Computer Vision— CVWW’03, Ofegj Drbohlav (ed.)
Valtice, Czech Republic, February 3—-6, 2003
Czech Pattern Recognition Society

Implicit encoding of Combinatorial Pyramids

Brun Luct, Walter Kropatsch

ILabroratoire dEtudes en Informatiques
[.U..T Léonard de Vinci
51.100 Reims
France
2Institute for Computer-aided Automation
Pattern Recognition and Image Processing Group

Vienna Univ. of

Technology

Austria
luc.brun@univ-reims.frkrw@prip.tuwien.ac.at

Abstract An irregular pyramid consists of a stack of suc-
cessively reduced graphs. Each smaller graph is deduced
from the preceding one by the contraction or the removal of
a set of edges. Using a fixed decimation ratio we need ap-
proximatelyO(log(image siz¢) graphs to encode the whole
pyramid. A combinatorial map encodes a planar graph
thanks to two permutations encoding the edges and their
orientation around the vertices. We present in this article an
encoding of a combinatorial pyramid which allows to fold
the whole pyramid in the base level layer and provides at
the same time a measure of the importance of every pixel.
Any reduced combinatorial maps of the pyramid maybe di-
rectly retrieved from this encoding if needed.

1 Introduction

Regular image pyramids have been introduced as a stack
of images with decreasing resolutions. Since then, regu-
lar pyramids have been widely used in image segmenta-
tion and image analysis. However, the rigidity of regu-
lar pyramids induces several drawbacks such as the shift-
dependence problem and the limited number of regions en-
coded at a given level of the pyramid][Irregular pyra-
mids overcome these negative properties while keeping the
main advantages of their regular ancestors. These pyramids

are defined as a stack of successively reduced graphs. Each

graph is built from the graph below by selecting a set of ver-
tices named surviving vertices and mapping each non sur-
viving vertex to a surviving one9|. If the initial graph is
planar its reduced versions are also planar. Moreover, given
an image, if each vertex of the initial graph is associated to
one pixel, the set of initial vertices mapped to a surviving
vertex defines a region of the image.

The boundaries between two adjacent regions are en-
coded by the edges of the reduced graphs. Using simple

*This Work was supported by the Austrian Science Foundation under
P14445-MAT.

graphs (without multiple edges between vertices nor self-
loops) multiple boundaries between two regions are mapped
into only one edge. This drawback may be overcome by us-
ing the Dual graph reduction schen¥.[Within this frame-
work, the reduction operation is performed in two steps:
First, the contraction of a set of edges identifies a set of
vertices. This operation may create redundant edges such
as empty self-loops or double edgé%.[These redundant
edges are characterized in the dual of the graph and removed
by a set of edge removals. Using such a reduction scheme
each edge in the reduced graph corresponds to one bound-
ary between two regions. Moreover, inclusion relationships
may be differentiated from adjacency ones in the dual graph.

Combinatorial Pyramids inherit all the useful properties
from the dual graph pyramids with the addition that they
also preserve the local orientation of edges around vertices
and faces.

The remaining of this paper is as follows: We present
in section2 the combinatorial map model together with its
main properties. In sectiocdwe define the contraction and
removal operations within the combinatorial map frame-
work. In Sectiord we present a folding of the Combinatorial
Pyramid based on an encoding of the maximal level where
an edge survives. Using such a folding the relevance of an
edge according to a particular reduction scheme is stored in
the base level combinatorial map. We thus combine local
and global information within a same representation. More-
over, this folding allows both to recover the whole pyramid
or one of its graph from the base level.

2 Combinatorial Maps

Combinatorial maps and generalized combinatorial maps
define a general framework which allows to encode any
subdivision of nD topological spaces orientable or non-
orientable with or without boundaries. An exhaustive com-
parison of combinatorial maps with other boundary repre-
sentations such as cell-tuples and quad-edges is presented

1

Implicit Encoding of Combinatorial Pyramids

in [8]. Recent trends in combinatorial maps apply this
framework to the segmentation of 3D imagés3] and the
encoding of hierarchies.

The remaining of this paper will be based on 2D com-
binatorial maps which we simply call combinatorial maps.
A combinatorial map may be seen as a planar graph encod-
ing explicitly the orientation of edges around a given vertex.
Figurel demonstrates the derivation of a combinatorial map
from a plane graph. First edges are split into two half edges
called darts each dart having its origin at the vertex it is
attached to. The fact that two half-edges (darts) stem from
the same edge is recorded in the reverse permutatiof
second permutation encodes the set of darts encountered
when turning counterclockwise around a vertex (see e.g. the
o-orbit (—8,—3,11,4) encoding the central vertex in Fig-
urel).

