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Abstract

A hierarchical structure is a stack of successively reduced image representations. Each basic

element of a hierarchical structure is the father of a set of elements in the level below. The tran-

sitive closure of this father–child relationship associates to each element of the hierarchy a set

of basic elements in the base level image representation. Such a set, called a receptive field, de-

fines the embedding of one element on the original image. Combinatorial pyramids are defined

as a stack of successively reduced combinatorial maps, each combinatorial map being defined

by two permutations acting on a set of half edges named darts. The basic element of a com-

binatorial pyramid is thus the dart. This paper defines the receptive field of each dart within a

combinatorial pyramid and study the main properties of these sets.
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1. Introduction

Regular image pyramids have been introduced 1981/1982 [1] as a stack of images

with exponentially reduced resolution. Each image of this sequence is called a level.

Such pyramids present several interesting properties within the Image Processing and
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Analysis framework such as [2]: The reduction of noise, the processing of local and

global features within the same frame and the efficiency of many computations on

this structure. Using the neighborhood relationships defined on each image the Re-

duction window relates each pixel of the pyramid with a set of pixels defined in the

level below. The pixels belonging to one reduction window are the children of the pix-
el which defines it. The value of each father is computed from the one of its children

using a Reduction function. A regular pyramid is thus defined by the ratio N � N=q,
where N � N is the size of the reduction window, and q the ratio between the size of

two consecutive images in the pyramid.

The father–child relationship defined by the reduction window may be extended

by transitivity down to the base level image. The set of children of one pixel in the base

level is named its receptive field (RF) and defines the embedding of this pixel on the

original image. Using the father–child relationship global properties of a receptive
field RFðvÞ with a diameter m may be computed in OðlogðmÞÞ parallel processing

steps, thanks to local calculus. However, receptive fields defined within the Regular

Pyramid framework are not necessarily connected [2]. Furthermore, the adjacency of

two pixels v and w defined at level k may not be easily interpreted on the base level

image. This last drawback is illustrated in Fig. 1, where the initial 8� 8 image is re-

duced by a 2� 2=4 regular pyramid using the mean gray level as reduction function.

Each black pixel in the central region belongs to a 2� 2 reduction window with three

gray pixels. These pixels are thus mapped onto a gray father and the black region
which was disconnected at level 0 becomes connected at level 1. Finally, the bound-

ary between the receptive fields RFðvÞ and RFðwÞ associated to this adjacency at le-

vel k may be disconnected and even incomplete (see [2] for more details).

Irregular pyramids, first introduced by Meer and co-workers [3] are defined as a

stack of successively reduced simple graphs (i.e., graphs without double edges nor

self-loops). The base level graph may be built from a sampling grid using one pixel

adjacency such as the 4-neighborhood. Each graph of the hierarchy is built from the

graph below by selecting a set of vertices named surviving vertices and mapping each
non-surviving vertex to a surviving one [3]. This mapping induces a father–child re-

lationship between a surviving vertex and the set of non-surviving vertices mapped to

it. The reduction window of one surviving vertex is then defined as its set of children.

The receptive field of one surviving vertex is defined by the transitive closure of the

Fig. 1. A 2� 2=4 regular pyramid. The central black region is removed from level 0 to 1 due to the fixed

decimation ratio and the reduce size of reduction windows: (a) Initial image; (b) level 1; and (c) level 2.
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father–child relationship. Using this reduction scheme, the receptive field of each ver-

tex in the hierarchy is a connected set of vertices in the base level graph. However, us-

ing simple graphs, the adjacency between two vertices is encoded by only one edge

while the receptive fields of two vertices may share several boundary segments. An

edge in the hierarchy may thus encode a non-connected set of boundaries between
the associated receptive fields. Moreover, the lack of self-loops in simple graphs does

not allow to differentiate an adjacency relationship between two receptive fields from

an inclusion relationship. These two drawbacks are illustrated in Fig. 2(b) which rep-

resents the top of a simple graph pyramid encoding the connected components of

Fig. 2(a). The two boundaries between the white region (W) and the black one on

the right of the image (B1) are encoded by only one edge. Moreover, the adjacencies

between the gray region (G) and the two black ones (B1 and B2) are encoded in the

same way by a simple edge. Therefore, these two different types of adjacency can not
be distinguished at the top of a simple graph pyramid.

The last two drawbacks may be overcome by using the Dual graph pyramids in-

troduced by Willersinn and Kropatsch [4]. Using Kropatsch�s reduction scheme, the

reduction operation is encoded by edge contractions [4]. This operation contracts

one edge and its two end points into a single vertex. It corresponds to the edge col-

lapse operation used by Hoppe et al. [5] to simplify triangular meshes. The contrac-

tion of a graph reduces the number of vertices while maintaining the connections to

other vertices. As a consequence some redundant edges such as self-loops or double
edges may occur, some encode relevant topological relations (e.g., an island in a

lake) others can be removed without any harm to the involved topology. These re-

dundant edges may be characterized in the dual of the contracted graph. The re-

moval of such edges is called a dual decimation step. Since the reduction scheme

requires both features of the initial graph and its dual, such pyramids are called Dual

graph pyramids. Within such hierarchies, each receptive field is a connected set of ver-

tices in the base level. Moreover, each edge between two vertices encodes an unique

connected boundary between the associated receptive fields. Finally, the use of self-
loops within the hierarchy allows to differentiate adjacency relationships between re-

ceptive fields from inclusion relations. These two properties are illustrated in Fig.

2(c) which represents the top of a dual graph pyramid encoding the connected com-

ponents of Fig. 2(a). The inclusion of the central black region within the gray one is

Fig. 2. Encoding of the connected components of a 8� 8 image (a); by a simple graph pyramid (b); and

the Dual Graph or Combinatorial Pyramids (c). The vertex Bg in (c) encodes the background of the image.
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encoded by the self-loop which surrounds the vertex B2 associated to this region.

