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Abstract An irregular pyramid consists of a stack of suc-
cessively reduced graphs. Each smaller graph is deduced
from the preceding one by the contraction or the removal of
a set of edges. Using a fixed decimation ratio we need ap-
proximatelyO(log(image size)) graphs to encode the whole
pyramid. A combinatorial map encodes a planar graph
thanks to two permutations encoding the edges and their
orientation around the vertices. We present in this article an
encoding of a combinatorial pyramid which allows to fold
the whole pyramid in the base level layer and provides at
the same time a measure of the importance of every pixel.
Any reduced combinatorial maps of the pyramid maybe di-
rectly retrieved from this encoding if needed.

1 Introduction

Regular image pyramids have been introduced as a stack
of images with decreasing resolutions. Since then, regu-
lar pyramids have been widely used in image segmenta-
tion and image analysis. However, the rigidity of regu-
lar pyramids induces several drawbacks such as the shift-
dependence problem and the limited number of regions en-
coded at a given level of the pyramid [2]. Irregular pyra-
mids overcome these negative properties while keeping the
main advantages of their regular ancestors. These pyramids
are defined as a stack of successively reduced graphs. Each
graph is built from the graph below by selecting a set of ver-
tices named surviving vertices and mapping each non sur-
viving vertex to a surviving one [9]. If the initial graph is
planar its reduced versions are also planar. Moreover, given
an image, if each vertex of the initial graph is associated to
one pixel, the set of initial vertices mapped to a surviving
vertex defines a region of the image.

The boundaries between two adjacent regions are en-
coded by the edges of the reduced graphs. Using simple

∗This Work was supported by the Austrian Science Foundation under
P14445-MAT.

graphs (without multiple edges between vertices nor se
loops) multiple boundaries between two regions are mapp
into only one edge. This drawback may be overcome by u
ing the Dual graph reduction scheme [7]. Within this frame-
work, the reduction operation is performed in two step
First, the contraction of a set of edges identifies a set
vertices. This operation may create redundant edges s
as empty self-loops or double edges [7]. These redundant
edges are characterized in the dual of the graph and remo
by a set of edge removals. Using such a reduction sche
each edge in the reduced graph corresponds to one bou
ary between two regions. Moreover, inclusion relationship
may be differentiated from adjacency ones in the dual grap

Combinatorial Pyramids inherit all the useful propertie
from the dual graph pyramids with the addition that the
also preserve the local orientation of edges around vertic
and faces.

The remaining of this paper is as follows: We prese
in section2 the combinatorial map model together with its
main properties. In section3 we define the contraction and
removal operations within the combinatorial map frame
work. In Section4 we present a folding of the Combinatoria
Pyramid based on an encoding of the maximal level whe
an edge survives. Using such a folding the relevance of
edge according to a particular reduction scheme is stored
the base level combinatorial map. We thus combine loc
and global information within a same representation. Mor
over, this folding allows both to recover the whole pyrami
or one of its graph from the base level.

2 Combinatorial Maps

Combinatorial maps and generalized combinatorial ma
define a general framework which allows to encode an
subdivision of nD topological spaces orientable or non
orientable with or without boundaries. An exhaustive com
parison of combinatorial maps with other boundary repr
sentations such as cell-tuples and quad-edges is prese
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Implicit Encoding of Combinatorial Pyramids [←]
in [8]. Recent trends in combinatorial maps apply this
framework to the segmentation of 3D images [1, 3] and the
encoding of hierarchies.

The remaining of this paper will be based on 2D com-
binatorial maps which we simply call combinatorial maps.
A combinatorial map may be seen as a planar graph encod-
ing explicitly the orientation of edges around a given vertex.
Figure1 demonstrates the derivation of a combinatorial map
from a plane graph. First edges are split into two half edges
called darts, each dart having its origin at the vertex it is
attached to. The fact that two half-edges (darts) stem from
the same edge is recorded in the reverse permutationα. A
second permutationσ encodes the set of darts encountered
when turning counterclockwise around a vertex (see e.g. the
σ-orbit (−8,−3, 11, 4) encoding the central vertex in Fig-
ure1). u
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Figure 1: A 3×3 grid encoded by a combinatorial map

The symbolsα∗(d) andσ∗(d) stand, respectively, for the
α andσ orbits of the dartd. More generally, ifd is a dart and
π a permutation we will denote theπ-orbit of d by π∗(d).

