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Abstract. As panoramic images are widely used
in many applications, efficient image stitching meth-
ods that provide visually pleasant image mosaics are
needed. In this paper we discuss a novel concept for
smart camera image stitching based on graph pyra-
mids. For a multi-camera system, the images have
to be aligned accordingly to create an image mosaic.
Instead of calculating the corresponding transforma-
tions centrally, we aim at enabling each camera to in-
dividually calculate the transformation of the image
it takes. Graph pyramids used for image segmenta-
tion provide information about the segmentation pro-
cess. We analyze how this information can be used to
calculate the transformations for image alignment.

1. Introduction

Panoramic views form the basis of many applica-
tions including augmented reality applications. Pro-
ducing video content with high quality seamless and
artefact-free 360◦ of coverage is challenging per se
and even more challenging if all related processing,
especially seamless stitching, has to work automati-
cally and in real-time for live productions.

A suitable approach has to solve a system conflict
between omnidirectional simultaneous video capture
on one hand, which cannot be done from the nodal
point due to mechanical collision problems, and
parallax-free stitching of panoramas without any par-
allax, ghosting and distortion artefacts on the other
hand.

Using high on-board computing power of smart
cameras and a dedicated communication network be-
tween cameras could be used to integrate the entire
image processing for automatic real-time stitching
into the cameras themselves, avoiding the need for

further peripheral processing devices.
Common image stitching techniques take images

taken from different views and align them using
image registration in overlapping regions. So far, all
images are collected and aligned centrally, which
suffers from high computational cost. Thus, we aim
at parallelizing parts of this process by developping
smart cameras that are able to perform some of the
image transformations themselves.

The camera systems we consider use fish-eye
lenses. General camera models such as the pinhole
model cannot be applied to these lenses, because they
do not conform to the perspective projection due to
their large field-of-view. Simple models are given for
different projections of ideal fish-eye lenses. They
provide a formula for the radius r which is the dis-
tance between an image point and the principal point.
The principal point is the point where the optical axis
intersects the image plane. In case of the equidistant
projection the radius is given by

r = fθ, (1)

where f is the focal length and θ is the the incident
angle of the ray from an object point. However, this
formula does not reflect the behavior of real lenses.
Instead, extended models are developped which take
into account the high level of distortion. Parameter
values are estimated using calibration, defining a
final model for a particular camera [16]. In fish-eye
lenses, both radial as well as tangential distortion is
present. While radial distortion reduces the spatial
resolution towards the periphery of an image and
distorts rectilinear objects, geometric shifts are the
result of tangential distortion [15].



In this paper, we define our concept of smart cam-
era image stitching and present ideas how to realize
it. We will first give an overview of related work
in the fields of fish-eye lenses, image stitching and
smart cameras in section 2. After declaring our func-
tional goal in section 3, we discuss open problems
that we aim to solve in order to realize it and present
our ideas for possible solutions including novel ap-
proaches in section 4. Finally, in section 5, we con-
clude our paper.

2. Related Work

In this section we present a selection of state-of-
the-art techniques in fields that are related to smart
camera image stitching.

2.1. Smart Cameras

The name of smart camera goes back to the
middle of 1970s [29] when Ron Schneidermann
applied it in developing systems for controlling
the shutter. Then in 1981 the optical mouse was
invented by Richard Lyon [24, 25] which was the
first realized smart camera including an imaging
device and embedded processing unit as a compact
system. ”Smart camera is a label which refers
to cameras that have the ability to not only take
pictures but also more importantly make sense of
what is happening in the image.” [4, Chapter 2,
page 21] Smart cameras employ various concepts
of computer vision and machine vision which can
extract useful information from images resulting
in special decisions based on that information.
Smart cameras can be classified into three main
categories including integrated, compact-system and
distributed smart cameras [4, chapter 2]. Integrated
smart cameras can be further subdivided into three
types including single-chip [2, 11], embedded [20]
and stand-alone smart cameras. Distributed smart
cameras involve some sort of networking and have
recently attracted significant interest in academic
and industries fields [28]. Indeed, some problems
such as depth information in foreground detection
and occlusion are difficult to be solved by single
smart cameras. In this case, using multiple cameras
with a powerful computing platform is an advantage.
However, we encounter some physical limitations
of the acquisition hardware. Although current
professional cameras capture images at a horizontal
resolution of about 4k to 5k [27], they are insuffi-
cient for large scales and wide-angle viewpoints.