Moreover, the two boundaries between the white region (W) and the black one on

the right of the image (B1) are encoded by two edges, each edge being associated

to one boundary.

The scale-space [6] and discrete wavelet [7] transforms are another stream of hier-
archical image expression. Within this stream, the hierarchical description of the im-

age is obtained by the successive application of a sequence of filters wj. Each image at

level j is defined as a sub-sampling of the image at level j� 1. Note that from this

point of view the regular pyramid may be understood as a particular case of scale-

space representation. Indeed, within the Regular Pyramid framework each image

is defined as a sub-sampling of the image below and the value of each pixel is usually

computed by applying a given filter on its reduction window. Given a particular vi-

sion task, applications using scale-space or discrete wavelet transforms define a par-
ticular filter according to the task to perform. Image processing algorithms are then

applied on this multi-scale description of the image. Applications to image compres-

sion, denoising, edge detection, optical flow and stereo-vision show the great poten-

tial of this stream [7]. The main advantages of pyramid transforms beside scale-space

representation are twofold: First, within the pyramid transform the decimation pro-

cess may be adapted during the construction of the pyramid according to the content

of the image. For example, within the Segmentation framework one can first reduce

the initial image according to low level criteria in order to produce a partition into
regions fulfilling a given homogeneity criteria. Higher level reduction process may

then be used from this intermediate partition to group regions into objects. Within

the discrete wavelet or Scale-space Transform framework, the initial filters are cho-

sen according to the application but are not usually modified during the construction

of the hierarchical representation. Secondly, the Pyramidal framework allows to en-

code the topological relationships between the regions of the hierarchy. Such an en-

coding is not directly provided by scale-space or discrete wavelets transforms.

The remaining of this paper is organized as follows: The combinatorial map mod-
el is presented in Section 2 together with the expected advantages of this model with-

in the Pyramid framework. We present in Section 3 the construction scheme of a

combinatorial pyramid. The notion of dart�s and vertex�s reduction window are pre-

sented in Section 4. Section 5 defines the notion of dart�s receptive field within the

Combinatorial Pyramid framework and states its major properties used for folding

and unfolding of the whole pyramid (Section 6).

2. Combinatorial maps

Combinatorial maps and generalized combinatorial maps define a general frame-

work which allows to encode any subdivision of nD topological spaces orientable or

non-orientable with or without boundaries. An exhaustive comparison of combina-

torial maps with other boundary representations such as cell-tuples and quad-edges

is presented in [8]. Recent trends in combinatorial maps apply this framework to the

segmentation of 3D images [9] and the encoding of hierarchies [10,11].
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The remaining of this paper will be based on 2D combinatorial maps which we

simply call combinatorial maps. A combinatorial map may be seen as a planar graph

encoding explicitly the orientation of edges around a given vertex. Fig. 3(a) demon-

strates the derivation of a combinatorial map from a plane graph G ¼ ðV ;EÞ corre-
sponding to a 3� 3 pixel grid. First the edges of E are split into two half edges called
darts, each dart having its origin at the vertex it is attached to. The fact that two half-

edges (darts) stem from the same edge is recorded in the reverse permutation a. A
second permutation r encodes the set of darts encountered when turning counter-

clockwise around a vertex.

A combinatorial map is thus defined by a triplet G ¼ ðD; r; aÞ, where D is the set

of darts and r, a are two permutations defined on D such that a is an involution:

8d 2 D; a2ðdÞ ¼ d: ð1Þ
If the darts are encoded by positive and negative integers, the involution a may be

implicitly encoded by the sign (Fig. 3(a)).

Given a dart d and a permutation p, the p-orbit of d denoted by p
ðdÞ is the series
of darts ðpiðdÞÞi2N defined by the successive applications of p on the dart d. The r
and a orbits of a dart d will be, respectively, denoted by r
ðdÞ and a
ðdÞ.

Fig. 3 illustrates the encoding G ¼ ðf�g; f� – �gÞ of a 3� 3 4-connected discrete

grid by a combinatorial map. Each vertex of the initial combinatorial map (Fig. 3(a))

encodes a pixel of the grid. The r-orbit of one vertex encodes its adjacency relation-

ships with neighboring vertices. Let us consider the dart 1 in Fig. 3(a) (see also Fig.

4(a)). Turning counterclockwise around the central vertex we encounter the darts 1,

13, 24, and 7. We have thus rð1Þ ¼ 13, rð13Þ ¼ 24, rð24Þ ¼ 7, and rð7Þ ¼ 1. The r-
orbit of 1 is thus defined as r
ð1Þ ¼ ð1; 13; 24; 7Þ.

The permutation a being implicitly encoded by the sign in Fig. 3, we have

a
ð1Þ ¼ ð1;�1Þ. The a successors of the darts 13–24 are not shown in Fig. 3(a) in or-

der to not overload it. These darts encode the adjacency relationships between the

border pixels of the grid and its background. The r orbit of the background vertex

is equal to the sequence of darts from )13 to )24: ð�13;�14; . . . ;�23;�24Þ.
Given a combinatorial map G ¼ ðD; r; aÞ, its dual is defined by G ¼ ðD;u; aÞ with

u ¼ r � a. The orbits of the permutation u encode the set of darts encountered when

Fig. 3. A 3� 3 grid encoded by a combinatorial map: (a) G; (b) G; and (c) OG.
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turning around a face of G. Note that, using a counter-clockwise orientation for per-

mutation r, each dart of a u-orbit has its associated face on its right (see, e.g., the u-
orbit u
ð1Þ ¼ ð1; 8;�3;�7Þ in Fig. 3(a)).

The dual combinatorial map G ¼ ðfjg; fj; – jgÞ is shown in Fig. 3(b). We also

do not show the a-successor of the positive darts on this figure to not overload it.

