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Abstract

Graph pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids over-

come the main limitations of their regular ancestors. The graphs used in the pyramid may be region adjacency graphs,

dual graphs or combinatorial maps. Compared to usual graph data structures, combinatorial maps offer an explicit

encoding of the orientation of edges around vertices. Each combinatorial map in the pyramid is generated from the one

below by a set of edges to be contracted. This contraction process is controlled by kernels that can be combined in many

ways. This paper shows that kernels producing a slow reduction rate can be combined to speed up reduction. Con-

versely, kernels decompose into smaller kernels that generate a more gradual reduction. We also propose one sequential

and one parallel algorithm to compute the contracted combinatorial maps.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Using graphs many vision problems may be

formulated in an abstract setting with solid theo-

retical foundations from graph theory. Addition-

ally, graphs allow to abstract the exact shape and

positioning of the objects under study and thus

improve the potential applications and the effi-
ciency of many graph based vision algorithms. The

use of graphs within the computer vision frame-

work is not new. However, there is a growing

interest toward an explicit formulation of vision

problems as graph problems. The recent trends in

this field concern (Dickinson et al., 2001): the

graph partitioning, graph indexing, graph match-

ing and clustering and the graph generaliza-

tion problems. The potential applications of such

problems are respectively the segmentation, the
image data base retrieval, the object recognition

and classification and the object recognition and

modeling.

However, graphs used in vision may be quite

big and many graph algorithms have a high com-

putational cost. For example, a simple graph en-

coding a 512� 512 regular grid is defined by

Oð5122Þ vertices and edges. In the same way the
brute force approach of graph matching requires a
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computational cost of Oðn!Þ, where n is the number
of vertices.

An irregular pyramid (Meer, 2001) is defined as

a stack of successively reduced graphs. Each vertex

in the pyramid is associated to a connected set of

vertices in the level below named its reduction
window. Each vertex is the parent of the vertices in

its reduction window. This parent–child relation-

ship may be iterated down to the base level and the

set of child of one vertex in the base level is named

its receptive field.

Given one level of the pyramid, the set of re-

ceptive fields defines a partition of the base level

graph. A direct application of irregular pyramids
concerns thus the graph partitioning. Gdalyahu

et al. (2001) improve the robustness of the deci-

mation process by using stochastic reduction rules

and buildingM samples of the pyramid. Each edge

is then labeled by the number of times it survives

up to a given level r. The irregular pyramid is then

used to attach a global value to each edge of the

base level graph. Pailloncy et al. (1998) use two
other interesting features of irregular pyramids

for graph matching:

(1) Given a pyramid, a first rough solution may be

determined on the top of the pyramid and then

refined from level to level down to the base.

(2) The notion of hierarchy defined by irregular

pyramids may be used to add further con-
straints on graph algorithms. For example,

within the graph matching framework we can

require not only a match between the two base

level graphs but between the base level graphs

and their reduced versions.

These two features may both improve the ro-

bustness and reduce the computational cost of
graph algorithms.

Irregular pyramids were first defined by Mon-

tanvert et al. (1991). Such irregular pyramids are

based on simple graphs (i.e. graphs without mul-

tiple edges nor self-loops) and the reduction op-

eration lies on the definition of a set of surviving

vertices. Such a set fulfills the two following re-

quirements: (1) any non-surviving vertex must be
adjacent to a surviving one and (2) two surviving

vertices cannot be adjacent. A set of vertices ful-

filling these last requirements is called a maximal

independent vertex set (MIVS). Given a MIVS,

each non-surviving vertex is mapped to a surviving

neighbor which becomes its parent. The definition

of a MIVS requires several iterations of a parallel

algorithm. Jolion (2001) removes the iterations
induced by the MIVS by performing asynchronous

reductions: some non-surviving vertices may be

mapped to surviving ones beside the fact that the

whole set of surviving vertices is not yet fully

computed. Within the segmentation framework,

the first surviving vertices reaching the top of the

pyramid should, according to Jolion, correspond

to the main object of a scene.
The reduction process used to build one level

from the level below influence thus both the

computational cost and the properties of an ir-

regular pyramid. The type of graph used within the

pyramid is an other important parameter which

determines the features which may be readily

computed. For example, if the pyramid encodes a

hierarchy of image partitions, multiple boundaries
and inclusion relationships between regions cannot

be readily encoded using a simple graph data

structure. Note that such features may be required,

for example by segmentation algorithms.

