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A B S T R A C T

Irregular graph pyramids are frequently used as powerful tools in pattern recognition and image processing.
They are built by merging specific vertices and edges, known as contraction kernels, at each level. Traditional
methods often randomly select these kernels, leading to an unpredictable vertex at the top of the pyramid.
This paper presents innovative methods to control the selection of contraction kernels, enabling the intentional
preservation of a vertex with desired properties at the pyramid’s top. Specifically, we focus on maintaining
the center of a connected component (CC) at the pyramid’s apex. For calculating the center of a region, we
utilize the eccentricity transform, which is robust against noise. Our approach begins by establishing a total
vertex order and then devises solutions for continuous spaces in both 1D and 2D. Subsequently, we adapt these
continuous space solutions to discrete spaces, again in both 1D and 2D dimensions. The experimental results
demonstrate the efficacy and validity of our proposed methods.
1. Introduction

Irregular image pyramids are crucial in pattern recognition, allow-
ng for complexity reduction in image processing tasks like connected
omponent labeling and distance transform [1–5]. These pyramids,
ormed by layered reduced images or graphs, select contraction kernels
t each level to merge vertices and edges.

Historically, contraction kernels were chosen randomly, leading to
npredictability in the pyramid’s top vertex [6–8]. Recent studies,

however, adopt a predefined vertex order, allowing for more controlled
vertex selection, though often fixing it at a grid’s bottom-right [2,9].

Contemporary literature [2,9] introduces an approach that adopts
 predefined total order of vertices, allowing enhanced discretion in
hoosing the surviving vertex. Though effective, these techniques often
lace the surviving vertex at a fixed position, typically the bottom-
ight of a connected component in a grid structure. This placement
uggests that the vertex selection does not inherently align with the
haracteristics of the connected component.

This paper endeavors to refine the process of selecting contrac-
ion kernels according to new input data characteristics. By exerting
ontrol over kernel selection, a specific segment of the receptive field
r connected component can be preserved at the top level of the

pyramid. Given the frequent applications in image segmentation and

∗ Corresponding author.
E-mail address: majid@prip.tuwien.ac.at (M. Banaeyan).

object detection for centering a connected component at the top level,
this work offers methodologies that retain the center of a connected
component at the apex. In some scenarios, this center may consist of
multiple pixels or vertices and needs to be approximated.

The subsequent sections provide a thorough exploration of the topic:
Section 2 introduces foundational definitions and background informa-
tion; Section 3 delves into defining a valid total vertex order; Section 4
proposes methodologies for adapting the valid total vertex order in
continuous spaces, encompassing both 1D and 2D scenarios; Section 5
bridges these concepts from continuous to discrete spaces; Section 6
brings the experimental results; Section 7 discusses an interesting open
problem and Section 8 concludes the paper.

2. Background and definitions

Irregular pyramids are hierarchical structures composed of pro-
gressively smaller graphs, each graph representing a different level
of the pyramid. The base graph, corresponding to the lowest level,
aligns with the input image. In this graph, each pixel is a vertex, con-
nected to its immediate neighbors to form a 4-connected neighborhood
graph, 𝐺(𝑉 , 𝐸). This model avoids intersecting edges and maintains the
ttps://doi.org/10.1016/j.patrec.2025.01.030
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 data mining, AI training, and similar technologies. 
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planarity of the graph, unlike the 8-connected model where diagonal
connections can disrupt planarity [10].

The construction of irregular pyramids relies on two fundamen-
tal operations: edge contraction and edge removal. Edge contraction

erges two connected vertices into one, while edge removal simply
eliminates an edge without altering the vertex count or the incidence
elationships of the remaining edges. In this process, certain vertices or
dges that do not continue to the next level are termed non-surviving,

while those that do are known as surviving vertices or edges.

Definition 1 (Contraction Kernel [11]). A contraction kernel 𝐾 ⊂ 𝐸 in
a graph 𝐺(𝑉 , 𝐸) is a subset of edges forming a spanning forest. Each
tree in this forest includes one vertex 𝑠 ∈ 𝑉𝑠 ⊂ 𝑉 surviving to the next
higher level of the pyramid. In an extreme case, the tree consists simply
of 𝑠.