Each vertex of this dual map may be associated to a corner of a pixel. The top-left

corner of the pixel represented in Fig. 4(b) is, for example, encoded by the u orbit:

u
ð24Þ ¼ ð24;�13Þ. Moreover, each dart may be understood in this combinatorial
map as an oriented crack, i.e., as a side of a pixel with an orientation. For example,

the dart 1 in Fig. 3(b) encodes the right-hand side of the upper-left pixel oriented

from bottom to top (Fig. 4(b)). The u, a, and r orbits of a dart may thus be, respec-

tively, understood as elements of dimensions 0, 1, and 2. A combinatorial map

G ¼ ðD; r; aÞ encoding a planar sampling grid may thus be associated to the cellular

complex:

C ¼ ðE0 [ E1 [ E2;B;dimÞ; ð2Þ

with E0 ¼ fu
ðdÞ; d 2 Dg, E1 ¼ fa
ðdÞ; d 2 Dg; E2 ¼ fr
ðdÞ; d 2 Dg, B ¼ ðE0 �
E1Þ [ ðE1 � E2Þ [ ðE0 � E2Þ and dimðbÞ ¼ i for all b 2 Ei, i 2 f0; 1; 2g.

Using Fig. 4, the 2D cell encoding the top left pixel is encoded by the r-orbit
r
ð1Þ ¼ ð1; 13; 24; 7Þ 2 E2 (Fig. 4(a)). This 2D cell is bounded by the 1D cells defined

by fa
ð1Þ; a
ð13Þ; a
ð24Þ; a
ð7Þg � E1 (Fig. 4(b)). Finally, each 1D cell a
ðdÞ is

bounded by the two 0D cells u
ðdÞ and u
ðaðdÞÞ. The 1D cell a
ð24Þ is, for example,

bounded by u
ð24Þ ¼ ð24; 13Þ 2 E0 and u
ð�24Þ ¼ ð�24; 7; 23Þ 2 E0 (Figs. 4(b) and
3(b)). A discrete topology [12] based on cellular complexes may thus be associated to

combinatorial maps (see [8] for a more precise study).

Fig. 3(c) illustrates the r–u representation of a combinatorial map. Within this

alternative representation, a combinatorial map G ¼ ðD; r; aÞ is described by an ori-

ented planar graph OG ¼ ðV ;EÞ. The set V of vertices of OG is equal to the set of

darts D and an oriented edge e 2 E connects two vertices d1 and d2 iff either

d2 ¼ rðd1Þ or d2 ¼ uðd1Þ (see, e.g., the encoding of the top-left vertex in Fig. 4(c)).

Using this representation, the r and u orbits of the combinatorial map are repre-
sented by the faces of the oriented graph OG. Note that each vertex of OG
has two incoming arcs (its r and u predecessors) and two outgoing ones (its r
and u successors).

Fig. 4. The r-orbit r
ð1Þ encoding the top-left pixel represented in three equivalent representation: the ini-

tial combinatorial map G (a); its dual G (b); and the oriented graph OG (c): (a) r
ð1Þ in G; (b) r
ð1Þ in G;
and (c) r
ð1Þ in OG .
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2.1. Properties of combinatorial maps

As mentioned above the dual combinatorial map may be simply computed by

composing the permutations r and a. This dual map may thus be implicitly encoded.

This implicit encoding allows to reduce both the memory requirements and the ex-
ecution times since only one data structure needs to be stored and processed. More-

over the combinatorial map formalism is formally defined in any dimensions.

Algorithms defined within the 2D Combinatorial Pyramid framework may thus be

extended to higher dimensions (see, e.g. [8]). This hypothesis is confirmed by some

recent results from Damiand and Lienhardt [13]. Finally, the combinatorial map for-

malism encodes explicitly the orientation of edges around each vertex. This addi-

tional feature allows to encode fine relationships on the partition. For example, an

encoding by a combinatorial map of the graph represented in Fig. 2(c) would encode
the fact that turning counterclockwise around the region encoded by the vertex B1

we encounter the sequence of regions W, G, W, and Bg. This feature is not explicitly

encoded within the Dual Graph framework.

3. Combinatorial pyramids

The aim of combinatorial pyramids is to combine the advantages of combinato-
rial maps (Section 2.1) with the reduction scheme defined by Kropatsch [14] (see also

Section 1). A combinatorial pyramid is thus defined by an initial combinatorial map

successively reduced by a sequence of contraction or removal operations. In order to

preserve the connectivity among the elements chosen to survive to the higher level,

we forbid the removal of bridges and the contraction of self-loops. A self-loop in

the initial combinatorial map corresponds to a bridge in its dual and vice versa

[15]. In the same way, a contraction operation in the initial combinatorial map is

equivalent to a removal operation performed in its dual. Therefore, the exclusion
of bridges and self-loops from, respectively, removal and contraction operations cor-

responds to a same constraint applied alternatively on the dual combinatorial map

and the original one.

In order to avoid the contraction of self-loops, the set of edges to be contracted

must form a forest of the initial combinatorial map. The graph of a combinatorial

map is a forest if it does not contain a cycle. A more formal definition may be found

in [10]. A set of edges to be contracted satisfying the above requirement is called a

contraction kernel:

Definition 1 (Contraction kernel). Given a connected combinatorial map

G ¼ ðD; r; aÞ the set K � D will be called a contraction kernel iff K is a forest of G.
The set SD ¼ D� K is called the set of surviving darts.

Given a contraction kernel K, we denote by CCðKÞ its set of connected compo-

nents. Since K is a forest, each T 2 CCðKÞ is a tree. Intuitively, a tree T 2 CCðKÞ col-
lapses into one vertex, a connected set of vertices of the initial combinatorial map.
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The contraction of a combinatorial map by a contraction kernel may induce the

creation of redundant edges. These edges named double edges and direct-self-loops

are respectively characterized by u2ðdÞ ¼ d and rðdÞ ¼ aðdÞ, where d is one of the

darts of the edge a
ðdÞ. Both double edges and direct self-loops may be removed

by using a removal kernel defined as a forest of the dual combinatorial map. This
last constraint insures that no self-loop will be contracted in the dual combinatorial

map and thus that no bridge may be removed in the initial one. The contracted com-

binatorial map may thus be simplified using parallel edge removals.

