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Abstract—This paper presents a new logarithmic-time al-
gorithm which simultaneously assigns labels to all connected
components of a binary image in parallel. The irregular graph
pyramid of an input binary image is constructed based on
the optimized combinatorial structure. The novel small built
pyramid has only three levels and is created at worst case
with O(log(N2)) complexity for a N × N -sized (2D) binary
image. To assign a label to each connected component, in-
stead of the common linear-time raster scan techniques (with
complexity O(N2)), only two important movements, namely
bottom-up and top-down traversing, are needed. First, in the
bottom-up traversing, the redundant connections are removed
and the contraction kernels are contracted. This results in a
simpler graph at top of the pyramid each of its vertices has
a unique label identifying corresponding connected component.
Such reduced graph preserves all connecting relations including
inclusions. Second, in the top-down traversing, each unique
label propagates down into each individual corresponding pixel
at the base level. The complexity of the labeling propagation
procedure in worst cases is O(log(image − size)). The GPU
implementation of the algorithm has high performance and the
bottleneck is the bandwidth of the memory or equivalently the
number of available independent processing elements. Finally, the
experimental results show the proposed algorithm outperforms
the other state-of-the-art methods.

Index Terms—Image Processing, Combinatorial Pyramid, Par-
allel Processing, Invariant Topology, Connected Component La-
beling

I. INTRODUCTION

Connected Component Labeling (CCL) is a fundamental
task in computer vision. Given a binary image it distinguishes
between background or foreground components and assigns
a unique label to each different region. It employs in many
image processing fields such as image analysis, pattern recog-
nition and image understanding. The role of the CCL is to
assign a same label into each individual pixel of a region.
There are plenty of algorithms which consider this task from
different viewpoints [1]–[3]. However, such algorithms mostly
can be divided into two main categories [4] which are based on
label-propagation [5]–[7] or label-equivalence-resolving [8],
[9]. The common property in both techniques is that they are
all linear algorithms on the size of binary images. In other
words, such algorithms may differ from one-scan or two-scan
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searching through the entire image, but all are in the order of
image size, O(N2). In this paper, we propose an algorithm
which reduces this complexity. It employs the advantage of
the irregular hierarchical pyramidal structure [10]–[14] and
reduced the complexity into a logarithmic order.
In addition, unlike the previous irregular pyramids [15], [16],
here, the constructed pyramid has dramatically much smaller
size and therefore much more efficient from the memory space
viewpoint. It means no matter how much the input image-size
is and no matter how complicated the content of the image
is, the pyramid is built in at most three levels. Moreover,
many of the redundant connections which have no effect on
labeling task are identified and removed in parallel before
the contraction operation. Finally, the algorithm represents the
adjacency region graph (ARG) of the connected components
and preserves the inclusion relationships such as [17], [18] on
top of the pyramid.
The rest of this paper is organized as follows: Section 2
describes our proposed algorithm in details. Moreover, the
mathematical proofs and parallelism of the proposed algorithm
are explained in section 3. In section 4, the GPU implemen-
tation and the experimental results are described. Finally, the
conclusion and future work are presented at section 5.

II. PYRAMIDAL CONNECTED COMPONENT LABELING
ALGORITHM

In this section the Pyramidal Connected Component Label-
ing (PCCL) algorithm is presented in details. The proposed
method consists of two main steps.The first one is to go up
through the pyramid and contract all contraction kernels (CKs)
to reach to the top level where remained vertices have the
permanent unique labels. The second step is to move down
from the top and propagate these permanent labels into each
individual nodes at the base level. The height of the pyramid
in the PCCL algorithm is at most three. It means one reaches
to the final label for each connected component at most in the
third level of the pyramid. The proposed algorithm removes the
redundant edges in parallel and preserves the topology of the
connected components. To create corresponding graph of the
input binary image, the 4-neighborhood relationship between
pixels is assumed. This results in the corresponding planar
primal graph as illustrated in Figure 1.
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Figure 1. (a) The input binary image. (b) the corresponding primal graph at
the base level of the pyramid.

