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Abstract:

The task of reliable detection and tracking of multiple objects becomes highly complex for

crowded scenarios. Data association is difficult to perform reliably in the presence of missing

observations due to occlusions. We propose a novel real-time approach to segment and track

multiple overlapping humans. The optimal segmentation solution is given by the maximum

likelihood estimate in the joint-object space. The search for solution is guided by a fast mean

shift procedure and relies on information on the number of humans involved in the occlusion

which can be estimated using the tracking history. Results are presented for the task of human

tracking in crowded scenes and evaluated in terms of tracking performance.

1 Introduction

Automated visual surveillance systems aim at obtaining a high-level representation for a given

scene. To achieve this goal, object detection and tracking algorithms have to generate data

providing a reliable basis for high-level functionalities. Realistic scenes, however, usually

contain many interacting and occluding objects, leading to frequent detection and tracking

failures.

Tracking systems proposed in recent years attempt to tackle increasingly complex scenarios

and several approaches for occlusion handling have been suggested. Colour-based segmen-

tation [5] in crowded scenes is usually of limited use since often colours are not sufficiently

distinctive for different individuals. Silhouette analysis [6, 7] and stochastic segmentation

from binary images [12] require a good segmentation quality in order to find landmark points

such as heads or shoulders. Methods relying on particle filters [8], performing exploration of
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the solution space of possible human configurations are usually computationally prohibitive if

the number of scene objects becomes large. Nevertheless, certain extensions of the standard

particle filter approach, the mixture particle filter [10] and the boosted particle filter [9] seem

to be promising algorithms for multi-target tracking.

In this paper we propose a novel occlusion handling scheme, which significantly improves the

tracking performance even in the presence of a large overlap between objects. The optimal

spatial arrangement, i.e. configuration of occluding humans is determined by searching for the

maximum likelihood estimate in the space of joint-object configurations. The search employs

a sampling scheme relying on the mean shift procedure and on priors with respect to the

number and size of involved humans.

The paper is organized as follows: section 2 gives a brief overview on the applied human

detection and tracking algorithms; describes the computation of a fast variant of the mean

shift vector and presents the proposed model-based occlusion handling procedure in detail.

Section 3 demonstrates tracking results employing the proposed occlusion handling scheme

and evaluation of the improved tracking algorithm. Finally, the paper is concluded in section

4.

2 The tracking system

2.1 Human detection and tracking

A common technique to detect motion in a scene viewed by a stationary camera involves

background modelling and subsequent change detection. We adopt a similar approach [3] and

the obtained difference image is used to detect objects. The difference image can be thought

as a mixture of clusters. Instead of thresholding, clustering is performed using a fast variant of

the mean shift clustering procedure (see [1] for details). Local density maxima and associated

basins of attraction [4] represent and delineate the object candidates. Each cluster also has

an associated set of points {PX1, ..., PXn}, also referred to as path-points, defining the paths

explored by the mean shift mode seeking steps. The set of path points is utilized to perform

occlusion handling in a computationally efficient manner.

The object tracking algorithm relies on an incremental mode seeking computation over time.

Further details on the tracking algorithm can be found in [1].

2.2 Fast Mean Shift Computation

The mean shift algorithm is a nonparametric technique to locate density extrema or modes of

a given distribution by an iterative procedure [4]. Starting from a location x the local mean



shift vector represents an offset to x′, which is a translation towards the nearest mode along

the direction of maximum increase in the underlying density function. The local density is

estimated within the local neighborhood of a kernel by kernel density estimation where at a

data point a kernel weights K(a) are combined with weights I(a) associated with the data.

Fast computation of the new location vector x′ can be performed as [1]:

x′ =

∑
a K ′′(a − x)iix(a)

∑
a K ′′(a − x)ii(a)

(1)

where K ′′ represents the second derivative of the kernel K, differentiated with respect to each

dimension of the image space, i.e. the x- and y-coordinates.

The functions iix and ii are the double integrals, i.e. two-dimensional integral images [11] in

the form of:

iix(x) =
∑

xi<x

I(xi)xi (2)

and

ii(x) =
∑

xi<x

I(xi) (3)

If the kernel K is uniform with bounded support, its second derivative becomes sparse con-

taining only four impulse functions at its corners. Thus, evaluating a convolution takes only

the summation of four corner values in the given integral image.