3.1. Example of contraction and simplification

Fig. 5 illustrates a contraction of the initial combinatorial map represented in Fig.

3 by a contraction kernel K1 defined by the trees a
ð1; 2Þ; a
ð4; 12; 6Þ, and a
ð10Þ.
Since each initial vertex is incident to a contracted edge this forest spans the initial

combinatorial map and we obtain three surviving vertices encoding three regions.

The contraction of the first row of the image by the tree a
ð1; 2Þ is represented in

Fig. 6. The same row is reprensented in the dual combinatorial map G in Fig. 7.

Double edges encode a same adjacency relationship between two vertices. For ex-

ample, the edges a
ð8Þ and a
ð9Þ in Fig. 5(a) encode both an adjacency relationship

between the top vertex and the center one. Such edges correspond to an artificial split

of a boundary between two regions (see Fig. 5(b)). On the other hand, direct self-
loops, such as a
ð11Þ (Fig. 5(a)) may be interpreted in the dual combinatorial map

as inner-boundaries of a face (Fig. 5(b)).

Fig. 5. Reduction of the initial grid displayed in Fig. 3 by the contraction kernel K1: (a) G1 ¼ G=K1; (b)

G1 ¼ G=K1; and (c) OG1.

Fig. 6. Contraction of the first row represented in Fig. 3(a). The contracted edges are represented by thick

lines. (a) Initial row and (b) contracted one.
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Fig. 8 shows the combinatorial map deduced from Fig. 5 and simplified by the

removal kernel K2 ¼ fa
ð15; 14; 13; 24Þ; a
ð9Þ; a
ð11; 3Þ; a
ð19; 18; 17Þ; a
ð22; 21Þg.
Note that given a sequence of double edges, the choice of the surviving edge is arbi-

trary. For example, a choice of the tree a
ð20; 19; 18Þ instead of a
ð19; 18; 17Þ would
lead to an equivalent simplified combinatorial map with a surviving edge equal to

a
ð17Þ instead of a
ð20Þ.

3.2. Connecting walks

Contraction and removal kernels specify the set of edges which must be con-

tracted or removed. The creation of the reduced combinatorial map from a contrac-

tion or a removal kernel is performed in parallel by using connecting walks [11].

Given a combinatorial map G ¼ ðD; r; aÞ, a kernel K and a surviving dart

d 2 SD ¼ D� K, the connecting walk associated to d is equal to:

CWðdÞ ¼ d; pðdÞ; . . . ; pn�1ðdÞ with n ¼ Minfp 2 N
jppðdÞ 2 SDg; ð3Þ
where p is associated with u if K is a contraction kernel and with r otherwise.

Given a kernel K and a surviving dart d 2 SD, such that CWðdÞ ¼ d � d1; . . . ; dp,
the successor of d within the reduced combinatorial map G0 ¼ ðSD; r0; aÞ is retrieved
from CWðdÞ by the following equations [11]:

u0ðdÞ ¼ uðdpÞ if K is a contraction kernel;

r0ðdÞ ¼ rðdpÞ if K is a removal kernel:
ð4Þ

Note that, if K is a contraction kernel, the connecting walk CWðdÞ allows to com-

pute u0ðdÞ. The r-successor of d within the contracted combinatorial map may be

Fig. 7. Contraction of the first row represented in the dual combinatorial map (Fig. 3(b)). The edges to be

removed are represented by thick lines. (a) Initial row and (b) contracted one.

Fig. 8. Reduction of the contracted combinatorial map displayed in Fig. 5 by the removal kernel K2. (a)

ðG=K1Þ n K2; (b) ðG=K1Þ n K1; and (c) OG2.
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retrieved from CWðaðdÞÞ ¼ aðdÞ � d 0
1; . . . ; d

0
p. Indeed, we obtain by using Eqs. (1) and

(4): u0ðaðdÞÞ ¼ r0ðaðaðdÞÞÞ ¼ r0ðdÞ ¼ uðd 0
pÞ. We may alternatively consider the se-

quence d � CW
ðaðdÞÞ, where CW
ðaðdÞÞ denotes the sequence CWðaðdÞÞ without its
first dart aðdÞ. In this case, using Eq. (4) the r successor of a surviving dart d is

provided by the last dart of CWðdÞ if K is a removal kernel and by the last dart of

d � CW
ðaðdÞÞ if K is a contraction kernel.

3.3. Illustration of connecting walks

Fig. 9 shows the connecting walks defined by K1 and K2 superimposed to the ori-

ented graphs OG (Fig. 3(c)) and OG1 (Fig. 5(c)), respectively, associated to

G ¼ ðD; r; aÞ and G1 ¼ G=K1 ¼ ðSD1; r1; aÞ. Let us consider the surviving dart )5
of G1 (Fig. 9(a)). Since K1 is a contraction kernel CW1ð�5Þ is equal to the sequence

of non-surviving u successors of )5. Since uð�5Þ ¼ �10 2 K1 and uð�10Þ ¼
3 2 SD1, we have CW1ð�5Þ ¼ �5:� 10 (Fig. 9). Given CW1ð�5Þ, we obtain by
Eq. (4): u1ð�5Þ ¼ r1ð5Þ ¼ uð�10Þ ¼ 3 (Fig. 5).

In the same way, let us now consider the combinatorial map G2 ¼ G1 n K2 ¼
ðSD2; r2; aÞ and the surviving dart 5 2 SD2 (Fig. 9(b)). Since K2 is a removal kernel,

the connecting walk of 5 is defined as the sequence of non-surviving r-successors of
5. Since r1ð5Þ ¼ 3 2 K2 and r1ð3Þ ¼ �7 2 SD2 (Fig. 5), we have: CW2ð5Þ ¼ 5:3 (Fig.