Table I
PYRAMIDAL CONNECTED COMPONENT LABELING ALGORITHM.

PCCL Algorithm
Input: Image graph, G(d, α(d), σ(d))
(Bottom-Up traversing)
0.1 Identifying the edge color
0.2 Selecting isolated vertices
1. while there are edges to contract do
1.1 Selecting the CKs
1.2 Defining the surviving vertices
1.3 Removing the Redundant Edges
1.4 Propagating the surviving vertices’s labels
1.5 Contracting the selected CKs
End while
(Top-Down traversing)
2.Propagating the unique labels into each vertex (pixel) of the CCs
End

The steps of the algorithm are shown in the Table I. It should
be noticed that in the combinatorial structure the fundamental
elements are darts. Each dart (d), is defined as a half-edge.
In addition, two functions namely the involution α(d) and the
permutation σ(d), completely encodes all the incident darts
around a vertex. It means, an edge is encoded by the pair of
((d), α(d)) and the σ(d) encodes the surrounding darts around
each vertex by the counter-clock-wise orientation.

A. Identifying the color of each edge

Each node of the primal graph corresponding to an input
binary image, has a unique index which is assigned by the top-
down and left-right manner. In such primal graph, two colors
to the edges are assigned. The Red-Edge (RE) and Black-Edge
(BE). The former connects two adjacent vertices with different
color and the later with the same color.

B. Selecting isolated vertices

After assigning color to all edges, now vertices that sur-
rounded by only red edges identify as the isolated vertices.
Note that the label (the index) of such isolated vertices is fix
and will not change through the pyramid. In fact, these are the
CCs that have only one pixel. In Fig. 2 the isolated vertices in
the base level (with the indexes 1, 18, 48) are indicated with
a blue circle around them.

C. Selecting the contraction kernels (CKs)

Every CK contracts two adjacent vertices belong to a
connected component. Following rule, define how to select
the contraction kernels:
Rule 1. Each black (white) vertex selects the maximum of
bigger (smaller) vertices in its neighborhood.
In other words, if two vertices of a BE are black (white), the
direction of the contraction kernel is East (North) or South
(West) which the former one has the first priority. The CKs
are shown in Fig. 2 with black arrows on the edges.

Figure 2. The base level of the pyramid, (a) The CKs are the black arrows.
The isolated and surviving vertices are indicated with blue and green circle,
respectively. The redundant edges indicated by brown cross.

D. Defining the surviving vertices

After selecting the CKs, beside the isolated vertices, the
vertices are classified into tow categories; the non-surviving
and surviving vertices. The surviving vertices are illustrated
in Fig. 2 by a green circle around them. One of the main
advantage of the Rule.1 is that there is an exclusive path of
contraction Kernel(s) between each non-surviving vertex and
its corresponding surviving one. The longest length of such
contraction kernel path is 2N in a N by N binary image.

E. Removing the Redundant Edges

Redundant edges (connections) can be consider as edges in-
side the graph structure which by removing them the topology
of the structure remains unchanged. Such connection usually
are removed after contraction operation in graph pyramid.
Based on the complexity of the image data, we may reach
to an interwoven graph that need to be simplified due to move
up through the pyramid. In general, removing such redundant
edges performs in a sequential manner. Therefore, in this
study, we are aiming at removing the redundant connections
in parallel and before the contraction task .
Generally, there are two types of the redundant connections
in the binary image. First, the redundant edges inside a con-
nected component which are the black edges in our algorithm.
Usually such redundant connections provide multiple (parallel)
edges between two vertices. The second are the redundant
red edges which are located between two adjacent connected
components.
In this step of the algorithm, most of the redundant edges are
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removed.
Note that the red edges play no rule in the labeling task and
therefore if in this step some of them still remain, they do not
interfere in the final result.

F. Propagating the survived vertices’s labels

In order to reach into the topologically correct connected
component labeling, the temporal labels need to be propagated
through the corresponding exclusive paths. Therefore, all the
vertices of contraction kernels before the contraction opera-
tion, receive their updated labels from their inverse directions
of corresponding paths. This is illustrated in Fig. 2-b. This
label propagation is the only sequential task in constructing
the pyramid.

