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Abstract. A hierarchical structure is a stack of successively reduced
image representations. Each basic element of a hierarchical structure is
the father of a set of elements in the level below. The transitive closure
of this father-child relationship associates to each element of the hierar-
chy a set of basic elements in the base level image representation. Such
a set, called a receptive field, defines the embedding of one element of
the hierarchy on the original image. Using the father-child relationship,
global properties of a receptive field may be computed in O(log(m))
parallel processing steps where m is the diameter of the receptive field.
Combinatorial pyramids are defined as a stack of successively reduced
combinatorial maps, each combinatorial map being defined by two per-
mutations acting on a set of half edges named darts. The basic element
of a combinatorial pyramid is thus the dart. This paper defines the re-
ceptive field of each dart within a combinatorial pyramid and study the
main properties of these sets.

1 Introduction

Regular image pyramids have been introduced 1981/82 [11] as a stack of images
with exponentially reduced resolution. Each image of this sequence is called a
level. Such Pyramids present several interesting properties within the image pro-
cessing and analysis framework such as [4]: The reduction of noise, the processing
of local and global features within the same frame and the efficiency of many
computations on this structure. Using the neighborhood relationships defined
on each image the Reduction window relates each pixel of the pyramid with a
set of pixels defined in the level below. The pixels belonging to one reduction
window are the children of the pixel which defines it. This father-child relation-
ship maybe extended by transitivity down to the base level image. The set of
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children of one pixel in the base level is named its receptive field (RF) and
defines the embedding of this pixel on the original image. Using the father-child
relationship global properties of a receptive field RF(v) with a diameter m may
be computed in O(log(m)) parallel processing steps thanks to local calculus.
However, receptive fields defined within the regular pyramid framework are not
necessarily connected [4]. Furthermore, the adjacency of two pixels v and w de-
fined at level £ may not be easily interpreted on the base level image. Indeed,
the boundary between the receptive fields RF (v) and RF(w) associated to this
adjacency at level £ may be disconnected and even incomplete.

Irregular pyramids, first introduced by Meer [16], Montanvert [17] and Jo-
lion [13] are defined as a stack of successively reduced simple graphs (i.e. graphs
without double edges nor self-loops). The base level graph may be built from
a sampling grid using one pixel adjacency such as the 4—neighborhood. Each
graph of the hierarchy is built from the graph below by selecting a set of vertices
named surviving vertices and mapping each non surviving vertex to a surviving
one [17]. This mapping induces a father-child relationship between a surviving
vertex and the set of non surviving vertices mapped to it. The reduction window
of one surviving vertex is then defined as its set of children. The receptive field
of one surviving vertex is defined by the transitive closure of the father-child
relationship. Using this reduction scheme, the receptive field of each vertex in
the hierarchy is a connected set of vertices in the base level graph. How-
ever, using simple graphs, the adjacency between two vertices is encoded by only
one edge while the receptive fields of two vertices may share several boundaries.
Edges in the hierarchy may thus encode non connected set of boundaries between
the associated receptive fields. Moreover, the lack of self-loops in simple graphs
does not allow to differentiate an adjacency relationship between two receptive
fields from an inclusion relationship.

The last two drawbacks may be overcome by using the Dual graph pyramids
introduced by Kropatsch [14]. Using Kropatsch’s reduction scheme, the reduc-
tion operation is encoded by edge contractions [14]. This operation contracts
one edge and its two end points into a single vertex. The contraction of a graph
reduces the number of vertices while maintaining the connections to other ver-
tices. As a consequence some redundant edges such as self-loops or double edges
may occur. These redundant edges may be characterized in the dual of the con-
tracted graph. The removal of such edges is called a dual decimation step. Since
the reduction scheme requires both features of the initial graph and its dual such
pyramids are called Dual graph pyramids. Within such hierarchies, each recep-
tive field is a connected set of vertices in the base level. Moreover, each
edge between two vertices in the hierarchy encodes an unique connected bound-
ary between the associated receptive fields. Finally, the use of self-loops within
the hierarchy allows to differentiate adjacency relationships between receptive
fields from inclusions relations.