9(b)). Moreover, using CW2ð5Þ and Eq. (4), we have r2ð5Þ ¼ r1ð3Þ ¼ �7 (Fig. 8).

4. Reduction window of darts and of vertices

Given an initial combinatorial map G ¼ ðD; r; aÞ and a kernel K, we designed [11]

two algorithms to traverse connecting walks. These algorithms may be used in

association with Eq. (4) to compute the reduced combinatorial map G0 ¼ ðSD ¼

Fig. 9. Connecting walks defined by K1 (a) and K2 (b). (a) Connecting walks in OG defined by K1 and (b)

connecting walks in OG1 defined by K2.
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D� K; r0; aÞ. However, connecting walks may also be used to relate one combinato-

rial map of the pyramid with the one below. Indeed, using Eq. (4) each connecting

walk associates one surviving dart d to either r0ðdÞ or u0ðdÞ according to the

type of the kernel K. Since the reduced combinatorial map is defined by the permu-

tation r0, we define the reduction window of a surviving dart d as the sequence of
non-surviving darts which connects d to r0ðdÞ in G. This sequence is thus defined

by (Section 3):

RWðdÞ ¼ CWðdÞ if K is a removal kernel;
dCW
ðaðdÞÞ if K is a contraction kernel:

�
ð5Þ

A dart�s reduction window may thus be computed using the algorithms which tra-

verse connecting walks [11].

However, within the Irregular Pyramid framework, the reduction window relates

one surviving vertex with a set of non-surviving vertices in the graph below (Section

1). This vertex set is connected and forms a tree structure. Within the Combinatorial

Pyramid framework, a surviving vertex is defined by its r0-orbit. Let us consider such
an orbit r0
ðd1Þ ¼ ðd1; . . . ; dpÞ. The reduction window of the vertex r0
ðd1Þ denoted by

Rr0
ðd1Þ is defined as the concatenation of the reduction windows of each of its darts:

Rr0
ðd1Þ ¼ RWðd1Þ; . . . ;RWðdpÞ: ð6Þ

Note that Rr0
ðd1Þ is defined, as r0
ðd1Þ, up to a circular permutation on ðd1; . . . ; dpÞ.
Within the Combinatorial Pyramid framework a vertex�s reduction window is

thus defined as a sequence of darts. We have shown (see proof in [16]) that the ver-
tex�s reduction window Rr0
ðd1Þ contains all the darts of each non-surviving vertex

mapped to r0
ðd1Þ and define a connected set of vertices. It additionally defines a cy-

cle in the graph OG (Fig. 10(c)).

Our definition of a vertex�s reduction window corresponds thus to the usual no-

tion of reduction window such as the one defined by Willersinn and Kropatsch

[4]. The edge associated to each dart of Rr0
ðd1Þ may be classified into two categories:

We say that an edge a
ðdÞ is an inner boundary of the reduction window Rr0
ðd1Þ if it

connects two vertices included in Rr0
ðd1Þ. Conversely an edge is said to be an external
boundary of Rr0
ðd1Þ if it connects one vertex in Rr0
ðd1Þ with another vertex of G not

included in Rr0
ðd1Þ.

Fig. 10. The reduction window Rr0
ð�8Þ defined by contraction kernel K1 � D. (a) Rr0
ð�8Þ in G; (b) Rr0
ð�8Þ in

G; and (c) Rr0
ð�8Þ in OG.
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4.1. Illustration of a vertex’s reduction window

Fig. 10 illustrates three alternative representations of the reduction window asso-

ciated to the contracted vertex r0
ð�8Þ (see central vertex in Fig. 5(a)). In the reduced

graph G1 (Fig. 5) the vertex r0
ð�8Þ is defined by the sequence of darts
)8.)3.11.)11.)5.20.19.18.17.)9. Since K1 is a contraction kernel the reduction win-

dow of each dart d 2 Rr0
ð�8Þ is equal to d � CW
ðaðdÞÞ (Eq. (5)). Using Eq. (6), the

reduction window Rr0
ð�8Þ is defined by

Rr0
ð�8Þ ¼ �8:�3:11:4:12:� 6:�11:�5:20:6:19:18:� 12:17:�9:� 4; ð7Þ

where each sequence d � CW
ðaðdÞÞ with d 2 r0
ð�8Þ is underlined (cf. Fig. 9(a)).

The reduction window Rr0
ð�8Þ is composed of four vertices with four edges encod-
ing inner boundaries and eight edges encoding the external boundary of the reduc-

tion window (Section 4). We can note in Eq. (7) that all the edges defining inner

boundaries are included in Rr0
ð�8Þ. We have indeed, a
ð4; 11; 6; 12Þ � Rr0
ð�8Þ.

This last property is a consequence of the fact that a reduction window Rr0
ðd1Þ con-

tains all the darts of the non-surviving vertices mapped to r0
ðd1Þ. Indeed, if an edge

a
ðdÞ defines an inner boundary of a vertex�s reduction window R both r
ðdÞ and

r
ðaðdÞÞ must be included in R. Therefore, d and aðdÞ must belong to R. Conversely,
all darts defining the boundary of a region R cannot have their a-successor in R (see,
e.g., the darts 17–20 in Eq. (7) and Fig. 10).

5. Receptive fields

The notion of connecting walks introduced in Section 3 allows us to build one re-

duced combinatorial map from an initial one and a contraction or removal kernel.

Therefore, given a sequence of kernels K1; . . . ;Kn and an initial combinatorial map
G0 ¼ ðD; r; aÞ defined from a planar sampling grid (e.g., the 4-neighborhood), one

can define the sequence of reduced combinatorial maps G0;G1; . . . ;Gn, where

Gi ¼ Gi�1=Ki ¼ ðSDi; ri; aÞ for each i 2 f1; . . . ; ng. Note that according to the defini-

tion of surviving darts (Definition 1), we have SDi ¼ SDi�1 � Ki ¼ D� [i
j¼1Kj.