The Eccentricity Transform (ECC) is a function crucial in graph-
based image analysis [12], particularly for shapes within digital im-
ages [13,14]. It calculates the eccentricity for every point in a graph,
defined as the longest of the shortest distances from a given vertex
to any other vertex [14]. This transform is notable for its invariance
to articulated motion, robustness to salt & pepper noise [15], and its
tility in boundary determination. The diameter of a shape is the maxi-
um value of the eccentricity transform, representing the longest path
ithin the shape. Conversely, the center of a graph is determined by

he vertices that yield the minimum value in the eccentricity transform,
ignifying the shortest path to the most eccentric vertices.

The Reeb graph is a topological construct used to capture the
ssence of a shape by analyzing the level sets of a real-valued function
efined on a manifold, typically the height function on a surface [16].
t simplifies and abstracts the shape’s structure by creating a graph

where nodes represent critical points (like peaks, valleys, or saddle
points) and edges represent the connectivity or continuity of the surface
between these points [17]. This graph effectively reduces complex 3D
shapes to more manageable 2D representations, making it valuable
n various applications such as shape analysis, computer graphics,

and data visualization [18]. The Reeb graph excels in identifying and
classifying topological features of shapes, aiding in tasks like feature
extraction, morphological analysis, and in understanding the overall
geometry and connectivity of the underlying manifold [19].

3. Total order of the vertices

Let 𝐺 = (𝑉 , 𝐸) be a connected plane graph with 𝑛 vertices and the
following neighborhood definition.

Definition 2 (Neighborhood of a Vertex 𝑣,  (𝑣)). In a graph 𝐺 = (𝑉 , 𝐸),
the neighborhood of a vertex 𝑣 is the union of vertex 𝑣 itself and all
vertices incident to 𝑣:

 (𝑣) = 𝑣 ∪ {𝑤 ∈ 𝑉 |(𝑣, 𝑤) ∈ 𝐸} (1)

Definition 3 (Equivalent Contraction Kernel). An Equivalent Contraction
ernel (ECK) refers to a spanning tree that combines all contraction
ernels into a single contraction kernel which generates the same result

in one single contraction.

A comprehensive definition of ECK is available in Refs. Kropatsch
[20] and Haxhimusa et al. [21].

Definition 4 (Root of the ECK). The root of the Equivalent Contraction
Kernel of the receptive field is its surviving vertex at a higher level of
he pyramid.
9 
Definition 5 (Parent Link). A parent link (PL) associates every non-
urviving vertex with its respective surviving vertex within an incidence

relationship such that combining all the CKs forms the spanning tree of
the receptive field.

𝛱 ∶ 𝑉 ↦ 𝑉𝑠 ⊂ 𝑉
∀𝑣 ∈ 𝑉 ∃𝑣𝑠 ∈ 𝑉𝑠 𝛱(𝑣) = 𝑣𝑠

(2)

Having the defined the basic structure of the pyramid we now assign
he vertices a rank of a strict total order in order to resolve ambiguities
n the construction process.

Definition 6 (Total Vertex Order). A Total Vertex Order is a bijective
function that assigns a unique rank from 1 to 𝑛 to each vertex of a
connected plane graph composed of 𝑛 vertices.
𝑇 𝑂 ∶ {𝑣1, 𝑣2, 𝑣3,… , 𝑣𝑛} ↦ {1, 2, 3,… , 𝑛}

𝑇 𝑂(𝑣𝑖) = 𝑗 𝑖, 𝑗 ∈ {1, 2, 3,… , 𝑛}
𝑇 𝑂(𝑣𝑖) = 𝑇 𝑂(𝑣𝑘) ⟺ 𝑖 = 𝑘

(3)

Using the principles of a strict total order of vertices as outlined
in [22], a parent link (PL) of an equivalent contraction kernel can be
derived from the TO of the vertices of the receptive field with the aim of
aggregating all contraction kernels in the spanning tree of the receptive
field.