The basic entity of all the above pyramids is the vertex/pixel. Combinatorial
maps are based on darts. Hence receptive fields of Combinatorial Pyramids
are expressed in terms of darts. Combinatorial pyramids are equivalent to



dual graph pyramids with the exeption that they represent the orientation ex-
plicitely. The expected advantages of such hierarchies within the image analysis
framework are presented in [9].

The remaining of this paper is as follows: In Section 2 we present the combi-
natorial map model together with the expected advantages of this model within
the Pyramid framework. In Section 3 we present the construction scheme of a
combinatorial pyramid. Finally Section 4 defines the notion of receptive field
within the combinatorial pyramid framework and states its major properties.

2 Combinatorial maps

Combinatorial maps and generalized combinatorial maps define a general frame-
work which allows to encode any subdivision of nD topological spaces orientable
or non-orientable with or without boundaries. The concept of maps has been first
introduced by Edmonds [12] in 1960 and later extended by several authors [15].
This model has been applied to several fields of computer imagery such as ge-
ometrical modeling [3] and 2D segmentation [1, 5]. An exhaustive comparison
of combinatorial maps with other boundary representations such as cell-tuples
and quad-edges is presented in [15]. Recent trends in combinatorial maps apply
this framework to the segmentation of 3D images [6, 2] and the encoding of
hierarchies [8, 9].

The remaining of this paper will be based on 2D combinatorial maps which
will be just called combinatorial maps. A combinatorial map may be seen as a
planar graph encoding explicitly the orientation of edges around a given vertex.
Fig. 1a) demonstrates the derivation of a combinatorial map from a plane graph.
First edges are split into two half edges called darts, each dart having its origin
at the vertex it is attached to. The fact that two half-edges (darts) stem from
the same edge is recorded in the reverse permutation «. A second permutation
o encodes the set of darts encountered when turning counterclockwise around a
vertex (see e.g. the o-orbit (—8,—3,11,4) encoding the central vertex in Fig. 1a)).
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Fig. 1. A 3 x 3 grid encoded by a combinatorial map



The symbols a*(d) and o*(d) stand, respectively, for the o and o orbits of
the dart d. More generally, if d is a dart and 7 a permutation we will denote the
m-orbit of d by 7*(d).

A combinatorial map G is the triplet G = (D, 0, ), where D is the set of
darts and o, a are two permutations defined on D such that « is an involution:

VvdeD o’(d)=d (1)

Note that, if the darts are encoded by positive and negative integers, the
involution o may be implicitly encoded by sign (Fig. 1a)). This convention is
often used for practical implementations [5] where the combinatorial map is
simply implemented by an array of integers encoding the permutation o.

Given a combinatorial map G' = (D, 0, ), its dual is defined by G = (D, ¢, )
with ¢ = o oa. The orbits of the permutation ¢ encode the set of darts encoun-
tered when turning around a face (see e.g. the p-orbit (1,8, -3, —7) in Fig. 1a)).
Note that, using a counter-clockwise orientation for permutation o, each dart of
a p-orbit has its associated face on its right.

Figures 1b) and 1c) illustrate an alternative representation of the combi-
natorial map encoding. Within such a representation, each dart is represented
by one vertex and one edge connects a dart d; to do iff either do = o(dy) or
dy = ¢(dy). Using this representation, the o and ¢ orbits of the combinatorial
map are represented by the faces of the oriented graph.

3 Combinatorial Pyramids

The aim of combinatorial pyramids is to combine the advantages of combinatorial
maps with the reduction scheme defined by Kropatsch [14] (see also Section 1).
A combinatorial pyramid is thus defined by an initial combinatorial map succes-
sively reduced by a sequence of contraction or removal operations. In order to
preserve the number of connected components of the initial combinatorial map,
we forbid the removal of bridges and the contraction of self-loops. A self-loop in
the initial combinatorial map becomes a bridge in its dual and vice-versa [10]. In
the same way, a contraction operation in the initial combinatorial map is equiv-
alent to a removal operation performed in its dual. Therefore, the exclusion of
bridges and self-loops from respectively removal and contraction operations cor-
responds to a same constraint applied alternatively on the dual combinatorial
map and the original one.