5.1. Connecting dart sequences

Intuitively, one connecting walk CWiðdÞ defines the set of darts that we have to
traverse in Gi�1 in order to connect d to uiðdÞ if Ki is a contraction kernel, or to

connect d to riðdÞ if Ki is a removal kernel (Eq. (4)). Let us consider the sequence

of darts CDSiðdÞ that we have to traverse in the base level combinatorial map G0

to connect d to uiðdÞ if Ki is a contraction kernel and d to riðdÞ if Ki is a removal

kernel. Such a sequence of darts is called a connecting dart sequence (CDS).

Moreover, using Definition 2, we have shown [10] that the first dart of CDSiðdÞ
is d. A connecting dart sequence CDSiðdÞ without its first dart will be denoted

CDS

i ðdÞ.
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Definition 2. Given a combinatorial map G0 ¼ ðD; r; aÞ and a sequence of contrac-

tion or removal kernels K1;K2; . . . ;Kn. The connecting dart sequences are defined by

CDS0ðdÞ ¼ d for any d 2 D and the following recursive construction:

For each level i in f1; . . . ; ng and for each dart d in SDi

• If Ki and Ki�1 have the same type:

CDSiðdÞ ¼ CDSi�1ðd1Þ � � �CDSi�1ðdpÞ:
• If Ki and Ki�1 have different types:

CDSiðdÞ ¼ d1 � CDS

i�1ðaðd1ÞÞ � � � dp � CDS


i�1ðaðdpÞÞ;
where ðd1; . . . ; dpÞ is equal to CWiðdÞ. The kernels K0 ¼ ; and K1 have the same type

by convention.

The construction scheme of a CDS may be intuitively explained as follows: Let us
suppose that Ki is a contraction kernel and Kiþ1 a removal kernel. The sequence of

darts CWiþ1ðdÞ ¼ d:d1; . . . ; dp connects d to riþ1ðdÞ in Gi (Eq. (4)). Each dart of

CWiþ1ðdÞ is related to the following one by Eq. (3):

d1 ¼ riðdÞ 8j 2 f1; . . . ; p � 1g; djþ1 ¼ riðdjÞ:
Since Ki is a contraction kernel, CDSiðdjÞ connects dj to uiðdjÞ in G0 for any j in

f1; . . . ; p � 1g. However, CDSiðaðdjÞÞ connects aðdjÞ to uiðaðdjÞÞ ¼ riða � aðdjÞÞ ¼
riðdjÞ (Eq. (1)). The connection between dj and riðdjÞ is thus performed by

djCDS

i ðaðdjÞÞ and the connecting dart sequence of d at level iþ 1 is equal to

CDSiþ1ðdÞ ¼ d1 � CDS

i ðaðd1ÞÞ � � � dp � CDS


i ðaðdpÞÞ.
Note that given a dart d 2 SD1, both CDS1ðdÞ and CW1ðdÞ connect d to u1ðdÞ

or r1ðdÞ according to K1. Since both sequences are defined in the initial combina-

torial map they should be equal. Indeed, one can easily show from Definition 2

that

8d 2 SD1; CDS1ðdÞ ¼ CW1ðdÞ: ð8Þ

5.2. Properties of CDS

Each connecting dart sequence CDSiðdÞ defined at level i by d 2 SDi satisfies [10]

CDS

i ðdÞ � [i

j¼1Ki. Therefore, d is the only dart of CDSiðdÞ surviving up to level i.
Moreover, by construction, connecting dart sequences encode the set of darts in

G0 that we have to traverse to connect one surviving dart at level i with its ui or

ri successor according to Ki. Indeed, given one dart d 2 SDi, such that CDSiðdÞ ¼
d � d1; . . . ; dp we have shown [10] that

piðdÞ ¼
uðdpÞ if dp has been contracted;
rðdpÞ if dp has been removed;

�
ð9Þ

where pi is associated with ui if Ki is a contraction kernel and with ri otherwise.

Note that Eq. (9) is similar to Eq. (4) defined for connecting walks. The additional

test performed on dp in Eq. (9) may be intuitively explained by the structure of a con-

necting dart sequence which contains both contracted and removed darts.
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Fig. 11 shows the connecting dart sequences defined by the applications of the

contraction kernel K1 ¼ a
ð1; 2; 4; 12; 6Þ followed by the removal kernel K2 ¼
fa
ð15; 14; 13; 24Þ; a
ð9Þ; a
ð11; 3Þ; a
ð19; 18; 17Þ; a
ð22; 21Þg (Section 3) superimposed

to OG. The construction of CDS2ð8Þ is detailed in below.

Construction of CDS2 (8): Using Fig. 9(b), we have CW2ð8Þ ¼ 8:9. Moreover, us-
ing Fig. 9(a), we have CW1ð�8Þ ¼ �8:2 and CW1ð�9Þ ¼ �9. We obtain thus (Def-

inition 2 and Eq. (8)):

CDS2ð8Þ ¼ 8:CDS

1ð�8Þ:9:CDS


1ð�9Þ ¼ 8:CW

1ð�8Þ:9:CW


1ð�9Þ ¼ 8:2:9:

5.3. The receptive field of a dart

Using the same approach than in Section 4 we define the receptive field of a dart

d 2 SDi as the sequence of darts to traverse in the base level combinatorial map G0

to connect d to riðdÞ. Using Eq. (9) this sequence denoted by RFiðdÞ is equal to

RFiðdÞ ¼
CDSiðdÞ if Ki is a removal kernel;
d � CDS


i ðaðdÞÞ if Ki is a contraction kernel:

�
ð10Þ

Let us consider a dart d 2 SDi such that RFiðdÞ ¼ d � d1; . . . ; dp. If Ki is a removal
kernel, RFiðdÞ ¼ CDSiðdÞ and riðdÞ is equal to either rðdpÞ or uðdpÞ according to the

operation which suppressed dp (Eq. (9)). In the same way, if Ki is a contraction ker-

nel, we have RFiðdÞ ¼ d � CDS

i ðaðdÞÞ and uiðaðdÞÞ ¼ riðdÞ is equal to rðdpÞ or uðdpÞ

according to the operation which suppressed dp (Eq. (9)). We have thus in both cases:

riðdÞ ¼
uðdpÞ if dp has been contracted;
rðdpÞ if dp has been removed;

�
ð11Þ

where dp is the last dart of RFiðdÞ.
The receptive field of d 2 SDi connects thus the dart d to riðdÞ in G0. Moreover,

the set of receptive fields defined at each level defines a partition of the initial set of
darts D [10].