G. Contracting the selected CKs

At this point, all the CKs which already identified in step 2
are contracted at once. It is shown later that these contractions
are performed simultaneously together. By contracting the CKs
we reach to the second level of the pyramid. In the second
level, all of the steps exactly similar to level one is performed
and third (last) level of the pyramid is created. The algorithm
terminates when there is no edge for contraction.
It should be noticed that those black edges which are remained
on top of the pyramid represents the inclusion relationships
between CCs. Through the contraction procedure, since they
produces a non-empty loop they remains untouched. Figure 3
shows the second and third levels of the pyramid. In addition,
the complete constructed pyramid with three levels illustrated
in Figure 4.

Figure 3. (a) The second level of the pyramid. (b) The third level (top) of
the pyramid.

III. PARALLELISM OF THE PCCL ALGORITHM

In this section the parallelism of the proposed algorithm is
investigated. Due to the size of an input image which is already
known, the structure of the corresponding combinatorial map
is available. It means the incident darts to each vertex are
known. Note that, Without such assumptions, defining the
relationship between vertex’s number and its incident darts
is also straight forward and takes only a few parallel steps.

Figure 4. The constructed irregular graph pyramid with its three levels.

A. Identifying the edge color

To identify the color of each edge, its two corresponding
vertices are compared. If they are the same the edge color is
black and otherwise red. This is a local process for each dart
(in Parallel).

B. Selecting isolated vertices

In this stage, the color of all incident edges to a vertex
are checked. Vertices of the corners of the grid, boundary
sides and those located inside have 2, 3 and 4 incident edges
respectively. These maximum 4 values are compared together.
If all of the incident edges to a vertex are red, then the vertex
is the isolated one. This can be done at the same time for all
vertices.

C. Selecting the CKs

Assigning a direction to each possible black edge defines the
CK and the direction of the contraction. To this aim, it needs
to check first the right (up) and second down (left) adjacent
vertex for each black (white) vertex. Hence, for each vertex
only two sequential comparisons are needed and therefore all
of the computations perform in parallel.

D. Defining the surviving vertices

To see a vertex is a surviving or not, two conditions must be
checked. First, a vertex must not be an isolated one. Second,
it has not any outgoing black edges (it was not selected as
CK in previous step). All of the vertices perform these two
sequential O(1) checking procedure in parallel.

E. Removing the redundant edges

Proposition 1: Each face does not have both redundant
vertical and horizontal black edges together.
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Proof 1: If we have two vertical and horizontal black edges
in a same face then they must be connected and therefore one
of them must be a CK (see Fig. 5-b).
Fig. 5-a shows the dependency between the set of darts
around an edge in a 4-neighboring grid. By contracting (or
removing) an edge(d,α(d)) the value of the other 4 incident
darts, namely (σ(d), σ−1(d), σ(α(d)), σ−1(α(d))) need to be
updated. Generally, if two edges do not have any of these 4
darts in share, they can be contracted (or removed) in parallel.
Moreover, there is a special configuration of edges which the
edges can be contracted (removed) in parallel even though they
share two darts of above set. This situation happens when the
CKs (removal edges) are placed in a exclusive path (a line).

Proposition 2: All the connected CKs (redundant edges) in
a exclusive path (a line) are contracted (removed) in parallel.

Proof 2: Assume a set of connected redundant edges is
given to be removed (see Fig. 5) (c) and (d) for black and red
edges, respectively). To do the removal task, every redundant
edge updates only two darts of 4 dependency dart set (σ−1(d),
σ−1(α(d))) in red edges or (σ(d), σ(α(d))) in black ones. By
doing this, there will be no remaining dart to be updated in
connected redundant edges. Moreover, since there is also no
overlapping between the removal darts, therefore, all can be
removed in parallel.

Figure 5. (a) The dart dependency set. (b) A black face has no two adjacent
redundant black edges. (c) An example of redundant black edges. (d) An
example of redundant red edges and a vertex incident these three edges.