In order to avoid the contraction of self-loops, the set of edges to be contracted
must form a forest of the initial combinatorial map. The graph of a combinatorial
map is a forest if it does not contain a cycle. A more formal definition may
be found in [7][Def. 4]. A set of edges to be contracted satisfying the above
requirement is called a contraction kernel:

Definition 1. Contraction Kernel

Given a connected combinatorial map G = (D,o0,«) the set K C D will be
called a contraction kernel iff K is a forest of G.

The set SD = D — K is called the set of surviving darts.



In the same way, a removal kernel is defined as a forest of the dual combi-
natorial map. This constraint insures that no self-loop will be contracted in the
dual combinatorial map and thus that no bridge may be removed in the initial
one. Within our framework, a removal kernel is used to remove redundant edges
created by contraction operations. These edges are characterized as self-loops
or double edges [14]. A removal kernel is thus defined as a forest of the dual
combinatorial map removing any redundant double edge and self-loop.

Since one contraction encodes a merge between two regions, the set of darts
encoding the adjacency relationships between the image and its background must
be excluded from contraction operations. However, after a contraction step, some
edges of the image boundary may become double edges. The removal of such
edges corresponds to the concatenation of the associated boundaries in the base
level image. Such operation preserves the image boundary and is thus allowed.

Contraction and removal kernels specify the set of edges which must be
contracted or removed. The creation of the reduced combinatorial map from
a contraction or a removal kernel is performed in parallel by using connecting
walks [9]. Given a combinatorial map G = (D, 0, ), a kernel K and a surviving
dart d € SD =D — K, the connecting walk associated to d is either equal to:

CW(d) =d,p(d),.. .,ap”fl(d) with n = Min{p € IN* | ¢*(d) € SD}
if K is a contraction kernel and
CW(d) =d,o(d),...,0c" *(d) with n = Min{p € N* | 0?(d) € SD}

If K is a removal kernel.

Given a kernel K and a surviving dart d € SD, such that CW(d) = d.d; ...d,,
the successor of d within the reduced combinatorial map G' = G/K = (8D, o', a)
is retrieved from C'W (d) by the following equations [9]:

¢'(d) = ¢(d,) if K is a contraction kernel @)
o'(d) = o(dp) if K is a removal kernel

Note that, if K is a contraction kernel, the connecting walk CW (d) allows to
compute ¢'(d). The o-successor of d within the contracted combinatorial maps
may be retrieved from CW (a(d)) = a(d).d}, ..., d,. Indeed, we obtain by using
equations 1 and 2: ¢'(a(d)) = o'(a(a(d))) = o'(d) = p(d,,).

Fig. 2a) shows the three connection walks defined by kernel a*(1,7,10)
corresponding to the contracted maps in Fig. 2b). On this example, we have
¢'(=2) =5,¢'(—5) = 3 and ¢'(—3) = 8. The permutation ¢’ remains unchanged
for the other surviving darts. We have thus: ¢/(2) = 5,0'(5) = 3 and ¢/(3) =8
while the permutation ¢’ is unchanged for the other surviving darts.

Based on the above property we designed two algorithms to traverse con-
necting walks respectively defined by contraction and removal kernels [9]. One
straightforward application of these algorithms consists to compute the reduced
combinatorial maps. However, connecting walks may also be used to relate one
combinatorial map of the pyramid with the one below. Indeed, we showed [8] that



each non surviving dart belongs to one and only one connecting walk. Therefore,
the connecting walk CW (d) of each surviving dart d contains the dart d and all
non surviving darts mapped to it. Such a sequence of darts corresponds to the
reduction window associated to the surviving dart d.