Following definition of a max-link generates for all non-maximal
vertices 𝑣 of the TO a spanning forest of 𝐺:

Definition 7 (Max-Link). The max-link Up(v) links every vertex 𝑣 to
the maximum TO rank of its neighbors:

∀𝑣 ∈ 𝑉 ⧵ 𝑉𝑠 Up(𝑣) = argmax{𝑇 𝑂(𝑤)|𝑤 ∈  (𝑣)} (4)

The resulting spanning forest 𝐺(𝑉 , {(𝑣,Up(𝑣))} with (𝑣,Up(𝑣)) ⊂ 𝐸)
contains for every local maximum of the TO one tree. If the global
maximum is the only local maximum of TO, 𝐺(𝑉 , {(𝑣,Up(𝑣))|𝑣 ∈ 𝑉 })
is a tree spanning 𝐺(𝑉 , 𝐸). Hence, the max-link 𝑈 𝑝(𝑣) might be aptly
suited as parent-link for an ECK. Since all vertices can locate the
maximal TO-neighbor in parallel the parallel complexity depends only
on the maximal degrees of the involved vertices, not on their number.

Proposition 1. If the max-link is considered for generating a potential PL
from a total order, the total order is valid if it has a single global maximum,
if it lacks any other local maxima, and if it allocates the highest rank, 𝑛, to
the root.

Proof. Let us take a connected plane graph, 𝐺 = (𝑉 , 𝐸), comprising
|𝑉 | = 𝑛 vertices. In accordance with the properties of total order,
every vertex receives a distinct number. This setup ensures each vertex
links to a sole neighboring vertex with a superior rank. Given only a
single global maximum and no other local maxima, all vertices — bar
the root — can identify one neighbor vertex distinct from themselves
using max-link (=PL). Since the graph is connected every vertex except
the global maximum have selected one neighbor by PL, no vertex
remains isolated. The uniqueness of TO ranks ensures that each vertex
selects only one neighbor, thus preventing the formation of loops in
the resulting connected graph. As a consequence, this graph embodies
a spanning tree of the initial graph, validating the designated total
order. □

Proposition 1 ensures that if there is only one global maximum and
no other local maxima, then the total order created by the max-link is
 valid total order. The primary question that arises is: How can a valid

total order be established? To address this, we first tackle the problem
in a continuous space and subsequently adapt the solution to a discrete
space. Furthermore, we begin by solving the problem in 1D and then
extend our approach to 2D space.
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Fig. 1. Analysis of a 1D curve with extrema, including local and global features.

. Solving the problem in continuous space

.1. Total order in a 1D curve

Let 𝑆 be a 1𝐷 curve with one global maximum at point 𝑝. The
curve may have many local extrema. In order to overcome the problem
of having the local extrema, for each point of the curve its geodesic
distance to the global maximum is calculated. Therefore the resulting
curve has no local extrema.

Proposition 2. Given a point 𝑃 on a 1D continuous, open curve 𝑆, the
computation of the arc length from each point on 𝑆 to 𝑃 yields a function
with a single global minimum, devoid of any other local extrema.

Proof. Consider a point 𝑃 on the curve. This point divides the curve
into two segments: those points to the left of 𝑃 and those to the
right. For any point situated on the left, the corresponding arc length
increases as one moves further away from 𝑃 . Hence, there exists a
monotonically descending path from each point on the left to the point
𝑃 . Similarly, this reasoning can be applied to points on the right side
of 𝑃 . □

It is important to notice that the curve, whether smooth or non-
smooth, should not have any discontinuities. Fig. 1-a shows a curve
with point 𝑃 highlighting the global maximum by a red circle. Its
associated arc length (or geodesic distance) relative to point 𝑃 is
illustrated in Fig. 1-b, revealing a curve characterized by a single global
minimum at 𝑃 and devoid of any local extrema.

.2. Total order on a 2D surface

Let 𝑆 be a continuous open surface, where 𝑃 represents its unique
global maximum. While the surface may contain multiple local max-
ima, the objective is to create a monotonic path from every point on
the surface to the global maximum by eliminating these local maxima.
In essence, the intent is to transform the local maxima into plateau
regions. This transformation is achieved by utilizing the surface’s level
curves. Notably, the level curves surrounding both local and global ex-
trema, whether minima or maxima, are closed curves that intersect the
boundary. According to Kropatsch and Banaeyan [11], saddle points
on the surface are unique in that their level curves can intersect. Given
nowledge of the global maximum, saddle points can be sorted based
n height to determine the level curves related to a local maximum.
he height of these enclosed level curves around a local maximum
10 
Fig. 2. A surface with its level curves.

radually decreases until they align with the level curve of the adjacent
ower saddle point. To flatten a local maximum, all inner level curves
ithin its saddle point’s curves are adjusted to match the value of

hat saddle point’s level curve. This adjustment effectively eliminates
he local maximum. By applying this approach to all extrema except
he global maximum, the original surface is transformed into one
evoid of all other local maxima. Fig. 2 depicts a surface with a single
lobal maximum and an additional local maximum. The level curves,
epresented by closed curves, intersect the surface’s boundary. The level
urve corresponding to the saddle point is accentuated in red.