A combinatorial mapG is the tripletG = (D, σ, α),
whereD is the set of darts andσ, α are two permutations
defined onD such thatα is an involution:

∀d ∈ D α2(d) = d (1)

Note that, if the darts are encoded by positive and nega-
tive integers, the involutionα may be implicitly encoded by
sign (Figure1).

Given a combinatorial mapG = (D, σ, α), its dual is
defined byG = (D, ϕ, α) with ϕ = σ ◦ α (Figure 2).
The orbits of the permutationϕ encode the set of darts en-
countered when turning around a face (see e.g. theϕ-orbit
(1, 8,−3,−7) encoding the top-left face in Figure1). Note
that, using a counter-clockwise orientation for permutation
σ, each dart of aϕ-orbit has its associated face on its right.
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Figure 2: Dual of the combinatorial map represented in Figure1

2.1 Properties of Combinatorial maps

As mentioned above the dual combinatorial map may
simply computed by composing the permutationsσ andα.
This dual map may thus be implicitly encoded. This im
plicit encoding allows to reduce both the memory require
ments and the execution times since only one data struct
needs to be stored and processed. Moreover the combin
rial map formalism is formally defined in any dimensions
Algorithms defined within the2D combinatorial pyramid
framework may thus be extended to higher dimensions(s
e.g. [8]). This hypothesis is confirmed by some recent re
sults from Damiand and Lienhardt [6]. Finally, the com-
binatorial map formalism encodes explicitly the orientatio
of edges around each vertex. This additional feature allo
to encode fine relationships on the partition such as the
quence of regions encountered when turning with a giv
orientation around one region.

3 Combinatorial Pyramids

As in the dual graph pyramid scheme (Section1) a com-
binatorial pyramid is defined by an initial combinatoria
map successively reduced by a sequence of contraction
removal operations. In order to preserve the connectiv
among the elements chosen to survive to the higher level
forbid the removal of bridges and the contraction of sel
loops. A self-loop in the initial combinatorial map corre
sponds to a bridge in its dual and vice-versa. In the sam
way, a contraction operation in the initial combinatorial ma
is equivalent to a removal operation performed in its dua
Therefore, the exclusion of bridges and self-loops from r
spectively removal and contraction operations correspon
to a same constraint applied alternatively on the dual co
binatorial map and the original one.

In order to avoid the contraction of self-loops, the set o
edges to be contracted must form a forest of the initial com
binatorial map. The graph of a combinatorial map is a fore
if it does not contain a cycle. A set of edges to be contract
satisfying the above requirement is called a contraction ke
nel:

Definition 1 Contraction Kernel
Given a connected combinatorial mapG = (D, σ, α)

the setK ⊂ D will be called a contraction kernel iffK is a
forest ofG.

The setSD = D−K is called the set of surviving darts.

Given a contraction kernelK, we denote byCC(K) its
set of connected components. SinceK is a forest, each
T ∈ CC(K) is a tree. Intuitively, a treeT ∈ CC(K) col-
lapses into one vertex, a connected set of vertices of the i
tial combinatorial map.

The contraction of a combinatorial map by a contractio
kernel may induce the creation of redundant edges. The
edges named double edges and direct-self-loops are res
tively characterized byϕ2(d) = d andσ(d) = α(d) whered
is one of the darts of the edgeα∗(d). Both double edges and
direct self-loops may be removed by using a removal kern
defined as a forest of the dual combinatorial map. This la
constraint insures that no self-loop will be contracted in th
Luc Brun and Walter Kropatsch 2



n-
-

m

p
n

d

ial
-
e

p

-

Implicit Encoding of Combinatorial Pyramids [←]
/23

/24

/22

.
3

.18

.17

.16

55 511

520 519521

4-94-84-7

415414413

y
y
y

(a)G1 = G/K1

Figure 3: Reduction of the initial grid displayed in Figure1 by the
contraction kernelK1
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(a)G1 = G/K1

Figure 4: Dual of the contracted grid represented in Figure3.

dual combinatorial map and thus that no bridge may be re-
moved in the initial one. The contracted combinatorial map
may thus be simplified using parallel edge removals.