4 Receptive fields of darts

The notion of connecting walks introduced in Section 3 allows us to build one
reduced combinatorial map from an initial one and a contraction or removal
kernel. Therefore, given a sequence of kernels Kj,..., K, and an initial com-
binatorial map Gy = (D,o0,«) defined from a planar sampling grid (e.g. the
4—neighborhood one) one can define the sequence of reduced combinatorial maps
Go,Gy,...,G, where G; = Gi—l/Ki = (S’DZ, O, Oé) for each i € {1, ce ,TL}.
Note that according to the definition of surviving darts (Definition 1) we have
SDZ = SDi_l — Kz =D — U;‘lej-

Intuitively, one connecting walk CTW;(d) defines the set of darts that we have
to traverse in the level below in order to connect d to ¢;(d) if K; is a contraction
kernel and d to o;(d) if K; is a removal kernel (see equation 2). Let us consider the
sequence of darts C'DS;(d) that we have to traverse in the base level graph Gy to
connect d to ¢;(d) if K; is a contraction kernel and d to o;(d) if K; is a removal
kernel. Such a sequence of darts is called a connecting dart sequence(CDS).
Moreover, using the construction scheme described below, we showed [8] that
the first dart of CDS;(d) is d. A connecting dart sequence CDS;(d) without its
first dart will be denoted C DS/ (d).

To construct a CDS, let us first suppose that K; is a contraction kernel. If
K1 is a removal kernel we have to traverse the sequence of darts CW;;1(d) =
d.dy,...,d, in G; to connect d to o;11(d). Each dart of CW;44(d) is related to
the following one by:

di = O'i(d), Vj € {1,...,p— 1} dj+1 = O'i(dj)

Since K; is a contraction kernel, CDS;(d;) connects d; to ¢;(d;) for any j in
{1,...,p — 1}. However, CDS;(a(d;)) connects a(d;) to ;(a(d;)) = oi(a
a(d;)) = 0;(d;) (see equation 1). The connection between d; and al( dj) is thus
performed by d;CDS}(a(d;)) and the connecting dart sequence of d at level
i+1is equal to CDS;y1(d) =di - CDSf(a(dr))---dp - CDSF(a(dy)).

Fig. 2c) illustrates the connecting dart sequences defined by the applica-
tions of the contraction kernel Ky = «a*(1,7,10) followed by the removal ker-
nel Ky = a*(3). Connecting walks defined by K; are illustrated in Fig. 2a)
while the contracted combinatorial map G; = Go/K} is represented in Fig. 2b)
together with the connecting walks defined by K». According to Fig. 2b) we
have to traverse the dart 3 in Gy to connect 5 to o2(5) = 8. Moreover, using
Fig. 2a), the connection between 5 and 3 requires to traverse the dart —10 in
G while the connection between 3 and 8 requires to traverse the darts —7 and
1. The connecting dart sequence associated to 5 is thus equal to CDS3(5) =
5CDS;(—=5)3.CDSy(-3) =5. —10.3. — 7.1 (Fig. 2¢)).



Conversely, if both kernels K; and K;11 are contraction kernels, the connect-
ing dart sequence of d at level i+1 is equal to [8]: CDS;(d).CDS;(dv) - - CDS;(dp).
The same construction scheme holds if K; is a removal kernel. Both cases are
resumed in the following definition:

Definition 2. Given a combinatorial map Go = (D,o0,a) and a sequence of
contraction or removal kernels K1, K> ..., K,. The connecting dart sequences
are defined by the following recursive construction:

Vde D CDSy(d) =d
For each level i in {1,...,n} and for each dart d in SD;
— If K; and K;_1 have the same type:
CDS;(d) =CDS;_1(d1)---CDS;_1(dp)
— If K; and K;_1 have different types:
CDSi(d) = di - CDS}, (a(dy)) -+ dy - CDS}_, (a(d,))

Where (dy .. .d,) is equal to CW;(d). The kernels Ko = 0 and K, have the same
type by convention.
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Fig. 2. Receptive fields C'DS> are based on connecting walks CW; and CWs.

The set of connecting dart sequences defined at each level defines a partition
of the initial set of darts D. Moreover, each connecting dart sequence C'DS;(d)
defined at level i by d € SD; satisfies [8] CDS;(d) C Ui_, K;. Therefore, d is the
only dart of CDS;(d) surviving up to level i and CDS}(d) encodes the set of
non surviving darts mapped to it at level 7. Connecting dart sequences encode
thus the notion of receptive field within the combinatorial map framework.