. Total order in discrete space

In discrete spaces, addressing the issue of eliminating local maxima
resents a more formidable challenge. This complexity arises from
he discretization of continuous spaces, where the sampling resolu-
ion might not be sufficiently fine to capture all critical points of a
ontinuous surface within the sampling grid structure. Nonetheless,
n subsequent sections, novel methods are introduced to mitigate this
hallenge and adapt the concepts from continuous spaces for use in
iscrete domains.

.1. 1D total order

Let 𝐺 = (𝑉 , 𝐸) be a string composed of 𝑛 vertices, defined as:

efinition 8. A string is a graph with 𝑛 ≥ 2 vertices where only two
ertices are leaves with degree 1. If 𝑛 > 2 all the other 𝑛 − 2 vertices

possess a degree of 2.
Using the diameter of this string, the vertex (or vertices) exhibiting

the minimum eccentricity transform (ECC) is determined as per [13].

Proposition 3. A string has a single vertex with the minimum eccentricity
transform value if and only if it comprises an odd number of vertices.
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Fig. 3. Depiction of a TO for a linear tree. The numbers within the circles represent
he TO.

roof. Given a string with an odd number of vertices, the ECC is
omputed beginning from its two endpoints. These endpoints are the
ccentric points with identical maximum ECC values. Moving inwards,
ertex by vertex from both sides, the ECC value decreases at each step.
ue to the string having an odd number of vertices, the central vertex
ltimately obtains the minimum ECC value. □

roposition 4. A string has two vertices with the minimum eccentricity
ransform value if and only if it consists of an even number of vertices.

roof. Utilizing the approach from the previous proof, the ECC is com-
uted for a string with an even number of vertices. At the conclusion of
his process, two central vertices emerge with identical minimum ECC
alues. □

To establish a valid total order for a string, begin with the case
here the number of vertices in the linear tree is odd, represented
s 𝑛 = 2𝑘 + 1, 𝑘 ∈ N. In this configuration, the maximum number,
, is allocated to the vertex with the minimum ECC value. For the
emaining vertices, two distinct paths are formulated, both originating
rom the global maximum and concluding at the two leaves. One path
ncompasses all even numbers less than 𝑛, that is, {𝑛 − 1, 𝑛 − 3,… , 2},
nd it decreases monotonically until it culminates at the leaf assigned
he number 2. Conversely, the alternate path incorporates odd numbers
ess than 𝑛, specified as {𝑛 − 2, 𝑛 − 4,… , 1}, decreasing monotonically
ntil it terminates at the leaf designated with the number 1.

For the scenario where two vertices exhibit the minimum ECC,
ne vertex is assigned the value 𝑛 while the other is allocated 𝑛 − 1.
eginning from the vertex marked 𝑛 and terminating at a leaf, the
ath is assigned a series of even numbers that decrease monotonically,
epresented by {𝑛− 2, 𝑛− 4,… , 2}. Conversely, the path originating from
he vertex designated 𝑛 − 1 and culminating at another leaf is allotted
he set of odd numbers, specifically {𝑛 − 3, 𝑛 − 5,… , 1}.

Fig. 3 displays a string with an odd number of vertices, specifically
|𝑣| = 7. The diagram reveals that the two endpoints of the string possess
the highest ECC value of 6, while the center vertex attains the lowest
ECC value, 3. This center vertex is assigned a value of 𝑛 = 7. The two
monotonically ascending paths from the string’s endpoints to its center
are depicted by dotted lines.