Figure 1: A 3x3 grid encoded by a combinatorial map

The symbolsy*(d) ando*(d) stand, respectively, for the
« ando orbits of the dartl. More generally, ifl is a dart and
7 a permutation we will denote the-orbit of d by 7*(d).

A combinatorial mapG is the tripletG = (D, 0,),
whereD is the set of darts and, « are two permutations
defined oD such thatx is an involution:

Vde D o?(d)=d 1)

Note that, if the darts are encoded by positive and nega-
tive integers, the involutionn may be implicitly encoded by
sign (Figurel).

Given a combinatorial magr = (D, o,), its dual is
defined byG = (D, ¢,a) with ¢ = o o « (Figure 2).

The orbits of the permutatiop encode the set of darts en-
countered when turning around a face (see e.g.ptoebit
(1,8, —3,—7) encoding the top-left face in Figudg. Note
that, using a counter-clockwise orientation for permutation
o, each dart of g-orbit has its associated face on its right.

Figure 2: Dual of the combinatorial map represented in Figure

Luc Brun and Walter Kropatsch

(]

2.1 Properties of Combinatorial maps

As mentioned above the dual combinatorial map may be
simply computed by composing the permutationandc.

This dual map may thus be implicitly encoded. This im-
plicit encoding allows to reduce both the memory require-
ments and the execution times since only one data structure
needs to be stored and processed. Moreover the combinato-
rial map formalism is formally defined in any dimensions.
Algorithms defined within theD combinatorial pyramid
framework may thus be extended to higher dimensions(see
e.g. B]). This hypothesis is confirmed by some recent re-
sults from Damiand and Lienhard®][Finally, the com-
binatorial map formalism encodes explicitly the orientation
of edges around each vertex. This additional feature allows
to encode fine relationships on the partition such as the se-
quence of regions encountered when turning with a given
orientation around one region.

3 Combinatorial Pyramids

As in the dual graph pyramid scheme (Sectijna com-
binatorial pyramid is defined by an initial combinatorial
map successively reduced by a sequence of contraction or
removal operations. In order to preserve the connectivity
among the elements chosen to survive to the higher level we
forbid the removal of bridges and the contraction of self-
loops. A self-loop in the initial combinatorial map corre-
sponds to a bridge in its dual and vice-versa. In the same
way, a contraction operation in the initial combinatorial map
is equivalent to a removal operation performed in its dual.
Therefore, the exclusion of bridges and self-loops from re-
spectively removal and contraction operations corresponds
to a same constraint applied alternatively on the dual com-
binatorial map and the original one.

In order to avoid the contraction of self-loops, the set of
edges to be contracted must form a forest of the initial com-
binatorial map. The graph of a combinatorial map is a forest
if it does not contain a cycle. A set of edges to be contracted
satisfying the above requirement is called a contraction ker-
nel:

Definition 1 Contraction Kernel

Given a connected combinatorial m&p = (D, o, «)
the setK’ D will be called a contraction kernel iffC is a
forest ofG.

The setSD = D — K is called the set of surviving darts.

Given a contraction kerndk, we denote bYCC(K) its
set of connected components. Sinkeis a forest, each
7 € CC(K) is atree. Intuitively, a tre§ € CC(K) col-
lapses into one vertex, a connected set of vertices of the ini-
tial combinatorial map.

The contraction of a combinatorial map by a contraction
kernel may induce the creation of redundant edges. These
edges named double edges and direct-self-loops are respec-
tively characterized by?(d) = d ando(d) = a(d) whered
is one of the darts of the edgé (d). Both double edges and
direct self-loops may be removed by using a removal kernel
defined as a forest of the dual combinatorial map. This last
constraint insures that no self-loop will be contracted in the

2

Implicit Encoding of Combinatorial Pyramids

A3 A4 IS
2441 | 16
'8 Zk-g

23 >17

18

22951 Voo V19
(a)GlzG/Kl

Figure 3: Reduction of the initial grid displayed in Figuteby the
contraction kernek

(@G1 =G/K;

Figure 4: Dual of the contracted grid represented in Figdwre

dual combinatorial map and thus that no bridge may be re-
moved in the initial one. The contracted combinatorial map
may thus be simplified using parallel edge removals.