F. Contracting the selected CKs

By defining the Rule.1 for contracting, all the CKs align in
an exclusive path toward their surviving vertices. By propa-
gating the labels before the contraction, the labels propagate
from the surviving vertex to all corresponding non-surviving
vertice(s) in the exclusive path of CKs. This is the only
sequential part of the algorithm which in the worst case takes
2N steps in a N by N binary image. However, in future work

we are aiming at using a static built pyramid to overcome such
sequential obstacle.

G. Investigating the worst-case

The irregular graph pyramid is constructed in two steps till
one reaches to the top of the pyramid. In constructing the
proposed irregular pyramid, all the steps (except the prop-
agation task) are implemented locally around the vertices in
parallel way. Therefore, the parallel complexity of all the steps
(except the propagation task) is O(log(image− size)) as the
general complexity of the irregular pyramid. The complexity
of the sequential label propagation step is depended into the
largest length of the exclusive paths. Since the exclusive paths
are disjoint, thus, each surviving vertex’s label propagates in
independent path and in parallel way. Therefore, the largest
exclusive path indicates the sequential complexity of the
algorithm. If the largest object in the N × N -sized image
contains the whole image, the length of the corresponding
exclusive path is 2N . Therefore, the sequential complexity in
such worst case is O(N)). However, if we can independently
select the CKs in a line, then, the complexity becomes log(N).
Next section explains the GPU implementation of the proposed
algorithm.

IV. GPU IMPLEMENTATION AND THE EXPERIMENTAL
RESULTS

In the proposed algorithm the three levels of the pyramid
are computed. Note that, each level has 5 sequential steps
which individually are fully in parallel (except the step 4,
propagating the surviving vertices’s labels). Moreover, each
available thread is dedicated to each vertex. In a GPU the
shared memory (SM) is always faster than the global memory,
therefore, the local processes are mostly employed by the
shared memory. In fact, since all the processes which are per-
formed in a vertex are local and independent, if a processing
element exist for each vertex the algorithm is terminated in
near the logarithmic complexity. As a result, the bottleneck of
the algorithm is the capacity of the shared memory.
Consequently, in large images the number of vertices may be
become greater than the number of the threads in the selected
GPU. Therefore, in such a case, the threads must be waited
until a busy SM finishes its task and is replaced by another
vertex.
Our experiments were performed on the SUPERMICRO moth-
erboard with Intel, E5-2697 v3, 128 GB DDR4 2133MHZ
RAM and NVIDIA GeForce GTX 2080 TI.
In the experimental tests the image sets of the University of
Southern California [19], ColumbiaUtrecht Reflectance and
Texture Database [20] are used which the former includes
different categories such as landscape, text image, fingerprint
and the latter consists of seven textural images.
The result of experimental tests on the above GPU and the
comparison with the other state-of-the-arts in [4] shows that
our proposed PCCL algorithm outperforms the others and
especially for big images (see Fig. 6).
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Figure 6. The comparision of the connected component labeling execution
time over different image size. The proposed PCCL algorithm and the other
state-of-the-art methods in [4].

V. CONCLUSION

The paper proposes a new parallel pyramidal connected
component labeling. The main advantage of proposed algo-
rithm is that the height of the constructed pyramid is bounded
to three. Moreover, its complexity is O(log(image − size))
in a N × N -sized binary image if a processing element
exists for each vertex. In fact, the bottleneck is the number
of the independent processing elements in shared memory at
each employed hardware. In addition, the proposed algorithm
preserves the topology of the image and represents the region
adjacency graph between connected components including the
inclusion relationships. The worst case is when a connected
component has a maximum (2N) path length and therefore
its complexity is O(N). Moreover, using the combinatorial
pyramid structure provides further developments for higher
dimensions (nD) and employing such algorithm to segment
the gray-scale and color images in future. Finally, the parallel
implementation of the algorithm on GPU shows that the ex-
perimental results outperforms the state of the art in connected
component labeling field.
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