Additionally, there are some noticeable distortions
caused by wide-angle optics such as distortion in the
border regions of images in fish-eye lenses which
result in additional loss in image resolution.

Smart camera networks have a wide range of
applications in various areas including surveillance
systems, security monitoring, traffic control and
telemedicine [1]. For instance, Kawamura et. al [17]
proposed a reliable surveillance system for railway
stations. Their system tracks suspicious behavior
by applying multiple camera fields of view. Smart
sensors communicate with each other over a wire-
less mesh network. Moreover, as an application for
the airport, Shirmohammadi et. al [31] introduced
a decentralized target tracking scheme. Smart cam-
era nodes automatically identify neighboring sensors
with overlapping fields and produce a communica-
tion graph which reflects how the nodes will interact
to fuse measurements in the network.

2.2. Multi-View Setups and Image Stitching

Moreover, numerous publications deal with
panoramic images. For image registration, feature-
based methods which use distinct image points are
generally favored over area-based techniques which
compare images window by window [39]. Lowe et
al. [6, 21, 7] introduced scale-invariant feature points
(SIFT) which have been widely used since. They
use a 128-dimensional feature vector. Ke and Suk-
thankar [18] adopted this approach, but reduced the
dimension of the descriptor to 36. Alternatively, Bay
et al. [3] presented a faster method based on Haar
wavelets using speeded up robust features (SURF).

All these features work well with standard per-
spective projection since they are invariant to affine
transformations and provide a sufficient number of
corresponding points to recover the parameters of the
homography. Multi-view images taken from cameras
at different positions lead to parallax errors. These
errors cannot be fully eliminated. Still, these effects
can be reduced. Global image transformations that
are calculated by fitting a homography to matched
feature points cannot handle parallax well. Zhang
and Liu [38] address this problem by combining
the transformation using a homography with local
content-preserving warping. The homography is no
longer chosen as the best fir for all feature point pairs,
but considers only neighboring feature points. Ad-
ditionally, they use a tolerant fitting threshold. Per-



azzi et al. [27] describe an algorithm for generating
videos from unstructured camera arrays. They apply
the basic concept of local warping to remove the par-
allax and define a new error measure with increased
sensitivity to stitching artifacts. Their method tries to
smooth out the blurring, ghosting and some other dis-
tortions caused usually when videos which feed from
unstructured camera arrays are combined to create a
single panoramic video. Deen et al. [9] create image
mosaics for scientific purposes. Thus, they focus on
correct rather than visually pleasant results. Parallax
errors are reduced by performing pointing correction.

Existing tools for panoramic image stitching as
well as camera calibration include Hugin 1 and
PTGui 2, which are both based on Panorama Tools 3

by Dersch.

German et al.[14] investigate the application of
different map projections to panoramic images in-
cluding projections of fish-eye lens images. Multi-
view setups are addressed by Sturm et al.[33] who
develop a multi-view geometry model for central and
non-central cameras based on structure-from-motion
and by Luo et al.[23] who focus on saliency detection
in multi-camera setups.