3.1 Example of contraction and simplification

Figure3 illustrates a contraction of the initial combinatorial
map represented in Figufieby a contraction kernek’; de-
fined by the trees*(1,2), a*(4,12,6) anda*(10). Since
each initial vertex is incident to a contracted edge this forest
spans the initial combinatorial map and we obtasurviv-
ing vertices encoding regions.

Double edges encode a same adjacency relationship be-
tween two vertices. For example, the edgé&’) anda*(9)
in Figure3 encode both an adjacency relationship between
the top vertex and the center one. Such edges correspond to
an artificial split of a boundary between two regions (see
Figure 4). On the other hand, direct self-loops, such as
a*(11) (Figure3) may be interpreted in the dual combina-
torial map as inner-boundaries of a face (Figdye

Figure5 shows the combinatorial map deduced from Fig-
ure 3 and simplified by the removal kerné{, defined in
the dual combinatorial map by the trees:(15, 14, 13, 24),
a*(9), a*(11,3), a*(19,18,17) anda*(22,21). Note that
given a sequence of double edges, the choice of the sur-
viving edge is arbitrary. For example, a choice of the tree
a*(20,19, 18) instead ofa*(19,18,17) would lead to an
equivalent simplified combinatorial map with a surviving
edge equal ta* (17) instead of*(20).

Luc Brun and Walter Kropatsch

(]

3.2 Connecting Walks

The creation of the reduced combinatorial map from a con-
traction or a removal kernel is performed in parallel by us-
ing connecting walks. Given a combinatorial mé&p =
(D,o,a), a kernel K and a surviving dartl € SD =

D — K, the connecting walk associateddas either equal

to:

CW(d) = d,p(d),...,o" (d)

with n = Min{p € N* | ¢?(d) € 8D}, if K is a contrac-
tion kernel and

CW(d) =d,o(d),...,c" 1 (d)

with n = Min{p € N* | o?(d) € SD} if K is a removal
kernel.

Given a kernelK and a surviving daid € SD, such that
CW(d) = d.di . ..d,, the successor afwithin the reduced
combinatorial maf?’ = G/K = (SD,o’,«) is retrieved
from CTW (d) by the following equations:

@(dp)
o(dp)

Note that, if K is a contraction kernel, the connecting
walk CW (d) allows to computey’(d). Theo-successor of
d within the contracted combinatorial maps is retrieved from
CW(a(d)) = a(d).dy, . ..,d,. Indeed, we obtain by using
equationsl and2: ¢'(a(d)) = o'(a(a(d))) = o'(d) =
o(dy).

if K is a contraction kernel
if K is aremoval kernel

()

4 Folding and unfolding the pyramid

Connecting walks allow us to reduce a combinatorial map
either by contraction or removal kernels. Starting from an
initial combinatorial maps, and given a sequence of ker-
nelsKi, ..., K, we can thus build the sequence of reduced
combinatorial mapéy, G4, . .., G, encoding explicitly the
pyramid as a stack of successively reduced combinatorial
maps. The aim of this section is to define an implicit en-
coding of the pyramid by additional attributes stored in the
initial combinatorial mapg7,.

Each connecting walk defined in one combinatorial map
G;,i € {1,...,n—1} connects a dart ifv;;, to a sequence

16

V20

(@) (G/K1) \ K2

Figure 5: Reduction of the contracted combinatorial map dis-
played in Figure3 by the removal kernek(s

Implicit Encoding of Combinatorial Pyramids

of darts inGG;. Such a sequence corresponds to the notion
of reduction window 2, 9] within the Pyramid framework.
The transitive closure of this father-child relationships de-
fines the notion of receptive field. Within the Combinatorial
Pyramid framework this notion is encoded by connecting
dart sequences which connect one dart in a combinatorial
mapG; = (S8D,,0;,«) to a sequence of darts defined in
the base level combinatorial m&p, = (D, o,«a). These
sequences are defined recursively®# Sy (d) = d for any
d € D and:

Foreachiin {1,...,n} and each dad € SD;:

e If K; and K;_; have the same type, i.e. if both kernels
are contraction kernels or removal ones:
CDS;(d) =CDS;—1(dy)..... CDS;_1(dp)

e If K; andK;_; have different types:
CDS;(d) = d1.CDS;_{(a(dy))..... d,.CDS} {(a(dp))

where CW;(d) = dy...,d, andCDS} {(a(d;)), j €
{1,...,p} denotes the sequenceDS;_;(«a(d;)) without
its first dart.