This last drawback may be overcome by using

the dual graph pyramid introduced by Kropatsch

(1995). A dual graph pyramid is defined as a stack

of dual graphs ðG;GÞ successively reduced. Within
such pyramids the mapping of a non-surviving

vertex to a surviving one is performed by the

contraction of their common edge. The contrac-

tion of a graph reduces the number of vertices

while maintaining the connections to other verti-

ces. As a consequence some redundant edges such

as self-loops or double edges may occur. These

redundant edges may be characterized in the dual
of the contracted graph and suppressed by a re-

moval step. The resulting graph encodes multiple

boundaries between regions. Moreover, edges en-

coding the adjacency between one region and a

surrounding one may be characterized in the dual

graph.

Dual graph pyramids have been successfully

applied to encode the relationships between ob-
jects embedded in the plane (see e.g. Kropatsch,

1995). However, such a graph encoding may not
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be readily extended to higher dimensions. More-

over, the orientation of the plane is not explicitly

encoded by dual graph pyramids. These two

drawbacks maybe overcome by using the combi-

natorial pyramid framework. We present in Sec-

tion 2 the combinatorial map model together with
its main properties. In Section 3 we introduce the

notion of contraction kernel. Such kernels specify

the set of edges to be contracted between two levels

of the pyramid. These kernels may be either com-

bined or decomposed into smaller kernels. This

last property provides an efficient control on the

decimation ratio. One sequential and one parallel

algorithm computing the contracted combinatorial
map are provided in Section 4.

2. Combinatorial maps

A combinatorial map (Gareth and Singerman,

1978) may be understood as a planar graph en-

coding explicitly the orientation of edges around a
given vertex. Fig. 1 demonstrates the derivation of

a combinatorial map from a plane graph. First

edges are split into two half edges called darts,

each dart having its origin at the vertex it is at-

tached to. The fact that two half-edges (darts) stem

from the same edge is recorded in the reverse

permutation a. A second permutation r, called
the successor permutation, defines the (local) ar-
rangement of darts around a vertex. Each orbit of

r is associated to one vertex and encodes the se-

quence of darts encountered when turning coun-

terclockwise around this vertex (e.g. the r-orbit
ð4; 5; 6Þ in Fig. 1).

The symbols a�ðdÞ and r�ðdÞ stand, respec-

tively, for the a and r-orbits of the dart d. More

generally, if d is a dart and p a permutation we

denote the p-orbit of d by p�ðdÞ.
A combinatorial map G is the triplet G ¼

ðD; r; aÞ, where D is the set of darts and r, a are

two permutations defined on D such that a is an

involution: (8d 2 D a2ðdÞ ¼ d).
A combinatorial map is defined up to a labeling

of darts. This equivalence between two combina-

torial maps may be formally defined by using the

notion of isomorphism (Gareth and Singerman,

1978): given two combinatorial maps G1 ¼ ðD1; r1;
a1Þ and G2 ¼ ðD2; r2; a2Þ an application w from D1

to D2 defines an isomorphism between G1 and G2

iff w is bijective and

8d 2 D1
a1ðdÞ ¼ w�1ða2ðwðdÞÞÞ
r1ðdÞ ¼ w�1ðr2ðwðdÞÞÞ

�
ð1Þ

As dual graphs, combinatorial maps allow to en-

code multiple boundaries between regions and

surrounding relationships. However, combinato-

rial maps provide the following additional ad-

vantages within the image analysis framework:

(1) Combinatorial maps explicitly encode the ori-
entation of darts around one vertex. This in-

formation should be helpful to differentiate

some configurations within the graph match-

ing and clustering frameworks. Note that this

information is not encoded by region adja-

cency graphs nor explicitly available in dual

graph data structures.

(2) Given a combinatorial map G ¼ ðD; r; aÞ, its
dual G is defined on the same set of darts by

the permutations u ¼ r 	 a and a. The effi-

ciency of this transformation avoids an explicit

encoding of the dual graph. Therefore, only

one data structure has to be encoded and

Fig. 1. One planar graph encoded by a combinational map.
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maintained along the pyramid (Brun and Kro-

patsch, 1999b).

(3) Combinatorial maps may be defined in any di-

mensions (Lienhardt, 1989). The design of 3D

split and merge algorithms based on combina-
torial maps is an active research field (e.g. Ber-

trand et al., 2001).

3. Contraction kernels

Using the reduction scheme introduced by

Kropatsch (1995) (see also Section 1) the reduc-
tion operation is performed in two steps: a first

contraction step maps non-surviving vertices to

surviving ones and a removal step suppresses re-

dundant edges. The contraction and removal op-

erations may be defined in order to preserve the

orientation of the initial combinatorial map (Brun

and Kropatsch, 1999b). In order to preserve the

number of connected components of the initial
combinatorial map, bridges and self-loops must be

respectively excluded from removal and contrac-

tion operations (Brun and Kropatsch, 1999b).