Fig. 11. Connecting dart sequences CDS2 superimposed to OG at level 2.
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6. Folding and unfolding of the pyramid

Using Eq. (10), the definition of the receptive field of a dart is based on connecting

dart sequences. However, using Definition 2 connecting dart sequences must be com-

puted at each level from the level below. Such a construction scheme may induce use-
less calculus if one does not need to compute connecting dart sequences or receptive

fields at all intermediate levels. This recursive construction scheme may be avoided

by using the following theorem [10]:

Theorem 1. Given a combinatorial map G0 ¼ ðD; r; aÞ, a sequence of contraction
kernels or removal kernels K1;K2; . . . ;Kn, the relation between the successive darts of a
receptive field RFiðdÞ ¼ d � d1; . . . ; dp, with i 2 f1; . . . ; ng and d 2 SDi is defined by
d1 ¼ rðdÞ and

8j 2 f2; . . . ; pgdj ¼
uðdj�1Þ if dj�1 has been contracted;
rðdj�1Þ if dj�1 has been removed:

�

One receptive field defined at level i may thus be traversed if we know the

initial dart which defines it and the operation which has reduced each dart of
the receptive field. The above remark suggests an encoding of the pyramid by

two functions:

(1) Function state from f1; . . . ; ng to the binary states fContracted;Removedg
specifies the type of each kernel.

(2) Function level defines for all darts in D the highest level to which d survives:

8d 2 D levelðdÞ ¼ Maxfi 2 f1; . . . ; nþ 1gjd 2 SDi�1g; ð12Þ
a dart d surviving up to the top level has thus a level equal to nþ 1. Note that the

level of an initial vertex (i.e., a pixel) may be implicitly defined as the minimal level of

its darts.

Given the function level, the sequence of kernels and the set of surviving darts

may be retrieved from the base level combinatorial map by the following equations

[10]:

8i 2 f1; . . . ; ng Ki ¼ fd 2 DjlevelðdÞ ¼ ig;
SDi ¼ fd 2 DjlevelðdÞ > ig:

�
ð13Þ

Moreover, given a dart d 2 SDi and using both functions state and level, the tra-
versal of a receptive field defined by Theorem 1 may be written as follows:

d1 ¼ rðdÞ and for each j in f2; . . . ; pg

dj ¼
uðdj�1Þ if stateðlevelðdj�1ÞÞ ¼ contracted;
rðdj�1Þ if stateðlevelðdj�1ÞÞ ¼ removed:

�
ð14Þ

Given a receptive field RFiðdÞ ¼ d � d1; . . . ; dp, if we define dpþ1 by uðdpÞ if dp is

contracted and by rðdpÞ if dp is removed, then dpþ1 is equal to riðdÞ (Eq. (11)). We

have thus, dpþ1 2 SDi and levelðdpþ1Þ > i (Eq. (13)). This last remark allows us to
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determine the last dart of a receptive field as the one whose successor defined by Eq.

(14) has a level strictly greater than i.
The above considerations lead to the design of the function receptive_field

(Algorithm 1) which computes the receptive field of a dart d 2 SDi. The second dart

of the receptive field is initialized on line 4, while the remaining darts of the receptive
field are determined according to Eq. (14) (lines 8–11).

Algorithm 1. Computation of the receptive field of a dart d at level i.
sequence of darts receptive_field(map G0,dart d,level i)

{

sequence of darts rf ¼ d;
dart d 0 ¼ rðdÞ;
while(levelðd 0Þ � i)
{

rf ¼ rf � d 0;

if (stateðlevelðd 0ÞÞ ¼¼ Contracted)
d 0 ¼ uðd 0Þ;
else

d 0 ¼ rðd 0Þ;
}

return rf;
}

Algorithm 1 traverses each dart of the receptive field only once. Since the set of

receptive field forms a partition of the initial set of darts D (Section 5.3), the compu-

tation of all receptive fields may be performed in OðjDjÞ steps [10], where jDj denotes
the cardinal of D. Note that the reduced combinatorial map at level i may be easily

deduced from the set of receptive fields defined at this level (Eq. (11)). We also de-

signed [10] a parallel version of Algorithm 1. This last algorithm traverses all the re-
ceptive fields in OðlogðjRF max

i ðdÞjÞÞ steps where RF max
i ðdÞ denotes the longest

receptive field defined at level i.
Since both darts of an edge are simultaneously contracted or removed the func-

tion level may be initialized on only one dart of each edge according to a particular

convention (e.g., the positive dart if a is encoded by the sign). Since the memory re-

quirements of the function state is negligible besides the one of function level the
memory requirements of our encoding is jDj=2 bytes. On the other hand an explicit

encoding of the permutation r for each level requires jDjð2þ ð1=ðk � 1ÞÞÞ bytes,
where k is the reduction factor. The ratio between the memory requirements of both

encodings is thus at least equal to 4. Note that, in practice this ratio is greater than 4

since additional information are stored in each level of the pyramid.

6.1. Application to connected components

Fig. 12 represents an application of the above formalism to the analysis of con-

nected components. The image in Fig. 12(a) is reduced by a pyramid composed of
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three levels. The initial combinatorial map G0 encodes the 5� 6 4-connected sam-

pling grid (Fig. 12(b)), the combinatorial map G1 is deduced from G0 by a contrac-

tion kernel K1 represented by normal lines in Fig. 12(b). The redundant edges are

then removed by a removal kernel K2 represented by dotted lines in Fig. 12(b).