Connecting dart sequences may be understood as theZ2.

transitive closure of the hierarchical relation defined by con-
necting walks. Both sequences should thus satisfy simi-
lar properties. Indeed, given one ddrte SD;, such that
CDS;(d) =d,...,d, we have shown thag]:

e If K; is a contraction kernel:

| ¢(dy,) if d, has been contracted
wi(d) = { o(dp) if d, has been removed ®)
o If K;is aremoval kernel:
| @ld,) if d, has been contracted
oild) = { o(d,) if d, has been removed “)

Note that equation8 and 4 are similar to equationg
defined for connecting walks.

We additionally showed that given one darte SD;
such thatCDS;(d) = d;..... d,, we haved = d; and
{dy,...,d,} C U_,K;. The first dart of a connecting
dart sequence is thus the only one which survives up to level
i. Moreover, we have shown that the connecting dart se-
guences defined at levetefine a partition of the initial set
of dartsD. The connecing walk satisfy a similar property.

4.1 Folding the Pyramid

Given the set of connecting dart sequences defined atilevel
one can use equatio8sand4 to retrieve the reduced combi-
natorial mapG;. However, using the recursive construction
scheme defined above, the definition of connecting dart se-
quences at levélis based both on connecting dart sequences
defined at levet — 1 and an explicit encoding of the level

i — 1. Indeed, the connecting walks used to build the con-
necting dart sequences at levedre defined ori7;_;. The
recursive construction of connecting dart sequences atilevel
requires thus an explicit encoding of the pyramid form level
0 to leveli — 1. This recursive construction scheme may be
avoided by using the following theorer]|{

Luc Brun and Walter Kropatsch

(]

Theorem 1 Given a combinatorial mag/y = (D, 0, «), a
sequence of contraction kernels or removal kerdéls K . . . , K,
the relation between the successive darts of a connect-
ing dart sequence’'DS;(d) = (d.dy,...,dp), withi €

{1,...,n} andd € SD; is as follows:
di — »(d) if K;is a contraction kernel
'™\ o(d) if K;isaremoval kernel

and for eachj in {2,...

" :{ e(dj—1)

P}
if d;_1 has been contracted

o(dj—1) if d;—1 has been removed

One connecting dart sequence defined at lewehy thus
be traversed if we know the initial dart§D; defining it and
if we determine the operation which has reduced each dart
of the connecting dart sequence. The above remark suggests
an encoding of the pyramid by two functions:

1. one functionstate from {1,...,n} to the binary states
{Contracted, Removed} which specifies the type of
each kernel.

One functionlevel defined for all darts irfD such that
level(d) is equal to the maximal level whedesurvives:

Vd € D level(d) = Max{i € {1,...,n+1}|d € SD;_1}

a dartd surviving up to the top level has thus a level equal
to n + 1. Note that the level of an initial vertex (i.e. a
pixel) may be implicitly defined as the minimal level of
its darts.

4.2 Unfolding one level of the Pyramid

Given the functiorievel, the sequence of kernels and the set
of surviving darts may be retrieved by the following equa-
tions:

Vi e {1,...,17,}{ ﬁfp tde D|levelld) = i}

{d € D|level(d) > i}

5)
Moreover, given a dard € SD; and using both functions
state andlevel, the traversal of a connecting dart sequence
defined by Theoreri may be written as follows:

di — { o(d) If state(i) = Contracted
L=

o(d) If state(i) = Removed
and foreacly in{2,...,p}

4 — o(d;—1) If state(level(d;—1)) = Contracted
7 o(dj—1) If state(level(d;—1)) = Removed
(6)
Given a connecting dart sequer@®.S;(d) = d.d; . .., dp,

if we defined, ;1 by ¢(d,) if d, is contracted and(d),) is

d, is removed,d,; is either equal tap;(d) or o;(d) ac-
cording to K; (equations3 and4). We have thus in both
casesd,1 € SD; andlevel(dy4+1) > ¢ (equationd). This

last remark allows us to determine the last dart of a con-
necting dart sequence as the one whose successor defined
by equation6 has a level strictly greater than The above
considerations lead to the design of the function survive (Al-
gorithm1) which traverses the connecting dart sequence of a
dartd € SD; and return the successor of its last dart accord-
ing to equatiorb. Algorithm 1 performs a call to the func-
tion survive for each dad € SD,. If K; is a contraction

4

Implicit Encoding of Combinatorial Pyramids

kernel, function survive is called with parametésnda/(d)
and traverse€'D.S;(a(d)). Using equatior, the successor
of the last dart o0 D S, («(d)) is equal tap; (a(d)) = o;(d)
(equationi, Algorithm 1 line 4). In the same way, iK; is a
removal kernel, the successor of the last da®'diS;(d) is
equal too;(d) (equatiord, Algorithm 1 line 6).