5.2. 2D total order

Consider 𝐺 = (𝑉 , 𝐸), a connected plane graph comprising 𝑛 vertices.
When a total order is assigned to the graph’s vertices, one global
maximum emerges, and potentially several local extrema may arise.
The objective is to eliminate all local maxima, ensuring a monotonic
path exists from every vertex in the graph to the designated global
maximum, which is treated as the graph’s root. Given that a plane graph
uniquely partitions the 2D continuous space, it can be superimposed
 t

11 
nto a 2D continuous surface. Consequently, the derived graph becomes
geometric graph [23,24], where each vertex possesses a height value

orresponding to its point on the 2D surface.
To establish a valid total order in the geometric graph, we introduce

wo distinct methodologies. The first approach leverages the Reeb
raph and incorporates the total order derived from previous processes.
n contrast, the second approach bypasses the previously established
otal order and operates directly on the data by utilizing the eccentricity
ransform. Detailed explanations of both methodologies are provided in
he subsequent sub-sections.

.2.1. Employing the Reeb graph
For a given geometric graph 𝐺 = (𝑉 , 𝐸), the associated Reeb

raph, denoted 𝐺𝑅 = (𝑉𝑅, 𝐸𝑅), is constructed. Notably, this Reeb
raph comprises significantly fewer vertices and edges than its original
ounterpart, as it retains only the critical points of the surface and their
djacency essential to the topology of the surface. Within the Reeb
raph, individual vertices correspond to connected components (CCs),
nd the interrelations among these CCs are encapsulated by the graph’s
dges. The initial goal is to assign a valid total order to the vertices
f the Reeb graph, subsequently extending this order to the primary
eometric graph.

Assuming that the Reeb graph of the original geometric graph con-
ains 𝑘 vertices, each leaf represents a local maximum, while branching
oints signify saddle points, as detailed in [11]. The vertex with the
ighest height is designated as the Reeb graph’s root, obtaining the
umeric value 𝑘. The challenge then pivots to allocating the remain-
ng numbers, ranging from 1 to 𝑘 − 1, to the other vertices. This
s achieved by sorting all branching points based on their heights,
ssigning numbers from 𝑘− 1 in a descending sequence. Subsequently,
he remaining vertices, being the tree’s leaves, are also ordered in a
escending fashion based on their heights. This ordering ensures that
he vertex with the lowest elevation is attributed the number 1. This
ethod ensures a unique monotonic path from each vertex to the Reeb

raph’s root, culminating in a valid total order across the Reeb graph’s
vertices.

Each vertex in the Reeb graph, representing a connected compo-
nent (CC) of the original geometric graph, can encompass numerous
other vertices or pixels. During the Reeb graph’s construction, elements

ithin a CC are retained. These preserved elements might reflect the
C’s size or a preceding total order used in its formation, and are

referred to as an increment within the Reeb graph.
To transfer the Reeb graph’s total order to the original geometric

raph, intervals corresponding to the sizes of the CCs are considered.
he objective is to allocate a unique number to every pixel within each
C, ensuring consistency with the order established in the Reeb graph.
o distribute these numbers, we utilize the order previously established
or a CC in earlier processes, aligning it with intervals derived from
he Reeb graph. This approach is grounded in the principle that every
ubset of a total order inherently retains its total order characteristics.

Fig. 4 depicts a cross-section of a surface with one global maximum,
wo local maxima, and two saddle points. The corresponding Reeb
raph overlays the surface profile. The total vertex order of the Reeb
raph is represented by the numbers, while the directed edges indicate
he monotonic paths.

Note that to align the total order with the geometry of a CC, the
aximum value 𝑘 is assigned to the vertex of the CC that exhibits the
inimum eccentricity transform value.

.2.2. Employing the eccentricity and distance transforms
Let 𝐺 = (𝑉 , 𝐸) be a connected plane graph containing 𝑛 vertices.

wo distinct approaches are introduced to produce the spanning tree
f the graph 𝐺. The first approach employs an irregular graph pyramid
s a hierarchical structure to derive the spanning tree. The second
pproach uses the distance transform metric to generate the spanning

ree.



M. Banaeyan and W.G. Kropatsch

c
t
N
r

m
u
t
l
l
c
p
o

c
t

a
m
m
r

a
t
t

t

t
r
i
T

Pattern Recognition Letters 190 (2025) 8–14 

Banaeyan2025a
Fig. 4. A vertical cross-section of a continuous surface and the associated Reeb graph.