3.1 Example of contraction and simplification

Figure3 illustrates a contraction of the initial combinatorial
map represented in Figure1 by a contraction kernelK1 de-
fined by the treesα∗(1, 2), α∗(4, 12, 6) andα∗(10). Since
each initial vertex is incident to a contracted edge this forest
spans the initial combinatorial map and we obtain3 surviv-
ing vertices encoding3 regions.

Double edges encode a same adjacency relationship be-
tween two vertices. For example, the edgesα∗(8) andα∗(9)
in Figure3 encode both an adjacency relationship between
the top vertex and the center one. Such edges correspond to
an artificial split of a boundary between two regions (see
Figure 4). On the other hand, direct self-loops, such as
α∗(11) (Figure3) may be interpreted in the dual combina-
torial map as inner-boundaries of a face (Figure4).

Figure5 shows the combinatorial map deduced from Fig-
ure 3 and simplified by the removal kernelK2 defined in
the dual combinatorial map by the trees:α∗(15, 14, 13, 24),
α∗(9), α∗(11, 3), α∗(19, 18, 17) andα∗(22, 21). Note that
given a sequence of double edges, the choice of the sur-
viving edge is arbitrary. For example, a choice of the tree
α∗(20, 19, 18) instead ofα∗(19, 18, 17) would lead to an
equivalent simplified combinatorial map with a surviving
edge equal toα∗(17) instead ofα∗(20).

3.2 Connecting Walks

The creation of the reduced combinatorial map from a co
traction or a removal kernel is performed in parallel by us
ing connecting walks. Given a combinatorial mapG =
(D, σ, α), a kernelK and a surviving dartd ∈ SD =
D −K, the connecting walk associated tod is either equal
to:

CW (d) = d, ϕ(d), . . . , ϕn−1(d)

with n = Min{p ∈ IN∗ | ϕp(d) ∈ SD}, if K is a contrac-
tion kernel and

CW (d) = d, σ(d), . . . , σn−1(d)

with n = Min{p ∈ IN∗ | σp(d) ∈ SD} if K is a removal
kernel.

Given a kernelK and a surviving dartd ∈ SD, such that
CW (d) = d.d1 . . . dp, the successor ofd within the reduced
combinatorial mapG′ = G/K = (SD, σ′, α) is retrieved
from CW (d) by the following equations:

ϕ′(d) = ϕ(dp) if K is a contraction kernel
σ′(d) = σ(dp) if K is a removal kernel

(2)

Note that, ifK is a contraction kernel, the connecting
walk CW (d) allows to computeϕ′(d). Theσ-successor of
d within the contracted combinatorial maps is retrieved fro
CW (α(d)) = α(d).d′1, . . . , d

′
p. Indeed, we obtain by using

equations1 and 2: ϕ′(α(d)) = σ′(α(α(d))) = σ′(d) =
ϕ(d′p).

4 Folding and unfolding the pyramid

Connecting walks allow us to reduce a combinatorial ma
either by contraction or removal kernels. Starting from a
initial combinatorial mapG0 and given a sequence of ker-
nelsK1, . . . ,Kn we can thus build the sequence of reduce
combinatorial mapsG0, G1, . . . , Gn encoding explicitly the
pyramid as a stack of successively reduced combinator
maps. The aim of this section is to define an implicit en
coding of the pyramid by additional attributes stored in th
initial combinatorial mapG0.

Each connecting walk defined in one combinatorial ma
Gi, i ∈ {1, . . . , n−1} connects a dart inGi+1 to a sequence

/23
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520
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(a) (G/K1) \ K2

Figure 5: Reduction of the contracted combinatorial map dis
played in Figure3 by the removal kernelK2
Luc Brun and Walter Kropatsch 3
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Implicit Encoding of Combinatorial Pyramids [←]
of darts inGi. Such a sequence corresponds to the notion
of reduction window [2, 9] within the Pyramid framework.
The transitive closure of this father-child relationships de-
fines the notion of receptive field. Within the Combinatorial
Pyramid framework this notion is encoded by connecting
dart sequences which connect one dart in a combinatorial
mapGi = (SDi, σi, α) to a sequence of darts defined in
the base level combinatorial mapG0 = (D, σ, α). These
sequences are defined recursively byCDS0(d) = d for any
d ∈ D and:

For eachi in {1, . . . , n} and each dartd ∈ SDi:

• If Ki andKi−1 have the same type, i.e. if both kernels
are contraction kernels or removal ones:
CDSi(d) = CDSi−1(d1). . . . .CDSi−1(dp)

• If Ki andKi−1 have different types:
CDSi(d) = d1.CDS∗

i−1(α(d1)). . . . .dp.CDS∗
i−1(α(dp))

where CWi(d) = d1 . . . , dp and CDS∗
i−1(α(dj)), j ∈

{1, . . . , p} denotes the sequenceCDSi−1(α(dj)) without
its first dart.

Connecting dart sequences may be understood as the
transitive closure of the hierarchical relation defined by con-
necting walks. Both sequences should thus satisfy simi-
lar properties. Indeed, given one dartd ∈ SDi, such that
CDSi(d) = d1, . . . , dp we have shown that [5]:

• If Ki is a contraction kernel:

ϕi(d) =
{

ϕ(dp) if dp has been contracted
σ(dp) if dp has been removed

(3)

• If Ki is a removal kernel:

σi(d) =
{

ϕ(dp) if dp has been contracted
σ(dp) if dp has been removed

(4)

Note that equations3 and 4 are similar to equations2
defined for connecting walks.

We additionally showed that given one dartd ∈ SDi

such thatCDSi(d) = d1. . . . .dp, we haved = d1 and
{d2, . . . , dp} ⊂ ∪i

j=1Kj . The first dart of a connecting
dart sequence is thus the only one which survives up to level
i. Moreover, we have shown that the connecting dart se-
quences defined at leveli define a partition of the initial set
of dartsD. The connecing walk satisfy a similar property.

4.1 Folding the Pyramid

Given the set of connecting dart sequences defined at leveli,
one can use equations3 and4 to retrieve the reduced combi-
natorial mapGi. However, using the recursive construction
scheme defined above, the definition of connecting dart se-
quences at leveli is based both on connecting dart sequences
defined at leveli − 1 and an explicit encoding of the level
i − 1. Indeed, the connecting walks used to build the con-
necting dart sequences at leveli are defined onGi−1. The
recursive construction of connecting dart sequences at leveli
requires thus an explicit encoding of the pyramid form level
0 to leveli− 1. This recursive construction scheme may be
avoided by using the following theorem [5]:

Theorem 1 Given a combinatorial mapG0 = (D, σ, α), a
sequence of contraction kernels or removal kernelsK1,K2 . . . ,
the relation between the successive darts of a conne
ing dart sequenceCDSi(d) = (d.d1, . . . , dp), with i ∈
{1, . . . , n} andd ∈ SDi is as follows:

d1 =
{

ϕ(d) if Ki is a contraction kernel
σ(d) if Ki is a removal kernel

and for eachj in {2, . . . , p}

dj =
{

ϕ(dj−1) if dj−1 has been contracted
σ(dj−1) if dj−1 has been removed

One connecting dart sequence defined at leveli may thus
be traversed if we know the initial dart inSDi defining it and
if we determine the operation which has reduced each d
of the connecting dart sequence. The above remark sugg
an encoding of the pyramid by two functions:

1. one functionstate from {1, . . . , n} to the binary states
{Contracted,Removed} which specifies the type of
each kernel.

2. One functionlevel defined for all darts inD such that
level(d) is equal to the maximal level whered survives:

∀d ∈ D level(d) = Max{i ∈ {1, . . . , n+1} | d ∈ SDi−1}

a dartd surviving up to the top level has thus a level equa
to n + 1. Note that the level of an initial vertex (i.e. a
pixel) may be implicitly defined as the minimal level of
its darts.