1 For each de€ SD;

2 {

3 if (state(i)==Contracted)
4 o4 (d) =survive(i, a(d))
5
6
7
8

(]

The computation of the whole pyramid (Algorith@)
from the functionsevel and state is based on an update
of the function survive (Algorithirl). Note that the set of
darts traversed by both algorithms remains the same (lines
13-14, Algorithm1 and 15-18 Algorithnm2). The main dif-
ficulty induced by equatioid is that the successors of a dart
b contained inSC,, (b) will be traversed afteb by the func-
tion updated _survive and are thus unknown when this
function traverses. To overcome this difficulty, we use an
arrayprec whose entryj contains for each dart traversed by
updated _survive the last encountered dart with a level
greater thary. We have thus using equati@n

V5 € {0,...,level(prec[j]) — 1}
@ (preclj]) b if prec[j] has been contracted
o;(preclj]) b if prec[j] has been removed

whereb is the dart currently traversed by the algorithm.
This array if updated before traversing each new dart
(lines 28-29 Algorithn?).

else
o5 (d) =survive(i, d)

}

dart survive(int i,dart d)
9 {
10 if (level(d)>i)
11 return d;
12 if(state(level(d))== Contracted)
13 return survive(i, o(d));
14 return survive(i, a(d));
15}

Algorithm 1: Unfolding of levelG; = (SD;, 0y, «).

We have shown, that the complexity of Algorithinis
equal toO(|D|) where|D| denotes the cardinal of the ini-
tial set of dartsD. We also designed a parallel version of
Algorithm 1. The complexity of this last algorithm is equal
to O(log(|CDS™**(d)|)) where|CDS™**(d)| denotes the
length of the longest connecting dart sequence defined at
leveli.

4.3 Unfolding the whole Pyramid
Let us consider the top of a pyramid at level one dart

d € §D,, and the sequence of da§§’,,(d) defined by:
SO, (d) = CDS, (d)pn(d) if K, is acontraction kernel
" CDSL(d)og(d) if K, is aremoval kernel

Note that a call to the functiosurvive(n,d) (Algo-
rithm 1) traverses the sequend€’,(d). We have shown
that all theo or ¢ successors of a dadt € SC,,(d) belong
to SC,,(d). More precisely 4]:

Vd € 8D,,,¥b € SC,(d),Vj € {0,...,level(b) — 1}
©;(b) b if b has been contracted
o;(b) b if b has been removed
@)

wherel’ is the first dart afteb in SC,, (d) with a level greater
thanj.
In other word, ther or ¢ successors at levglof a dart

b belonging to a sequenc&”,,(d) may be read in this se-

1 For each dart d in 8D,

2

3 updated _survive(d)

4}

5 updated _survive(dart d)

6

7 dart d’;

8 dart prec[n+1];

9

10 for(j=1;j<level(d);i++)

11 precfj]=d;

12 d’'=d;

13 do

14

15 if(state(level(d’))==Contracted)
16 d = p(d);

17 else

18 d = o(d);

19

20 for(j=1;j<level(d);j++)

21

22 if(state(level(preclj]))
23 == Contracted)
24 pi(precfj]) = d';
25 else

26 aj(preclj]) = d’;
27

28 for(j=1;j<level(d’);j++)

29 prec[j]=d’

30 }

31 while(level(d’) <mn)

32 }

33

guence by selecting the first dart with a level greater than
encountered after in SC,,(b). Note that ifb is contracted
equation7 provides all itsp successor. The successors of
this dart may be determined by scanning the sequéte
which containsx(b). Indeed, the scanning of this sequence
provides the value ap;(a(b)) = o;(b) (equationl) for all

j €{0,...,level(b) — 1}.

Luc Brun and Walter Kropatsch

Algorithm 2: Updated version of the function survive which
computes all the successors of the darts containes’in(d)

Note that since the set of connecting dart sequences at
leveln define a partition ofD (Sectiord), Algorithm 2 con-
siders all the darts of the pyramid and compute the succes-
sors of each dart only once.