Since the contraction operation is not defined for

self-loops, several contraction operations may be

performed simultaneously only if we ensure that

no self-loops may be contracted. This constraint

may be solved by using a contraction kernel:

Definition 1 (Contraction kernel). Given a con-

nected combinatorial map G ¼ ðD; r; aÞ, the set

K 
 D will be called a contraction kernel iff it

is a forest of G not including all darts of G:
SD ¼ D� K 6¼ ;. The set SD is called the set of

surviving darts.

Since the set of darts to be contracted forms a

forest of the initial combinatorial map, no self-

loop may be contracted and the contraction op-

eration is well defined. Note that the forest K is not

required to be a spanning one. This last point al-

lows to apply contractions on some parts of the

initial combinatorial map leaving the other parts

unchanged. More generally, the set of child of a
given vertex defined in the contracted combinato-

rial map may vary from a single vertex to a tree

with any height. Moreover, since the vertices of the

graph are implicitly defined by their darts we must

require that at least one edge survives.

Given an initial combinatorial map G0 con-

tracted by a contraction kernel K1 into a reduced

combinatorial map G1 ¼ G0=K1, any contraction

kernel K2 defined on G1 is called a successor of K1.
This relation is denoted K1 
 K2. Moreover, given

two contraction kernels K1 and K2 both defined on

G0, we say that K2 includes K1 (K1 
 K2) iff the set

of darts of K1 is included in the one of K2. The

successive applications of two successive kernels

K1 and K2 on a combinatorial map G0 defines a

contracted combinatorial map G2 ¼ ðG0=K1Þ=K2.

We have shown (Brun and Kropatsch, 1999a) that
the union of the darts of K1 and K2 defines a new

contraction kernel K3 ¼ K1 [ K2 of G0. Applied on

G0, this kernel provides the same contracted

combinatorial map than the successive applica-

tions of K1 and K2. Conversely, given two con-

traction kernels K1 and K3 of G0 such that K1 
 K3,

the set of darts of K3 which are not in K1 defines a

contraction kernel K2 of G1 ¼ G0=K1 such that
G1=K2 ¼ G0=K3 (see proof in Brun and Kropatsch,

1999a).

Therefore, the successive applications of small

kernels may be replaced by the application of a

bigger one. Conversely, one contraction kernel

may be decomposed into smaller kernels in order

to define some intermediate contracted combina-

torial maps. Such results provide a better flexibility
in the design of contraction kernels and allow us to

adapt more efficiently the decimation rate to the

data.

4. Computation of the contracted combinatorial

map

Given a combinatorial map G ¼ ðD; r; aÞ and a

contraction kernel K, the set of darts of the con-
tracted combinatorial map is equal to SD ¼
D� K (Definition 1). These surviving darts are

connected in G by connecting walks:

Definition 2 (Connecting walk). Given a connected
combinatorial map G ¼ ðD; r; aÞ, a contraction
kernel K and a dart d 2 SD, the connecting walk
associated to d is equal to
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CWðdÞ ¼ d;uðdÞ; . . . ;un�1ðdÞ
with n ¼ Minfp 2 N�jupðdÞ 2 SDg

Note that only the first dart of each connecting

walk survives. Each connecting walk CWðdÞ con-
nects the surviving darts d and unðdÞ by a sequence
of non-surviving darts. Moreover, the set of con-

necting walks defines a partition of the initial set of

darts D (Brun and Kropatsch, 1999a). We have

thus

D ¼
G

d2SD

CWðdÞ ð2Þ

where
F

denotes an union of disjoint sets.

If DK denotes the set of connecting walks

defined on G by the contraction kernel K, the
following applications define permutations on

DK (see formal proof in Brun and Kropatsch,
1999a):

aK
DK ! DK

CWðdÞ 7! CWðaðdÞÞ

�
;

uK

DK ! DK

CWðdÞ ¼ d; . . . ;un�1ðdÞ 7! CWðunðdÞÞ

�

Indeed, the permutation aK satisfies a2KðCWðdÞÞ ¼
CWða2ðdÞÞ ¼ CWðdÞ. The permutation aK is thus

an involution (and therefore a permutation).