2.3. Fish-Eye Lenses

Schwalbe [30] develops a geometric model for
fish-eye lens cameras based on the approximately
linear relation between the incident angle of the
ray from an object point and the distance from the
corresponding image point to the principal point.
Distortion is accounted for by using conventional
distortion polynomials. Alternatively, Kannala and
Brand [16] present a flexible camera model which
is applicable for fish-eye as well as narrow-angle
lenses. They use a polynomial imaging function as
well as two additional terms for radial and tangential
distortion, respectively. The final camera model in-
cludes 23 parameters. It provides both a forward as
well as a backward model. Moreover, Luhmann et
al. [22] deal with the correction of chromatic aberra-
tion in fish-eye images. Standard distortion correc-
tion methods use odd polynomial models as used by
Mallon and Whelan [26]. These models describe the
distorted radius rd as a polynomial function of the
undistorted radius ru, using only odd terms. For high

1http://hugin.sourceforge.net/
2https://www.ptgui.com/
3http://panotools.sourceforge.net/

level distortion, however, fewer terms are needed
with the division model [10]. Based on this approach,
Aleman-Flores et al. [12] formulate a one-parameter
model.

In order to determine lens parameters, various
calibration procedures [37, 19, 32, 36, 34] have
been developped. In many cases, they extract fea-
tures such as lines or corners from the image of a
calibration pattern for which the world coordinates
are known [15]. A self-calibration method based
on circle-fitting which does not require information
about the objects’ world coordinates is presented by
Bräuer-Burchardt and Voss [5]. However, the distor-
tion of an image needs to exactly fit the chosen distor-
tion model. Aleman-Flores et al. [12] determine the
distortion parameter automatically by introducing it
into Hough space and detecting distorted lines.

3. Our Goal: a 360◦ Image Mosaic

We consider a multi-camera system of small high-
quality cameras, in order to create a 360◦ image mo-
saic. The system consists of six fish-eye lens cam-
eras. At this point we use the indieGS2K model pro-
duced by Indiecam4. Two adjoining cameras share
an overlapping region, respectively. Position and op-
tical parameters can be chosen arbitrarily, but will
be fixed for a specific system. Each camera creates
an image using fish-eye projection. Additionally, it
holds the information about the other cameras’ set-
tings. In the end, an image mosaic using equirect-
angular projection is created. This means that the
horizon is a straight line in the middle of the image
and vertical lines in real world are vertical lines in
the image [14]. Before the actual stitching can be
performed, the respective images have to be trans-
formed accordingly.

Eventually, our goal is to develop the respective
coordinate transformation model. For any two im-
ages Ij and Ij+1 from the six cameras with overlap-
ping view, a function Fj : Ij → Ij+1 has to be found
such that F (pj) = pj+1 for all corresponding pix-
els (pj , pj+1) in the overlapping region with pj ∈ Ij ,
pj+1 ∈ Ij+1. The resulting algorithm should take
the image of one camera as well as the settings (posi-
tion, optics) of the other as input.The output will be
the accordingly transformed image.

4www.indiecam.com



4. A Novel Concept for Image Alignment

At this point, the following problems have to be
solved in order to determine the image transforma-
tion:

1. Calibrate the fish-eye lens and determine the
distortion.

2. Calculate the transformation from the fish-eye
projection to the equirectangular projection.

3. Perform a geometrical classification of possible
setups. Considering two cameras C1 and C2,
calculate critical points and distances in order
to distinguish between the following classes:

• region in which points can only be seen by
C1

• region in which points can only be seen by
C2

• closer part of the overlapping region with
visible parallax errors

• part of the overlapping region with negli-
gible parallax errors

4. Calculate the coordinate transformation

In order to solve these problems described in
the previous section, we consider the following ap-
proaches.

4.1. Lens Calibration and Image Alignment using
Graph Pyramids

While traditional lens and distortion models have
been studied extensively, we follow a different ap-
proach. Our goal is to extract the distortion informa-
tion using graph pyramids.