Implicit Encoding of Combinatorial Pyramids

(a) Connected com-
ponents

(b) Folding of the
pyramid

4.4 Memory requirements

Since both darts of an edge are simultaneously contracted or

removed the functiolevelmay be encoded on only one dart
of each edge (e.g. the positive dartifis encoded by the
sign). Using a pyramid with level, the level of each dart
may be encoded wittvg, (n) bits. The amount of memory
required to store the functiostatebeing negligible beside
the one required by the function level, the memory require-
ment of our implicit encoding is equal to:

1 .
3 |D|log,(n) bits.

On the other hand an explicit encoding of the permutation
o for each level requiresD|log, (|D|) 25 bits wherek is
the reduction factor.

Both quantities may be compared by using the relation-

ship '5' = 1 where we suppose that the top of the pyramid
is reduced to a single edge. The amount of memory required
by an explicit encoding of the pyramid may then be rewritten

as:

2|D|log,(|D]) = 2[D|nlog,(k)

The amount of memory required by the implicit and explicit
encodings increase respectively as a logarithmic and a linear
function of the height: of the pyramid.

Fig. 4.4shows the folding of a pyramid on a satellite im-
agé. The connected components of this image are encoded
by a combinatorial pyramid made &flevels Gy, G; and
G-. The base leveli; encodes the planar sampling grid, the
combinatorial mag7; encodes the regions of the partition
after the contraction operation and the top of the pyramid
G4 is deduced frond+;, by removing the redundant edges in-
duced by the contraction operation. The image in &id(b)
is obtained by storing the level of two darts in each pixel of
the initial sampling grid. These levels are then stored dn
bits in order to obtain &4 bits color image. Note that many
informations on the partition such that the interior of regions

1Data provided by the Institute of Surveying, Remote Sensing and Land
Information, BOKU Vienna

Luc Brun and Walter Kropatsch

(]

or the boundaries appear in this image of levels. Using al-
ternatively contraction and removal operations, the function
statemay deduced from the parity of the levels.

5 Conclusion

A combinatorial pyramid can be folded into its base level
combinatorial map by two functionstate() and level().
Using these functions and the local orientation of edges
around each vertex any reduced combinatorial map may be
unfolded directly from the base level. Our method stores in
the base level combinatorial map the relevance of each edge
according to a particular decimation process. This combi-
nation of local and global information in the same represen-
tation should improve the performances of matching algo-
rithms applied to images or to the skeleton of shapes.

References

[1] Yves. Bertrand, Guillaume. Damiand, and Christophe.
Fiorio. Topological map: Minimal encoding of 3d
segmented images. In Jean Michel. Jolion, Walter.
Kropatsch, and Mario. Vento, editors;* Workshop on
Graph-based Representations in Pattern Recognifi@ges
64-73, Ischia(ltaly), May 2001. IAPR-TC15, CUEN.
M.. Bister, J.. Cornelis, and A.. Rosenfeld. A critical
view of pyramid segmentation algorithnmRattern
Recognit Letter.11(9):605—617, September 1990.

Jean Pierre. Braquelaire, Piere. Desbarats, and

Jean Philippe. Domenger. 3d split and merge with
3-maps. In Jean Michel. Jolion, Walter. Kropatsch, and
Mario. Vento, editors3"¢ Workshop on Graph-based
Representations in Pattern Recognitigrages 32—43,
Ischia(ltaly), May 2001. IAPR-TC15, CUEN.

Luc. Brun. Traitement d’'images couleur et pyramides
combinatoires Habilitationa diriger des recherches,
Universié de Reims, 20020n line version

L.. Brun and Walter. Kropatsch. The construction of
pyramids with combinatorial maps. Technical

Report 63, Institute of Computer Aided Design, Vienna
University of Technology, Istr. 3/1832,A-1040 Vienna
AUSTRIA, June 20000n line version

Guillaume. Damiand and Pascal. Lienhardt. Removal
and contraction forn-dimensional generalized maps. In
Horst. Wildenauer and Walter. Kropatsch, editors,
Proceedings of the Computer Vision Winter Workshagges
208-221, Bad Ausse Austria, February 2002.

Walter G.. Kropatsch. Building Irregular Pyramids by
Dual Graph ContractionEE-Proc. Vision, Image and
Signal ProcessingVol. 142(No. 6):pp. 366—374.

P.. Lienhardt. Topological models for boundary
representations: a comparison wittdimensional
generalized mapsomputer-Aided Desigr23(1):59-82,
1991.

Annick. Montanvert, Peter. Meer, and Azriel.
Rosenfeld. Hierarchical image analysis using irregular
tessellationslEEE Transactions on Pattern Analysis and
Machine Intelligence13(4):307-316, APRIL 1991.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