Moreover, the dart unðdÞ is uniquely defined from

the dart d. Since each connecting walk contains a
unique surviving dart, CWðunðdÞÞ is uniquely de-

termined from CWðdÞ. The application uK is thus

injective from DK to DK . It is thus also surjective

and defines a permutation on DK . Since aK and uK

define two permutations on DK , rK ¼ uK 	 aK is a

permutation as the composition of two permuta-

tions. The two permutations aK and rK structure

the set of connecting walks DK into a combinato-
rial map GK ¼ ðDK ; rK ; aKÞ (Brun and Kropatsch,

1999a). Moreover, since each connecting walk

contains only one surviving dart, we can con-

sider CW as a bijective application from SD to

DK . If G0 ¼ ðSD; r0; a0Þ denotes the contracted

combinatorial map, CW defines an isomorphism

between G0 and GK (see proof in Brun and Kro-

patsch, 1999a). Therefore (see Eq. (1)):

8d 2 SD a0ðdÞ ¼ CW�1ðaCðCWðdÞÞÞ
¼ CW�1ðCWðaðdÞÞÞ ¼ aðdÞ

In the same way, we obtain for any dart d in SD

r0ðdÞ ¼ CW�1ðrCðCWðdÞÞÞ

¼ CW�1ðuK 	 aKðCWðdÞÞÞ
¼ unðaðdÞÞ

With n ¼ Minfp 2 N�jupðaðdÞÞ 2 SDg

ð3Þ

Note that, un�1ðaðdÞÞ is the last dart of CWðaðdÞÞ.
Therefore, the permutation a remains unchanged

in the contracted combinatorial map while the

permutation r0 maps each surviving dart d to

the u-successor of the last dart of CWðaðdÞÞ.
Therefore, the computation of the r-successor of
a dart d in the contracted combinatorial map

requires to traverse CWðaðdÞÞ. Sequential Algo-
rithm 1 computes the r-successor of all the sur-

viving darts in the contracted combinatorial

map. Since the set of connecting walks forms a

partition of D (Eq. (2)), Algorithm 1 has to tra-

verse jDj darts. Its complexity is thus equal to

OðjDjÞ.

Algorithm 1 (Computation of the permutation r0)

dart contracted_sigma (G ¼ ðD; r; aÞ;K)
{

For each d 2 SD ¼ D� K
do

d 0 ¼ uðaðdÞÞ ¼ rðdÞ // Second dart of

CWðaðdÞÞ
while ðd 0 2 KÞ // computation of

CWðaðdÞÞ
d 0 ¼ uðd 0Þ

r0ðdÞ ¼ d 0

done

}

The basic idea of a parallel implementation of

Algorithm 1 is to compute concurrently for each

dart d, the first surviving dart encountered when
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traversing the u-orbit of d from d. The result of

this parallel computation is stored in an array

survive initialized to survive½d� ¼ d for each dart

(Algorithm 2, lines 3–4). We have thus

Moreover, using Eq. (3):

r0ðdÞ ¼ unðaðdÞÞ ¼ un�1ðuðaðdÞÞÞ
¼ un�1ðrðdÞÞ

with n ¼ Minfp 2 N�jupðaðdÞÞ 2 SDg
¼ Minfp 2 N�jup�1ðrðdÞÞ 2 SDg:

Therefore, (Algorithm 2, lines 9–10): r0ðdÞ ¼
un�1ðrðdÞÞ ¼ survive½rðdÞ�.

Algorithm 2 (Parallel computation of the permuta-
tion r0)

The parallel complexity of Algorithm 2 is de-

termined by the number of elementary steps per-

formed in the second loop (lines 5–7). This

number is equal to the cyclic distance between d
and its associated surviving dart. If we denote by

D the maximum of these distances, the parallel

algorithm will terminate after D steps. Therefore,
worst case parallel complexity of our algorithm is

linear in the cyclic max-distance between surviving

darts.

5. Conclusion

We have defined in this article the notion of

contraction kernel which allows to perform several

contractions simultaneously. Successive kernels
may be combined in an equivalent kernel or on

the contrary one kernel may be decomposed into

smaller ones. This notion of equivalent kernels

provides a better flexibility in the design of kernels

which allows to better fit the pyramid structure to

the data. This article also provides the main the-

oretical results required to compute the reduced

combinatorial map defined by a contraction ker-
nel. These results are used to design one sequential

and one parallel algorithm computing the con-

tracted combinatorial map.

Finally, the combinatorial pyramid should be a

nice framework to take up some of the challenges

defined during GbR�2001. Indeed, a hierarchical

matching should reduce the computation cost of

matching algorithms for large graphs. The effi-
ciency of matching algorithms should be further

improved by using the explicit encoding of the

orientation which defines an additional constraint.

Compared to a RAG, a combinatorial map en-

codes multiple boundaries, inclusion relationships

and the orientation of edges around each vertex.

This model may be further enriched in order to

‘‘increase the intelligence of a pixel-based graph’’.
Finally, combinatorial maps are defined in any

dimension and offer thus a nice framework for

applications using 3D or 4D data.
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