To compute the mean shift vector at location x, the following steps are performed: (1) three

integral images (defined in Eq.2 and Eq.3) are precomputed in a single pass (see [11] and [2]

for details); (2) the expression in Eq.1 is evaluated using only ten arithmetic operations and

twelve array accesses. The number of operations is independent of the kernel size, given the

sparse structure of K ′′.

2.3 Occlusion handling

If several objects meet and form a group, occlusion - partial or complete - between the objects

might take place. Typically, before moving objects form a group, they can be tracked sepa-

rately. Occlusion is detected by the data association algorithm. In such situations we employ

a probabilistic approach - similarly to the technique described in [12] - to find the optimal

configuration of humans best explaining the difference image data I. This task can be stated

as a model-based segmentation problem.

We employ a very simple human shape model, a rectangular region. This region is equivalent



Figure 1: Example frame illustrating the approach to search for the most probable configuration

of two humans in the presence of occlusion. Left: Occlusion between two humans shown in the

inverted difference image. Center: Mode seeking is performed starting from a set of sample

points. Obtained path points (shown as dots) represent possible locations of a human. Right:

the optimal configuration of two objects for the given image region.

to the kernel used in the mean shift procedure. All parameters (height, width and orienta-

tion) of the rectangular region are known due to calibration. The tracking algorithm provides

prior information on the number N of objects involved in the group formation. The search

for θ∗N - the most probable configuration consisting of N objects - in the space of possible

configurations ΘN becomes a maximum likelihood estimation problem:

θ∗N = argmax ΘN
P (I|θN) (4)

The unknown parameters are the locations of the humans {xi, yi}i=1..N in the occluded state.

When occlusion between the tracked objects is detected, we perform the following procedure:

1. A new sample set of points by locating local maxima is generated within a local image

region spanned by the spatial extrema of involved object windows.

2. Starting from these points fast mean shift procedure is carried out until convergence (see

Figure 1).

3. Sampling is guided by the path of mean shift procedures and path points, PX are used

to hypothesize object locations. The mean shift algorithm has advantageous properties sup-

porting this strategy: (1) the mean shift kernel becomes quickly centered on relevant data;

(2) local plateaus or ridges on the density surface are distinguished by a large number of path

points.

4. The likelihoods for individual human hypotheses are not independent, since inter-occlusion



between humans might be present. Therefore the joint likelihood for multiple humans has to

be formulated.

A hypothesized configuration θN divides the difference image into two image regions: pixels

explained by the configuration and pixels outside of the configuration. If Mi is the image region

occupied by the ith model, the union of image regions M =
⋃

N

i=1 Mi defines a mask containing

all pixels explained by the configuration. Accordingly, M denotes the complementary region

outside of the models (see Figure 1). The local image region R around the occluding objects

is given by R = M
⋃

M .

A configuration maximizing the likelihood should fulfill following criteria: (1) maximizing the

sum of difference image intensities within the model region M, while (2) minimizing the sum of

difference image intensities in M , outside of the models. A log-likelihood function expressing

this balance between the two quantities can be formulated as:

ln P (I|θ) ∝ A
∑

x∈M

I(x) − (1 − A)
∑

x∈M

I(x)

∝ A
∑

x∈M

I(x) −
∑

x∈R

I(x) , (5)

using the complementarity between M and M and the experimentally determined weight A.

The above quantity is evaluated for the configuration θN . Fast evaluation of the likelihood

expression of Eq. 5 can be performed as follows:

The sum of pixel intensities within the kernel centered at the ith path point, i.e. the area

sum Si is obtained during the mean shift procedure. The first term of Eq. 5 can be computed

by: (1) taking the sum of area sums at the sampled locations and (2) correcting for possible

overlaps between hypothesized models.

