of the dataset which are processed with the PPFW. Table 3 summarizes the plants’ traits determined by
GT Fiji and PPFW
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Table 3 Comparison of 5 exemplary images of the dataset between the
GT Fiji and the results of PPFW

Plant Method NMS NSB NSIL lMS [Px] lSIL [Px]

A GT Fiji 1 4 64 3306 206

PPFW 1 17 56 3282 196

B GT Fiji 1 3 33 1185 143

PPFW 1 7 28 1185 138

C GT Fiji 1 3 48 2786 178

PPFW 1 7 42 2844 176

D GT Fiji 1 1 39 2520 217

PPFW 1 5 35 2607 206

E GT Fiji 1 1 48 4097 195

PPFW 1 13 48 4130 187

5 Conclusion

A framework to analyze the architecture of mature A.
thaliana plants based on 2D single-shot images is presented.
Quantitative traits describing the geometry as well as the
topology of the plant are extracted and compared to a manual
phenotyping approach as well as a semi-automatic image-
based phenotyping approach.With the evaluation comparing
the extracted geometrical and topological traits, we showed
the benefits of tracing algorithms for centerline extraction
when applied to image-based plant phenotyping problems in
which curvilinear/tubular structures are analyzed.

The accuracy of the reconstruction process from the real
branching network out of the 2D images is limited by the
quality of the images itself as well as by the morphological
complexity of the plants, i.e., limited number of branch-
ing and crossing regions in a certain area. The evaluations
showed the ability of the PPFW to quantify geometrical prop-
erties of mature plants with a high accuracy. The weakest
link in the proposed image processing chain is the hierar-
chical grouping and labeling process for the extracted center
line segments from the tracing procedure. We encountered
difficulties to gain reliable topological properties if multiple
overlaps occur very close to each other and the involved seg-
ments are short. In this case, a local decision in a cluster node
can lead to an error propagation and a concluding unsatisfy-
ing reconstruction result. This problem should be addressed
in future works.

The reliable extraction of topological traits would fur-
ther increase the number of quantitative traits as they could
be combined with geometrical traits. Such traits could for
example be the bifurcation ratio or the inter-nodal distance
between different branch types.

The image-based phenotyping of plants in themature state
can play an important role in large-scale phenotyping studies.
Combined with approaches to phenotype plants in the early

stages of growing this would enable plant phenotyping over
the whole life-cycle.
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