
Construction of Combinatorial Pyramids

Luc Brun† and Walter Kropatsch‡

† Laboratoire d’Études et de Recherche en Informatique(EA 2618)
Université de Reims - France

and
‡ Institute for Computer-aided Automation

Pattern Recognition and Image Processing Group
Vienna Univ. of Technology- Austria

† luc.brun@univ-reims.fr, ‡ krw@prip.tuwien.ac.at

Abstract. Irregular pyramids are made of a stack of successively re-
duced graphs embedded in the plane. Each vertex of a reduced graph
corresponds to a connected set of vertices in the level below. One con-
nected set of vertices reduced into a single vertex at the above level is
called the reduction window of this vertex. In the same way, a connected
set of vertices in the base level graph reduced to a single vertex at a given
level is called the receptive field of this vertex. The graphs used in the
pyramid may be region adjacency graphs, dual graphs or combinatorial
maps. This last type of pyramids are called Combinatorial Pyramids.
Compared to usual graph data structures, combinatorial maps encode
one graph and its dual within a same formalism and offer an explicit en-
coding of the orientation of edges around vertices. This paper describes
the construction scheme of a Combinatorial Pyramid. We also provide a
constructive definition of the notions of reduction windows and receptive
fields within the Combinatorial Pyramid framework.

1 Introduction

Graphs play an important role in different fields of computer vision and pattern
recognition. However, many graph algorithms still suffer from a high computa-
tional complexity. Irregular pyramids allow coarse to fine strategies by encoding
a hierarchy of graphs. The efficiency of an irregular data structure is strongly
influenced by two closely related features: The decimation process used to build
one graph from the graph below and the data structure used to encode each
graph of the pyramid. The decimation process determines the height of the
pyramid and the properties that may arise from the decimation process. The
model used to encode the graphs of the pyramid determines the properties that
may be encoded in each graph.

We present in this paper an implementation of Combinatorial Pyramids [1].
Such pyramids are defined as a stack of successively reduced combinatorial maps.
A combinatorial map data structure may be intuitively understood as an encod-
ing of one planar graph and its dual into a same data structure. Combinatorial
maps encode additionally the orientation of edges around each vertex.

The remaining of this paper is organized as follows: We present in section 2
the decimation process used within the irregular pyramid framework and two
graph encodings. The combinatorial map model is presented in Section 3. The
construction scheme of a Combinatorial Pyramid is then presented in Section 4.
We also describe in this section the notions of reduction window and receptive
fields within the Combinatorial Pyramid framework. This section concludes with
an application of Combinatorial Pyramids to the segmentation framework.

2 Irregular Pyramids

The irregular pyramids are defined as a stack of successively reduced graphs,
each graph being built from the graph below by selecting a set of vertices named
surviving vertices and mapping each non-surviving vertex to a surviving one [8].
This reduction operation was first introduced by Meer [7, 8] as a stochastic pro-
cess. Using such framework, the graph Gl+1 = (Vl+1, El+1) defined at level l + 1
is deduced from the graph defined at level l by the following steps:

1. The selection of the vertices of Gl+1 among Vl. These vertices are the sur-
viving vertices of the decimation process.

2. A link of each non surviving vertex to a surviving one. This step defines a
partition of Vl.

3. A definition of the adjacency relationships between the vertices of Gl+1 in
order to define El+1.

2.1 Simple graph pyramids

In order to obtain a fixed decimation ratio between each level, Meer [7] imposes
the following constraints on the set of surviving vertices:

∀v ∈ Vl − Vl+1 ∃v′ ∈ Vl+1 : (v, v′) ∈ El (1)

∀(v, v′) ∈ V 2
l+1 : (v, v′) 6∈ El (2)

Constraint (1) insures that each non-surviving vertex is adjacent to at least
a surviving one. Constraint (2) insures that two adjacent vertices cannot both
survive. These constraints define a maximal independent set (MIS).

Meer [7] defines a set of surviving vertices fulfilling the maximal independent
set requirements thanks to a stochastic process: A variable xi is associated to
each vertex vi and each vertex associated to a local maximum of this variable
survives. Since two adjacent vertices can not both represent a local maximum
of the variable, the constraint (2) is satisfied. However, some vertices may not
represent a local maximum of the random variable while having only non sur-
viving neighbors. The constraint (1) is in this case violated. The determination
of the MIS is thus performed thanks to an iterative process [8, 6]. Jolion [5] and
Haxhimusa et al. [4] have recently proposed two improvements of this iterative
decimation process.