Since the models are represented by rectangular regions with sides parallel to the image border,

the overlap regions can be easily computed. The maximum number of possible overlaps

between N objects is N(N−1)
2

. Then, the sum of pixel intensities in the region covered by

models (first term of Eq. 5) can be computed as:

∑

x∈M

I(x) =
N∑

i=1

Si −
∑

x∈V

I(x) , (6)



where V denotes the union of overlapping regions. The union of overlapping regions is de-

termined by examining the intersections between all overlap regions. Since pairwise overlaps

span rectangular regions, therefore - using the integral images defined in Eq. 3 - the sum of

pixel intensities within an overlap region can be obtained by three arithmetic operations. The

second term of Eq. 5 - representing the sum of pixel intensities in the entire region R - is

needed to be computed only once using the integral image ii.

Generally, in our scenarios two, rarely three objects form an occluded group. Typically 5-12

path points are used for hypothesizing object locations, thus in the worst case, evaluation

of a couple of thousand configurations is necessary. All the configurations are evaluated and

the best configuration is taken. The models of the best configuration are associated - using

a nearest neighbor criterion - with the predicted cluster centers and trajectories are updated

accordingly.

3 Results and discussion

Figure 2: Tracking results obtained using the proposed occlusion handling scheme. (a) Example

frame showing tracking results for Sequence A containing people moving along relatively straight

trajectories. (b) Obtained tracks for a scene of Sequence B viewed by a top-mount camera.

Humans in this scene perform more irregular movements.

Two video sequences depicting crowded scenes were used to evaluate the proposed occlusion

handling scheme. Sequence A (Figure 2, left) consists of 1676 frames with an image resolu-

tion of 360-by-288 pixels. Sequence B (Figure 2, right) depicts a scene viewed from the top

consisting 731 frames with a resolution of 360-by-288 pixels. Tracking results using the de-

scribed occlusion handling approach are superimposed. Stable detection and tracking results

are obtained. If the occlusion between objects involves more than two persons, the humans

switch positions and the duration of occlusion is long, tracking errors still might appear. These

errors are mainly due to association errors generated by the simple nearest neighbor-based

association rule.



Figure 3: Spatial tracking errors computed relative to ground truth. Error measures were

computed for a trajectory of a human undergoing frequent occlusions, where the trajectory is

obtained by tracking with (black line) and without (gray line) occlusion handling. Left and right

plots show error measures obtained for a track of Sequence A and Sequence B, respectively.

Quantitative evaluation of the tracking performance was carried out. The centroid positions of

humans were determined manually for both sequences. Tracking results were obtained using

the described occlusion handling technique. To assess the efficiency of the presented occlusion

handling scheme, we also applied the detection and tracking framework to both sequences

without performing occlusion handling. In this case, upon occlusion between targets - detected

by a simple overlap criterion -, measurement update by mode seeking [1] was not carried out

and the tracked object was only guided by its motion model.

A single trajectory of a human undergoing several occlusions was selected in both sequences.

The trajectory data obtained with and without occlusion handling was compared to the ground

truth trajectory. The tracking error in term of spatial distance relative to the ground truth

trajectory was computed for every frame. Tracking errors obtained for a selected trajectory

in Sequence A and B are shown in Figure 3. As it can be seen from the left plot for Sequence

A, tracking results obtained with and without occlusion handling exhibit similar performance.

Due to the smooth movement of humans in this scene, even a simple first-order motion model

estimates the object positions in occlusion events of short duration quite successfully. Sequence

B contains humans moving along strongly curved trajectories, therefore tracking without

occlusion handling leads to a failure where the tracked object is lost and a new track is

initiated (see large peak in the right plot of Figure 3). Occlusion handling in such cases

estimates the local configuration of humans successfully and the track remains on the target.

The proposed method is implemented in C++ and runs in real time on a 2.5 GHz PC for all

of the presented sequences.



4 Conclusion

A simple and efficient scheme is proposed for segmenting occluded objects in a crowded scene.

The presented technique performs well and stable tracking over occlusions is obtained. The

configuration of occluding targets, maximizing the image likelihood, is determined efficiently

using a sampling step guided by mean shift mode seeking and exploiting the use of integral

images for fast integration of image intensities over rectangular image regions. Real-time

tracking performance is achieved and demonstrated for some difficult scenarios.
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