4.1.1 Overview

Traditionally, lens calibration is based on a geometric
model depending on parameters. The respective pa-
rameter values are determined during the calibration
procedure. This is a characteristic that previous lens
calibration methods have in common, even though
different models and procedures have been devel-
opped. By establishing a model for which the pa-
rameters are specified, these methods already make
fundamental assumptions about the structure of the
distortion. On the contrary, we propose a calibration
method that determines the distortion including its
structure. In a graph pyramid as used for structurally

consistent image segmentation (SCIS) [8], the infor-
mation about the segmentation process is stored. As
this process is performed based on the structure of
the underlying image, it also contains information
about the distortion. A target coordinate system is
defined by the continuous curves of a checkerboard
pattern which follow the isolines of the coordinate
system. By applying the segmentation to this pattern
and storing the details of the segmentation process,
the distortion information of the coordinate system is
retrieved.

4.1.2 Features of the SCIS Algorithm

The SCIS algorithm segments an image based on Lo-
cal Binary Patterns and the Combinatorial Pyramid.
It works on the local structure of the image and pre-
serves structural correctness [8, Chapter 4, page 39]
and topology of an image. For this purpose, five
topological classes based on Local Binary Patterns
of regions are applied which by combination with
the dual graph are able to remove redundant struc-
tural information. As a result, by using this approach
the image graph will be simplified and connected re-
gions will be merged without introducing structural
errors [8].

The SCIS algorithm performs image segmentation
using a graph-based image representation. It pro-
vides the image at any level of segmentation as well
as the information about the segmentation process up
to that level. The latter contains information about
the distortion structure.

Initially, each pixel corresponds to a vertex and
each edge to a neighborhood relation in the graph,
which represents the base level of the combinatorial
pyramid. Subsequently, pixels are merged to regions
which are in turn merged to larger regions based on
their intensity values. On higher levels, each ver-
tex corresponds to an image region. Merging cor-
responds to edge contraction and removal. The SCIS
algorithm creates the entire pyramid as well as the
contraction history. The latter is represented by the
contraction kernels. Thus, it is able to reconstruct
the segmented image at any level. An example of a
combinatorial pyramid is shown in Figure 1.

An evaluation study of stereo matching by Joan-
neum Research [13] shows that the SCIS algorithm
achieves the highest matching quality compared to
different compression methods.



Figure 1. Example of a Combinatorial Pyramid. Image
taken from [8]

Figure 2. Distorted checkerboard pattern with correspond-
ing primal graph at the top of the pyramid. Each vertex
(yellow) corresponds to a patch. Vertices of the adjacent
patches are connected by an edge (red).

4.1.3 Calibration Procedure

The canonical representation of the combinatorial
pyramid stores it as a single array. The elements in
this array are half-edges, called darts. They are or-
dered according to the contraction history. In order
to extract information about the distortion from the
combinatorial pyramid, we consider the image of a
checkerboard pattern, where each patch is assigned
an absolute coordinate. At the top level of the pyra-
mid, each vertex corresponds to a single patch (see
Figure 2).

As a result we get the contraction history. The
top level delivers a single vertex for every patch of
the checkerboard with its adjacency. All contracted
edges of a patch form a spanning tree of the corre-
sponding region in the primal graph. We do not know
anything about the contraction kernels inside the ho-

Figure 3. Multi-camera calibration setup for six cameras
C1 - C6.

mogeneous regions.
Since they have all the same value it cannot be said

which edges are contracted or which are removed.
For making the process more precise we can consider
two solutions. One is to apply geometry of target
coordinates and perform linear interpolation. How-
ever, this approach has the drawback that we do not
know the size of the distorted patch, which is partic-
ularly problematic in our case where we expect se-
vere deformation. The second approach is to shift the
checkerboard pattern and create a new image from a
different viewpoint. By iteratively applying this pro-
cess, the regions inside the patches will be refined.
For instance, we can take M captures with different
offsets. Next, the idea is to freeze only the bound-
aries of which we are sure that they are precisely de-
lineated. Indeed, by taking two different positions
(randomly) and overlapping with the two contraction
kernels, both boundaries should be preserved. There-
fore, the random space of patches will be smaller and
smaller as the process is used more and more.