Meer [7] uses as variable xi a random variable uniformly distributed between
[0, 1]. This purely random process has been adapted by Montanvert [8] to the
connected component analysis framework by restricting the decimation process
to a set of subgraphs of the graph Gl. This restriction of the decimation process
is performed by a function λ(v, v′) defined on each couple of adjacent vertices v
and v′ and such that λ(v, v′) = 1 if v and v′ belong to the same subgraph and
0 otherwise. Jolion [6] proposed to use an interest operator such as the variance
computed on a neighborhood of each vertex rather the random variable. Using
such a reduction scheme, surviving vertices are located on homogeneous parts
of the image.

Given the set of surviving vertices, Meer and Montanvert [7, 8] connect each
non surviving vertex to its surviving neighbor whose random variable is maxi-
mum. Jolion [6] uses a contrast operator such as the difference of gray levels to
connect each non surviving vertex to its surviving neighbor with the closest gray
level.

Note that within the segmentation framework, the use of the function λ
defined by Montanvert [8] supposes to define first an implicit partitioning of the
current graph in order to set the value of λ(v, v′) for each couple of vertices.
Using the interest and contrast operators defined by Jolion the partition of the
graph is built during the decimation process. The set of non surviving vertices
connected to a surviving vertex defines its reduction window of the surviving
vertex and thus the parent child relationship between two consecutive levels.

The final set of surviving vertices defined on Vl corresponds to the set of
vertices Vl+1 of the reduced graph Gl+1 = (Vl+1, El+1). The set of edges El+1 of
Gl+1 is defined by connecting by an edge in Gl+1 any couple of surviving vertices
having adjacent children.

2.2 Dual Graph pyramids

Using the reduction scheme defined in Section 2.1, two surviving vertices in Gl

are connected in Gl+1 if they have at least two adjacent children. Two reduction
windows adjacent by more than a couple of children will thus be connected by
a single edge in the reduced graph. The stack of graphs produced by the above
decimation process is thus a stack of simple graphs (i.e. graphs without self-loops
nor double edges). Such graphs does not allow to encode multiple boundaries
between regions nor inclusions relationships. This drawback may be overcome
by using the dual graph pyramids introduced by Willersin and Kropatsch [10].
Within the dual graph pyramid framework the reduction process is performed
by a set of edge contractions. The edge contraction operation collapses into one
vertex two vertices adjacent by an edge and remove the edge. In order to keep
the number of connected components of the initial graph, the set of edges to be
contracted in a graph Gl of the pyramid must forms a forest of Gl. The resulting
set of edges is called a contraction kernel. Using the decimation process described
in Section 2.1, each non surviving vertex v is adjacent to its father v′. If we select
one edge between v and v′ for each non surviving vertex v, the resulting set of

darts K forms a forest of the initial graph composed of trees of depth 1. This
set encodes thus a contraction kernel.

The contraction of a graph reduces the number of vertices while maintain-
ing the connections to other vertices. As a consequence some redundant edges
such as self-loops or double edges may occur, some encode relevant topological
relations (e.g. an island in a lake) others can be removed without any harm to
the involved topology. These redundant edges may be characterized in the dual
of the contracted graph. The removal of such edges is called a dual decimation
step and the set of removed edges is called a removal kernel.

Using the dual graph pyramid framework each receptive field is a connected
set of vertices in the base level. Moreover, each edge between two vertices encodes
an unique connected boundary between the associated receptive fields. Finally,
the use of self-loops within the hierarchy allows to differentiate adjacency rela-
tionships between receptive fields from inclusion relations.

3 Combinatorial maps

A combinatorial map may be seen as a planar graph G = (V, E) encoding ex-
plicitly the orientation of edges around a given vertex. First the edges of E are
split into two half edges called darts, each dart having its origin at the vertex it
is attached to. The fact that two half-edges (darts) stem from the same edge is
recorded in the reverse permutation α. A second permutation σ encodes the set
of darts encountered when turning counterclockwise around a vertex.

A combinatorial map is thus defined by a triplet G = (D, σ, α), where D is
the set of darts and σ, α are two permutations defined on D such that α is an
involution:

∀d ∈ D α2(d) = d (3)

Given a dart d and a permutation π, the π-orbit of d denoted by π∗(d) is
the series of darts (πi(d))

i∈IN defined by the successive applications of π on the
dart d. The σ and α orbits of a dart d will be respectively denoted by σ∗(d) and
α∗(d).