4.2 Unfolding one level of the Pyramid

Given the functionlevel, the sequence of kernels and the se
of surviving darts may be retrieved by the following equa
tions:

∀i ∈ {1, . . . , n}
{

Ki = {d ∈ D | level(d) = i}
SDi = {d ∈ D | level(d) > i}

(5)
Moreover, given a dartd ∈ SDi and using both functions
state andlevel, the traversal of a connecting dart sequenc
defined by Theorem1 may be written as follows:

d1 =
{

ϕ(d) If state(i) = Contracted
σ(d) If state(i) = Removed

and for eachj in {2, . . . , p}

dj =
{

ϕ(dj−1) If state(level(dj−1)) = Contracted
σ(dj−1) If state(level(dj−1)) = Removed

(6)
Given a connecting dart sequenceCDSi(d) = d.d1 . . . , dp,

if we definedp+1 by ϕ(dp) if dp is contracted andσ(dp) is
dp is removed,dp+1 is either equal toϕi(d) or σi(d) ac-
cording toKi (equations3 and 4). We have thus in both
cases,dp+1 ∈ SDi andlevel(dp+1) > i (equation5). This
last remark allows us to determine the last dart of a co
necting dart sequence as the one whose successor defi
by equation6 has a level strictly greater thani. The above
considerations lead to the design of the function survive (A
gorithm1) which traverses the connecting dart sequence o
dartd ∈ SDi and return the successor of its last dart accor
ing to equation6. Algorithm 1 performs a call to the func-
tion survive for each dartd ∈ SDi. If Ki is a contraction
Luc Brun and Walter Kropatsch 4
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Implicit Encoding of Combinatorial Pyramids [←]
kernel, function survive is called with parametersi andα(d)
and traversesCDSi(α(d)). Using equation3, the successor
of the last dart ofCDSi(α(d)) is equal toϕi(α(d)) = σi(d)
(equation1, Algorithm 1 line 4). In the same way, ifKi is a
removal kernel, the successor of the last dart ofCDSi(d) is
equal toσi(d) (equation4, Algorithm 1 line 6).

1 For each d ∈ SDi

2 {
3 if (state(i)==Contracted)
4 σi(d) =survive(i, α(d))
5 else
6 σi(d) =survive(i, d)
7 }
8 dart survive(int i,dart d)
9 {

10 if (level(d)>i)
11 return d;
12 if(state(level(d))== Contracted)
13 return survive(i, ϕ(d));
14 return survive(i, σ(d));
15}

Algorithm 1: Unfolding of levelGi = (SDi, σi, α).

We have shown, that the complexity of Algorithm1 is
equal toO(|D|) where|D| denotes the cardinal of the ini-
tial set of dartsD. We also designed a parallel version of
Algorithm 1. The complexity of this last algorithm is equal
toO(log(|CDSmax

i (d)|)) where|CDSmax
i (d)| denotes the

length of the longest connecting dart sequence defined at
level i.

4.3 Unfolding the whole Pyramid

Let us consider the top of a pyramid at leveln, one dart
d ∈ SDn and the sequence of dartsSCn(d) defined by:

SCn(d) =
{

CDSn(d)ϕn(d) if Kn is a contraction kernel
CDSn(d)σn(d) if Kn is a removal kernel.

Note that a call to the functionsurvive(n,d) (Algo-
rithm 1) traverses the sequenceSCn(d). We have shown
that all theσ or ϕ successors of a dartd′ ∈ SCn(d) belong
to SCn(d). More precisely [4]:

∀d ∈ SDn,∀b ∈ SCn(d),∀j ∈ {0, . . . , level(b)− 1}{
ϕj(b) = b′ if b has been contracted
σj(b) = b′ if b has been removed

(7)
whereb′ is the first dart afterb in SCn(d) with a level greater
thanj.

In other word, theσ or ϕ successors at levelj of a dart
b belonging to a sequenceSCn(d) may be read in this se-
quence by selecting the first dart with a level greater thanj
encountered afterb in SCn(b). Note that ifb is contracted
equation7 provides all itsϕ successor. Theσ successors of
this dart may be determined by scanning the sequenceSCn

which containsα(b). Indeed, the scanning of this sequence
provides the value ofϕj(α(b)) = σj(b) (equation1) for all
j ∈ {0, . . . , level(b)− 1}.