There are two ways for applying this strategy. On
the one hand, it can be performed sequentially by
freezing the contraction kernels corresponding to the
boundaries from the previous iteration. On the other
hand, it can be performed randomly. Given the con-
traction kernels at every point and knowing the po-
sition of a boundary, we can integrate the contrac-
tion kernels using high weights at boundaries and low
weights in between. For homogeneous regions, the
contraction kernels provided by the shifting approach
will converge towards the proper kernel.

With the contraction kernels provided, the infor-
mation about the distortion is stored implicitly, al-
lowing us to apply it to any new image. Conve-
niently, the canonical representation stores this in-



Figure 4. Calibration pattern using a cylindrical target
coordinate system with radius r, azimuthal angle θ and
height h.

formation in an ordered array. Thus, the calibrated
kernels which have to be applied to get to a particu-
lar level of the pyramid can be re-used.

The calibration setup for a multi-camera system is
illustrated in Figure 3.

4.1.4 Advantages of Calibration using Graph
Pyramids

Apart from the fact that the graph-based approach
does not make any assumptions about the structure
of the distortion, it yields other advantages compared
to previous calibration methods. Accuracy can be in-
creased simply and reached to the resolution of orig-
inal images by increasing the number of shifts. Ad-
ditionally, we do not need a global model of the geo-
metric projection for calibration, which is needed for
many estimation methods of the parameters. Finally,
our method does not depend on a particular coordi-
nate system. Instead, any target coordinate system
can be chosen. It is defined by the checkerboard pat-
tern where the continuous curves correspond to the
the isolines of a target coordinate system. Thus, var-
ious geometries can be used for this approach such
as cylindrical (see Figure 4) or spherical (see Fig-
ure 5) coordinate systems. In particular, the coordi-
nate system of the final mosaic can be chosen as tar-
get coordinate system. In this case, the transforma-
tion provided by the calibration method does not only
consider lens distortion, but also includes remapping
to equirectangular projection as well as image align-
ment, and this simultaneously for all six cameras.

Figure 5. Calibration pattern using a spherical target coor-
dinate system with radius r, azimuthal angle θ and eleva-
tion angle φ.

4.2. Projection remapping

The remapping from fish-eye to equirectangular
projection can also be handled by the graph-based
calibration method presented in the previous section.
For comparison, it can be addressed individually fol-
lowing German et al. [14]. Information about the
camera’s roll, which is the rotation angle about the
optical axis, and pitch, which is the elevation angle
from the horizontal axis, allows the remapping from
a fish-eye to an equirectangular projection. Roll and
pitch can be determined manually or by using hori-
zontal or vertical control lines.

4.3. Setup Classification

The classification of the setup with regard to par-
allax errors can be performed using partial edge con-
tours as used by Wang et al. [35]. The edge contour
of an obstacle is mapped from one image to the other.
The parallax is then calculated as the transverse dis-
tance between corresponding edge contour pixels.

4.4. Image Transformation

Similar to the projection remapping, the image
tranformation used for image alignment can be de-
termined by the graph-based approach. For compar-
ison, the calibration of the multi-camera system can
be performed using feature extraction and matching.
For this purpose, SIFT features [21] will be used. In
order to reduce parallax errors, the image transforma-
tion will be calculated following the parallax-tolerant
approach used by Zhang and Liu [38].



5. Conclusion

We presented a novel concept for the smart cam-
era image stitching. It aims at reducing the cost of the
stitching process by enabling each camera of a multi-
camera system to align the image that takes individ-
ually. Lens calibration can be performed using graph
pyramids, which yields several advantages compared
to traditional lens calibration methods. Additionally,
the same method can be used to directly determine
the image transformation required for image align-
ment. Currently, the work is in progress, but in near
future we are planning to experimentally prove the
applicability of the proposed ideas.
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