Each vertex of a combinatorial map G = (D, σ, α) is implicitly encoded by
its σ orbit. This implicit encoding may be transformed into an explicit one by
using a vertex’s labeling function [1]. Such a function, denoted by µ associates
to each dart d a label which identifies its σ-orbit σ∗(d). More precisely a vertex’s
labeling function should satisfy:

∀(d, d′)2 ∈ D µ(d) = µ(d′) ⇔ σ∗(d) = σ∗(d′)

For example, if darts are encoded by integers, the function µ(d) = mind′∈σ∗(d){d
′}

defines a valid vertex’s labeling function.
Given a combinatorial map G = (D, σ, α), its dual is defined by G = (D, ϕ, α)

with ϕ = σ ◦α. The orbits of the permutation ϕ encode the set of darts encoun-
tered when turning around a face of G More details about combinatorial maps
may be found in [2, 1].

4 Combinatorial Pyramids

As in the dual graph pyramid scheme [10] (Section 2), a combinatorial pyramid
is defined by an initial combinatorial map successively reduced by a sequence
of contraction or removal operations respectively encoded by contraction and
removal kernels.

4.1 Constructing Contraction Kernels using Union-Find

As mentioned in Section 2, Jolion [6] and Montanvert [8] have proposed two
different methods to decimate a graph. These methods may be adapted to build
a contraction kernel by selecting one edge between each non surviving vertex
and its father(Section 2.2).

We have encoded the decimation process defined by Jolion [6]. Our imple-
mentation uses conjointly the interest and contrast operators defined by Jolion,
with the function λ defined by Montanvert. This last function is used to forbid
the attachment of some non surviving vertices to surviving ones. A similar result
may be obtained by setting the contrast operator to an infinite value for such
couple of vertices.

The method of Montanvert [8] is based on an implicit partitioning of the
graph. Such a partitioning may be obtained by using, for example, a clustering
algorithm on the value attached to each vertex. Within this context the design of
a contraction kernel is equivalent to the design to a spanning forest of the graph.
This problem may be solved efficiently using union and find operations [3] on
sequential or on parallel machines with few processors using.

Within this technique each tree of a contraction kernel is encoded by storing
in each vertex a reference to its father. The father of each vertex is initialized by
father(v) = v. The find operation applied on a vertex v determines the root of
the tree containing v. The union operation merge two trees into one. Given two
vertices v1 and v2 whose father must be merged (λ(father(v1), father(v2)) = 1)
the union of both trees is performed by setting the “grand-father”’ of one of
the two vertices, say v1 to the father of v2. We have thus father(father(v1)) =
father(v2). Using such a construction scheme for contraction kernels, the time
complexity of the algorithm is dominated by the number of indirections required
to find the father of each vertex. Indeed, if one vertex v1 is merged to v2 and then
v2 to v3, we have father(v1) = v2 and father(v2) = v3. The determination of the
father of v1 requires thus 2 indirections. These indirections may be suppressed
by using the algorithm find compress (Algorithm 1) which connects directly to
the root all the nodes in the branch of the tree which connect one vertex to its
root.

The construction of the contraction kernel is performed by Algorithm 2. The
test performed on line 12 of Algorithm 2 merges two trees, if their associated
roots are different and if the regions encoded by these trees should be merged
according to the function λ. The function µ used on lines 10 and 11 encodes the
vertices and is defined in Section 3.

� �� ��� ����
� �	
�

�
��� ��

� �� �
� �� �� �
� �� �� �

�� ��� �� � ����
v

 ! !" "#$%& &'()
*+,- ./

0 01 1 23
445
5

67 889
9

::;
;

< << <==> >?@ @@ @A AA ABBC
C

v

1 find compress(array father,vertex v)

2 {
3 if (father(v) == v)

4 return v;

5 else

6 {
7 father(v) = find compress(father,father(v))
8 return father(v)
9 }
10 }

Algorithm 1: The find compress algorithm.

execution times Union & Find Iterative Decimation

64 × 64 0.01 s 0.39 s

128 × 128 0.04 s 3.13 s

256 × 256 0.19 s 24.65 s

512 × 512 0.78 s 3 min 14s

1024 × 1024 3.5 s 25 min 33 s
Table 1. Execution times required by the iterative decimation process and the one
based on union and find operations.

Let us consider a combinatorial map Gl = (SDl, σl, α) reduced to Gl+1 =
(SDl+1 = SDl − Kl+1, σl+1, α) by Kl+1. Since an union operation is performed
for each edge added to the contraction kernel Kl+1, the number of union per-
formed by the algorithm is equal to |Kl+1|. In the same way, we perform two
find compress operations for each dart, the total number of find compress

operations performed by the algorithm is thus equal to 2|SDl|. Based on the
previous considerations it can be shown [9] that the sequential complexity of
Algorithm 2 is equal to O(2β(2|SDl|, |K|)|SDl|)) where β is a very low growing
function.