The computation of the whole pyramid (Algorithm2)
from the functionslevel and state is based on an update
of the function survive (Algorithm1). Note that the set of
darts traversed by both algorithms remains the same (lin
13-14, Algorithm1 and 15-18 Algorithm2). The main dif-
ficulty induced by equation7 is that the successors of a dar
b contained inSCn(b) will be traversed afterb by the func-
tion updated survive and are thus unknown when this
function traversesb. To overcome this difficulty, we use an
arrayprec whose entryj contains for each dart traversed by
updated survive the last encountered dart with a leve
greater thanj. We have thus using equation7:

∀j ∈ {0, . . . , level(prec[j])− 1}{
ϕj(prec[j]) = b if prec[j] has been contracted
σj(prec[j]) = b if prec[j] has been removed

whereb is the dart currently traversed by the algorithm.
This array if updated before traversing each new da

(lines 28-29 Algorithm2).

1 For each dart d in SDn

2 {
3 updated survive(d)
4 }
5 updated survive(dart d)
6 {
7 dart d’;
8 dart prec[n+1];
9
10 for(j=1;j<level(d);i++)
11 prec[j]=d;
12 d’=d;
13 do
14 {
15 if(state(level(d’))==Contracted)
16 d′ = ϕ(d);
17 else
18 d′ = σ(d);
19
20 for(j=1;j<level(d’);j++)
21 {
22 if(state(level(prec[j]))
23 == Contracted)
24 ϕj(prec[j]) = d′;
25 else
26 σj(prec[j]) = d′;
27 }
28 for(j=1;j<level(d’);j++)
29 prec[j]=d’
30 }
31 while(level(d’) ≤ n)
32 }
33

Algorithm 2: Updated version of the function survive which
computes all the successors of the darts contained inSCn(d)

Note that since the set of connecting dart sequences
leveln define a partition ofD (Section4), Algorithm 2 con-
siders all the darts of the pyramid and compute the succ
sors of each dart only once.
Luc Brun and Walter Kropatsch 5
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(a) Connected com-
ponents

(b) Folding of the
pyramid

4.4 Memory requirements

Since both darts of an edge are simultaneously contracted or
removed the functionlevelmay be encoded on only one dart
of each edge (e.g. the positive dart ifα is encoded by the
sign). Using a pyramid withn level, the level of each dart
may be encoded withlog2(n) bits. The amount of memory
required to store the functionstatebeing negligible beside
the one required by the function level, the memory require-
ment of our implicit encoding is equal to:

1
2
|D| log2(n) bits.

On the other hand an explicit encoding of the permutation
σ for each level requires|D| log2(|D|) k

k−1 bits wherek is
the reduction factor.

Both quantities may be compared by using the relation-

ship |D|
kn = 1 where we suppose that the top of the pyramid

is reduced to a single edge. The amount of memory required
by an explicit encoding of the pyramid may then be rewritten
as:

2|D| log2(|D|) = 2|D|n log2(k)

The amount of memory required by the implicit and explicit
encodings increase respectively as a logarithmic and a linear
function of the heightn of the pyramid.

Fig. 4.4shows the folding of a pyramid on a satellite im-
age1. The connected components of this image are encoded
by a combinatorial pyramid made of3 levelsG0, G1 and
G2. The base levelG0 encodes the planar sampling grid, the
combinatorial mapG1 encodes the regions of the partition
after the contraction operation and the top of the pyramid
G2 is deduced fromG1 by removing the redundant edges in-
duced by the contraction operation. The image in Fig.4.4(b)
is obtained by storing the level of two darts in each pixel of
the initial sampling grid. These levels are then stored on12
bits in order to obtain a24 bits color image. Note that many
informations on the partition such that the interior of regions

1Data provided by the Institute of Surveying, Remote Sensing and Land
Information, BOKU Vienna

or the boundaries appear in this image of levels. Using a
ternatively contraction and removal operations, the functio
statemay deduced from the parity of the levels.

5 Conclusion

A combinatorial pyramid can be folded into its base leve
combinatorial map by two functionsstate() and level().
Using these functions and the local orientation of edg
around each vertex any reduced combinatorial map may
unfolded directly from the base level. Our method stores
the base level combinatorial map the relevance of each ed
according to a particular decimation process. This comb
nation of local and global information in the same represe
tation should improve the performances of matching alg
rithms applied to images or to the skeleton of shapes.
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