Computing the Spanning Tree Using a Hierarchical Structure:
The graph 𝐺 is considered the base level of the pyramid. An arbitrary
strict total order (TO) assigns a unique number from 1 to 𝑛 to the
vertices. To ensure that the root of the resulting spanning tree is
entered, the vertex with the minimum eccentricity (ECC) is assigned
he highest rank, 𝑛. Applying the max-link generates local maxima.
ote that if only one local maximum is produced, the assigned random

anks become the TO.
The contraction kernels of the spanning forest, derived from the

ax-link, are then contracted to produce the next level of the irreg-
lar pyramid. This higher level is a smaller graph containing only
he surviving vertices, which are the local maxima from the previous
evel. A simplification process [25] is applied to remove empty self-
oops and parallel edges that do not carry topological information. By
ontinuing the construction of the pyramid in the same manner, the
rocess eventually reaches the top of the pyramid, which contains only
ne vertex: the global maximum.

By traversing from the top to the bottom of the pyramid and
ombining all the selected contraction kernels through the hierarchy,
he spanning tree of the graph 𝐺 at the base level is obtained.

Fig. 5 illustrates an example of constructing the spanning tree using
 hierarchical structure with two levels. Vertices identified as local
axima are highlighted with a red circle, and the global maximum is
arked with a double red circle. Note that the red edges in Fig. 5-d

epresent the contraction kernel at the top of the pyramid.
Total Order Using Distance Transform (DT): Consider 𝐺 = (𝑉 , 𝐸)

s a connected plane graph, and let 𝑣𝑟 be the root of the spanning tree
o be constructed. This root can either be chosen as the vertex with
he minimum ECC of the graph or derived from any desired property

based on prior processes. Let 𝑣𝑟 serve as the seed vertex, and assume
a distance metric, such as the norm-1 (city-block) distance, is used.
The distances of all vertices ∀𝑣 ∈ 𝑉 ⧵ 𝑉𝑟 from the seed vertex 𝑣𝑟 are
computed.

The ranks of the strict TO are then assigned based on the distances
to the root, following the histogram of these distances. Specifically,
the root is assigned the highest rank, 𝑛, and vertices at distance 1 are
assigned the next highest ranks. For example, if the root has degree 𝑚,
he vertices at distance 1 receive ranks ranging from 𝑛 − 𝑚 to 𝑛 − 1.

Similarly, 𝑘 vertices at distance 2 are assigned ranks ranging from
𝑛 − 𝑚 − 𝑘 to 𝑛 − 𝑚 − 1. This process continues until all vertices are
assigned distinct ranks, thereby producing the strict TO. Once the TO
is established, applying the max-link creates the spanning tree of 𝐺.

Fig. 6 provides an example of constructing the spanning tree using
he city-block distance metric. The distances of the vertices to the
oot are computed as shown in Fig. 6-a. In this example, the root
s the vertex with the minimum ECC, highlighted with a red circle.
he histogram of distances, containing four distinct distance values

ranging from 1 to 4, is illustrated in Fig. 6-b. Based on this histogram,
ranks from 24 to 1 are assigned to the vertices of 𝐺 as shown in
Fig. 6-c. Finally, by applying the max-link, the unique spanning tree
corresponding to this TO is generated, as illustrated in Fig. 6-d.
 l

12 
Fig. 5. Hierarchical structure (pyramid) for constructing the spanning tree from a total
order.

Fig. 6. Constructing the spanning tree by using the DT.

6. Experiments

To demonstrate the advantages of the proposed methods, we simu-
ated the creation of spanning trees using TO in the 2D digital space,
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Table 1
Diameter and root distance ratios of proposed method vs. random spanning trees.
w
a
b
𝑅
v
p
a
F

as explained in Section 5.2.2. The tested dataset1 comprises nine geo-
etric 2D shapes. Each shape is randomly drawn on a 200 × 200 RGB

mage. The published dataset consists of nine data classes, with each
lass representing a geometric shape type (Triangle, Square, Pentagon,
exagon, Heptagon, Octagon, Nonagon, Circle, and Star). Each class
ontains 10,000 generated images.

Two metrics were used to compare the results of the spanning
rees generated by the proposed method with those obtained using the
inimum spanning tree (MST) derived from Prim’s algorithm [26]:

1. Maximum Path Length (Diameter): This metric measures the
longest path in the spanning tree from the root to any node. A smaller
iameter indicates a more centralized tree structure.

2. Root-Centric Distance Metric: This computes either the average
r maximum distance from the root to all nodes. Smaller distances
ndicate better proximity and compactness.