The final combinatorial map G2 encodes the connected components of the image

and is represented in Fig. 12(c). The corresponding surviving edges are represented
in the base level combinatorial map G0 by thick lines (Fig. 12(b)). The trees compos-

ing the contraction and removal kernels may be defined in parallel using the method

defined by Montanvert to analyse the connected components of labeled images [3].

Note that since the pyramid is made of only three levels, the contracted, removed,

and surviving edges have a level, respectively, equal to 1, 2, and 3. The folding of

the pyramid defined by the two functions level and state may thus be read in Fig.

12(b).

The gray roof of the house represented in Fig. 12(a) is encoded by the gray vertex
in Fig. 12(c). The r-orbit of this vertex is composed of the two darts 1 and 12. The

receptive fields of these darts are represented in Fig. 13 both in G0 and G0. Using Eq.

(14), and the previous convention on the drawing of the darts, the receptive fields

may be read on this figure and we have: RF2ð1Þ ¼ 1:2:3:4:5:� 2:6:7:8:9:� 6:10:11
and RF2ð12Þ ¼ 12:13:� 10. Note that the darts 11 and )10 are, respectively, re-

moved and contracted. Therefore, using Eq. (11) we have: r2ð1Þ ¼ r0ð11Þ ¼ 12

Fig. 12. Folding of a pyramid. The adjacency of the connected components of the initial image (a) are

encoded by the top of the pyramid (c). The surviving, contracted, and removed edges are, respectively, rep-

resented by thick, normal, and dotted lines in (b). The vertex with a filled circle in (c) encodes the back-

ground of the image. (a) Initial image; (b) folded pyramid in G0; and (c) top of the pyramid.

Fig. 13. The receptive fields of the darts 1 and 12 in Fig. 12 represented both in G and G. The convention
on the drawing of the edges are the same as in Fig. 12. (a) RF in G0 and (b) RF in G0.
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and r2ð12Þ ¼ u0ð�10Þ ¼ 1. A similar operation may be applied to all the surviving

darts at level 2. The pyramid may thus be unfolded from the base using the functions

level and state. Conversely, the receptive fields of the surviving darts 1 and 12 pro-

vide the set of darts of the base level vertices mapped onto the top level vertex
r

2ð1Þ. The set of 0, 1, or 2 cells of the associated region may then be recovered by

computing the appropriate orbits in G0 (see Eq. (2)). Global parameters such as

the mean color of the region may be deduced from the values associated to the 2 cells

(or pixels) while the exact shape of the region may be deduced from the 0 and 1 cells

associated to the external boundary of the receptive field (Section 4).

Fig. 14 shows another example on a satellite image.2 The connected components

of this image are encoded by a combinatorial pyramid made of three levels G0, G1,

and G2 using the same method than the one used for Fig. 12. The boundaries of the
regions encoded by the combinatorial map G2 are determined by computing the re-

ceptive fields of all darts and selecting the initial vertices whose r orbit contain a dart

belonging to the external boundaries (Section 4). These selected vertices are repre-

sented by black pixels in Fig. 14(b). The filled regions in Fig. 14(b) correspond to

regions composed of small patterns. The vertices encoding these patterns are associ-

ated with regions whose size is smaller than 2. These patterns are removed by merg-

ing to one of its neighbor any vertex in G2 with a size less than two pixels. The

resulting pyramid is made of four levels G0–G4, the boundaries associated to G4 be-
ing displayed in Fig. 14(c). Note that only the top level of the pyramid G4 is explicitly

encoded. The other levels are encoded implicitly thanks to the functions level and
state stored on the base level combinatorial map. We did not represent in Figs.

14(b) and (c) the pseudo-edges encoding inclusion relationships. Such edges corre-

spond to self-loops and are characterized by aðbÞ 2 r
ðbÞ.

7. Discussion

A combinatorial pyramid consists of a tapering stack of successively reduced com-

binatorial maps describing the contents of the base level at increasing degrees of ab-

straction. High level interpretation may need to verify the details of the high level

Fig. 14. Encoding of the connected components of Image (a). Image (b) represents the boundary associ-

ated to each edge. Image (c) represents the same boundaries after the removal of small patterns. (a) Con-

nected components; (b) boundaries and (c) boundaries after the removal of patterns.

2 Data provided by the Institute of Surveying, Remote Sensing and Land Information, BOKU Vienna.
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description. This top-down verification can be achieved through the concept of re-

ceptive field which combines the expansion over several levels and over several types

of kernels.

Within the Simple Graph Pyramid framework [3], the receptive field of one vertex

at level i is determined by iterating the father–child relationship defined by the reduc-
tion window from level i to the base level. All intermediate reduced graphs between

the base of the pyramid and level i are thus required in order to compute the recep-

tive fields at level i. Kropatsch has shown [14] that within the Dual Graph Pyramid

framework, the successive application of several contraction kernels is equivalent to

the application of one kernel named equivalent contraction kernel (ECK). A labeling

of the contracted edges in the initial dual graph allows Kropatsch to retrieve any

contracted graph of the pyramid. However, this framework does not encodes re-

moved edges. The removal kernel associated to each ECK Ki must thus be computed
and applied to the contracted graphs ðGi;GiÞ.

Our framework allows us to avoid an explicit encoding of all intermediate levels.

Moreover, using the function state the contraction operations encoded by contrac-

tion kernels and the ‘‘cleaning’’ stage performed by removal kernels are encoded into

a same framework. The lower space requirements of our encoding may be used to

store or to transmit a computed pyramid. However, our encoding may also be used

during the construction of the pyramid to retrieve an intermediate level or to com-

pute the receptive field of a dart. The lower memory requirements of our model may
be a critical advantage when processing large images or n dimensional data [13].
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