Tables 1 compares the execution times on a sequential machine of the deci-
mation processes using the iterative definition of survivors (Section 2) and the
union and find operations. Both decimation processes reduce a 2n × 2n image
to a single vertex. Note that the number |SDl| of initial darts is, in this case a
linear function of the size 22n of the input image. This size is multiplied by 4
between each line of Table 1. The execution time of the Union & Find algorithm
is also multiplied by 4 between each line. The complexity of the Union & Find
algorithm is thus found to be linear according to the size of the image on this
experiment. On the other hand, the execution times of the iterative decimation
process is approximately multiplied by 8 between each line. The complexity of
this algorithm is thus not linear on this experiment.

1 define kernel(pyramide P, function lambda)

2 {
3 contraction kernel K = ∅
4 top of the pyramid Gl = (SDl, σl, α)
5

6 For any vertex v in Gl

7 father(v) = v

8 For any dart b ∈ D l

9 {
10 f1= find compress(father, µ(b))
11 f2= find compress(father, µ(α(b)))
12 if (f1 != f2 and lambda(f1 , f2))

13 {
14 K = K ∪ {α∗(b)}
15 father(f1) = f2

16 }
17 }
18 return K

19 }

Algorithm 2: Computation of a contraction kernel

4.2 Removals Kernels

Given a combinatorial map G = (D, σ, α) and a contraction kernel K, the con-
tracted combinatorial map G′ = (SD = D − K, σ′, α) may contain redundant
edges corresponding to double edges or empty-self-loops (Section 2.2). An empty
self loop α∗(d) is characterized [1] in G′ by ϕ′(d) = d. Note that the removal
of an edge α∗(d) corresponding to and empty self loop may create a new empty
self-loop α∗(σ(d)) if α∗(d) and α∗(σ(d)) define nested loops. The removal oper-
ation is thus performed by an iterative process which first removes the empty
self-loop α∗(d) characterized by ϕ′(d) = d and then removes each dart σn(d)
which become an empty self loop after the removal of σn−1(d). In the same way,
double edges are characterized [1] in G′ by ϕ′2(σ(d)) = α(d). Such darts are also
removed iteratively by checking the double edge condition for the sequence of σ
successors of the dart d defining the first double edge.

4.3 Computing the reduced combinatorial maps

The creation of the reduced combinatorial map from a contraction or a removal
kernel is performed in parallel by using dart’s reduction window [1]. Given a
combinatorial map G = (D, σ, α), a kernel K and a surviving dart d ∈ SD =
D − K, the reduction window of d is either equal to:

RW (d) = d, σ(d), . . . , σn−1(d)

with n = Min{p ∈ IN∗ | σp(d) ∈ SD} if K is a removal kernel or

RW (d) = d, ϕ(α(d)), . . . , ϕn−1(α(d))

with n = Min{p ∈ IN∗ | ϕp(α(d)) ∈ SD}, if K is a contraction kernel.
Given a kernel K and a surviving dart d ∈ SD, such that RW (d) = d.d1 . . . dp,

the successor of d within the reduced combinatorial map G′ = G/K = (SD, σ′, α)
is retrieved from RW (d) = d.d1dp by [1]:

σ′(d) =

{

σ(dp) if K is a removal kernel
ϕ(dp) if K is a contraction kernel

(4)

Note that the reduction window of a surviving dart d connects d ∈ G′ to a
sequence of darts in the initial combinatorial map G. The notion of dart’s reduc-
tion window connects thus two successive levels of the pyramid and corresponds
to the usual notion of reduction window [8].

Within the combinatorial pyramid framework each vertex defined at level i
is encoded by its σi-orbit. The reduction window of such a vertex is defined as
the concatenation of the darts belonging to its σi-orbit:

RWi(σ
∗
i (d)) =

⊙n

j=1RWi(dj)

with σ∗
i (d) = (d1, . . . , dp). The symbol

⊙

denotes the concatenation operator.

4.4 Receptive Fields

Dart’s reduction windows allow us to reduce a combinatorial map using either
contraction or removal kernels. Starting from an initial combinatorial map G0

and given a sequence of kernels K1, . . . , Kn we can thus build the sequence of
reduced combinatorial maps G0, G1, . . . , Gn.