Both metrics are critical in assessing the complexity of the proposed
methods. Using the method in [3], the parallel complexity of propagat-
ing the distance transform (DT) is (𝛿(𝑇 )), where 𝛿(𝑇 ) is the diameter of
the spanning tree of the foreground connected plane graph. Similarly,
he parallel complexity of computing the ECC using the method in [13]

is also (𝛿(𝑇 )).
Fig. 7a illustrates an MST computed using Prim’s algorithm, where

the diameter is 70.80, and the root-centric distance is 34.02. In con-
trast, the proposed method, which selects the vertex with minimum
ECC as the root and constructs the spanning tree based on TO, yields
a diameter of 44 and a root-centric distance of 12.70. We computed
spanning trees over 900 images, with 100 images for each of the nine
shape categories. For each shape, 100 spanning trees were generated
using Prim’s algorithm. The minimum metrics among these 100 span-
ning trees were averaged to represent the MST metrics for that shape.
We then applied the proposed method and computed the corresponding
metrics. The results are shown in Table 1. In all shapes except the star,
the diameter of the spanning tree produced by the proposed method is
approximately 0.6 times the average diameter of the MST computed by
Prim’s algorithm. Additionally, for all shapes except the star, the root-
centric distance is about one-third of that in the MST. This demonstrates
that the proposed method produces highly compact spanning trees.

For the star shape, the ECC does not align with the center of the
shape due to the hole in its middle, causing it to be located in the
eripheral part of the image. Consequently, the ratios of the metrics
or the star shape are slightly higher compared to the other shapes.

. Discussion

This study proposed two methods for generating the spanning tree
f a given connected plane graph. The first method uses a hierarchical
tructure to derive the spanning tree. However, it is not always possible
o determine a total order (TO) corresponding to the resulting spanning
ree. In other words, when considering the max-link as a Parent-link,
here exist spanning trees for which generating a TO through the
ax-link is impossible.

An interesting example is a spiral spanning tree in a compact shape,
tarting at the boundary and spiraling inward to the center of the shape,

1 Anas, EL KORCHI (2020), ‘‘2D geometric shapes dataset’’, Mendeley Data,
V1, doi: 10.17632/wzr2yv7r53.1.
13 
Fig. 7. Spanning tree computation for a heptagon shape.

here it ends at the root. Fig. 8 illustrates such a spiral with the root 𝑅
t the center. It is evident that the edge 𝑒 = (𝐴, 𝐵) cannot be produced
y max-link because both 𝑅 and 𝐵 are neighbors of vertex 𝐴, and
has the highest rank. Consequently, applying max-link would force

ertex 𝐴 to select the root 𝑅 as its parent, making it impossible to
roduce the edge 𝑒. Therefore, finding a TO that generates a given
rbitrary spanning tree through max-link remains an open problem.
uture work may explore alternative functions or methods to derive a

TO from any arbitrary spanning tree. The second method derives the
TO based on the distance of vertices to the root. When 𝑚 vertices have
the same distance to the root, there are 𝑚! possible permutations of
their ranks. Our method selects one of these permutations. For example,
in Fig. 6, there are 9.364 × 1011 distinct spanning trees with the same
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Fig. 8. A spiral spanning tree with 𝑅 as its root.

diameter, calculated as:

Total Spanning Trees = 4! × 8! × 8! × 4!.

This highlights the vast number of spanning trees that can be
enerated even for relatively small graphs, emphasizing the flexibility
nd potential of the proposed method.

8. Conclusion

This study introduces a foundational theory for adapting a total
vertex order, anchored in the geometrical attributes of a connected
component. Moving away from traditional methods of constructing
irregular pyramids, where contraction kernels are selected randomly,
this research presents methods that enable controlled selection. This
control ensures the persistence of a specified vertex from a connected
component at the pyramid’s apex. Solutions are proposed for both con-
tinuous and discrete spaces, offering a structured approach to 1D and
2D scenarios. Moreover, the use of the Reeb graph in 2D discrete cases
indicates the method’s potential for extension to higher 𝑛-dimensional
situations.

Having control over the selection of contraction kernels based on
desired properties such as color, attention, textural features, etc., opens
new applications where these properties can be preserved at the top
level. This approach may bring us closer to understanding the human
vision system’s processing mechanisms.
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