Using Definition 2 connecting dart sequences must be computed at each level
from the level below. However, such a construction scheme may induce useless
calculus if one does not need to compute all connecting dart sequences defined
from level 1 to level i. This recursive construction scheme may be avoided by
using the following theorem [8]:

Theorem 1 Given a combinatorial map Gy = (D,o0,«a), a sequence of con-
traction kernels or remouval kernels K1, K, ..., K,, the relation between the suc-
cessive darts of a connecting dart sequence CDS;(d) = (d.dy,...,dp—1), with
ie{l,...,n} and d € SD; is as follows:

|

VjE{Q,...,p}dj:{

d) If K; is a removal kernel
i—1) if dj_1 has been contracted

d) If K; is a contraction kernel
dj-1
d;j—1) if dj—1 has been removed

o(
o
p(d;
o

Therefore, connecting dart sequences may be computed directly from the
base level graph Gy given the type of the kernel K; and the type of the re-
duction operation applied to each dart in Ug.:lK j- This last information may
be stored in each dart during the construction of the pyramid by a function
state from U;-:lKj to {Contracted, Removed} such as state(d) is equal to ei-
ther Contracted or Removed according to the type of the kernel applied to d
before level i. Note that the storage of this function only adds on bit per dart.

Algorithm 1 uses the function state and the properties established by The-
orem 1 to compute one connecting dart sequence at level i from the base level
graph Gy. The complexity of this algorithm is linear in the length of the com-
puted connecting dart sequence. Algorithms computing all connecting dart se-
quences defined at level i in parallel are described in [8]. The complexity of these
algorithms is O(log(M;)) where M; denotes the longest connecting dart sequence
defined at level 1.

Moreover, by construction connecting dart sequences encode the set of darts
in G that we have to traverse to connect one surviving dart at level ¢ with its

;i or o; successor according to K;. Indeed, given one dart d € SD;, such that
CDS;(d) =d.dy,...,d, we showed [8] that:

— If K; is a contraction kernel:

(dp) if d,, has been contracted
(dp) if d, has been removed

eit ={

— If K; is a removal kernel:
o~ _ | wl(dy) if dy has been contracted
oild) = {a(dp) it d,, has been removed )

Note that equations 3 and 4 are similar to equations 2 defined for connecting
walks. Given an encoding of the function state and the set of surviving darts SD;,
equations 3 and 4 combined with Algorithm 1 allow us to retrieve the reduced



cds compute_cds(map Go,dart d,level i)

{
cds CDS=d
if (K; is a contraction kernel)
compute_cds_rec(Go,p(d),1i,CDS);
else
compute_cds_rec(Go,o(d),1,CDS) ;
return CDS
}
cds compute_cds_rec(map (Gp,dart d’,level i,cds CDS)
{
if (d' € 8Dy)
return CDS;
CDS=CDS.d’
if (state(d") = Contracted)
compute_cds_rec(Go,p(d’),i,CDS);
else
compute_cds_rec(Gp,o(d'),i,CDS);
return CDS
}

Algorithm 1: Computation of the connecting dart sequence of a dart d at level i.

combinatorial map G; without computing G, ..., G;—1. This last property may
be useful for the analysis of hierarchies where the first levels of the pyramid often
corresponds to low level operations.

5 Conclusion

The presented concept of connecting dart sequences uses the principle of recep-
tive fields for the first time within the combinatorial pyramid framework. The
darts of a combinatorial map refine the pixel subdivision of a digital image.
Hence receptive fields based on darts can distinguish more configurations. More-
over, using the order defined on such sequences we showed that any reduced
combinatorial map may be retrieved directely from the base level.

Higher level concepts are typically associated with higher level structural
entities like a dart or a vertex at a high pyramid level. Using the receptive
field of these structural entities properties and parameters of the corresponding
high level concepts may be computed, maybe through complicated calculations,
maybe using the hierarchical decomposition, from the gray values, the colors or
the coordinates of the discrete (pixel) measurements. In the future we plan to
study the interactions between the highly flexible contraction scheme of combi-
natorial pyramids and the efficiency of computing high level descriptions
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