The transitive closure of the father-child relationship defined by the dart’s
reduction window corresponds to the notion of dart’s receptive field. A dart’s
receptive field connects one dart in a combinatorial map Gi = (SDi, σi, α) to a
sequence of darts defined in the base level combinatorial map G0 = (D, σ, α).
These sequences are defined [1] recursively by RF0(d) = d for any d ∈ D and:

∀i ∈ {1, . . . , n}, ∀d ∈ SDi

RFi(d) =

{⊙p

j=1RFi−1(dj) if Ki is a removal kernel
⊙p

j=1djRF ∗
i−1(α(dj)) if Ki is a contraction kernel

(5)

with RWi(d) = d1 . . . , dp. The symbol RF ∗
i−1(α(dj)), j ∈ {1, . . . , p} denotes the

sequence RFi−1(α(dj)) without its first dart.
The receptive field of a dart encodes its embedding in the base level combi-

natorial map. If this initial combinatorial map is associated to a planar sampling
grid, each initial vertex corresponds to one pixel and a vertex defined at level
i of the pyramid encodes a connected set of vertices, i.e. a region. Within the
combinatorial map framework the embedding of a vertex σ∗

i (d) in the initial
combinatorial map is called a vertex’s receptive field and is defined using the
same construction scheme than the vertex’s reduction window. Given one dart
d ∈ SDi, the receptive field of its associated vertex σ∗

i (d) = (d1, . . . , dp) is thus
defined as the concatenation of the dart’s receptive fields belonging to σ∗

i (d) :

Rσ∗

i
(d) =

⊙p

j=1RFi(dj)

(a) original (b) level 1 (c)level 2 (d) level 3 (e) level 4 (f) level 5

Fig. 1. One Combinatorial Pyramid encoding a stack of partitions of a heart.

The receptive field of a vertex σ∗
i (d) encodes the darts of the vertices reduced

to the vertex σ∗
i (d) at level i [1]. Using a labeling function µ in the base level

combinatorial map, each label identifies a pixel in the associated image. This
connected set of pixels may be retrieved by computing the set of reduced vertices:
∪d′∈Rσ∗

i
(d)

µ(d′).

4.5 Application to the segmentation framework

Fig. 1 shows an application of Combinatorial Pyramids to the segmentation
framework. The original image (Fig. 1(a)) is quantized into K gray levels. The
quantization algorithm used in this experiment [11] decomposes the initial range
of image’s gray levels into K intervals. This set of intervals is designed in order
to minimize the sum of the K variances computed on each interval.

Each region in (Fig. 1(b)) encodes a connected component of the pixels whose
gray value are mapped onto a same interval. The background of the image is
determined by selecting the region with the greatest cardinal adjacent to the
exterior of the image. Then, all regions included in the background whose size is
lower than a given threshold T are merged with the background (Fig. 1(c)). The
mean gray level of each region is then used to initialize a gray level histogram.
The frequency h(i) of one entry i of the histogram is set to the sum of region’s
cardinal whose mean gray level is equal to i. This histogram is then quantized
into K values and we merge any couple of adjacent region whose mean gray
levels are mapped onto a same interval . This process is iterated form Fig. 1(d)
to Fig. 1(f) until no merge occurs. Note that, at each level of the pyramid, the
quantization algorithm only provides a partition of the range of grays values.
The encoding of the partition and the merge operations are performed using the
combinatorial pyramid model. The partition which may be obtained by using
only [11] is represented on Fig. 1(b). The segmentation results represented in
Fig. 1 have been obtained with K = 4 and T = 10.

The mean gray level and the cardinal of each region are computed during the
construction of the pyramid by updating the parameters of each surviving vertex
from the ones of its reduction window. The borders of the partitions represented
in Fig. 1 are deduced from the receptive fields (Section 4.4)

5 Conclusion

We have defined in this article the construction scheme of a Combinatorial Pyra-
mid. Two methods to build a contraction kernel have been proposed: one based
on the method initially defined by Meer, Montanvert and Jolion [7, 8, 6] and
new one based on Union and Find operations. Our experiments show that this
last method is more efficient than the first one when the contraction criteria
may be determined before the construction of the contraction kernel. We have
also presented the notions of Reduction Window and Receptive fields within the
Combinatorial Pyramid framework. The receptive fields have been used in our
experiments to retrieve the borders of the partitions.

References

1. L. Brun. Traitement d’images couleur et pyramides combinatoires. Habilitation à
diriger des recherches, Université de Reims, 2002.

2. L. Brun and W. Kropatsch. Contraction kernels and combinatorial maps. In J. M.
Jolion, W. Kropatsch, and M. Vento, editors, 3rd IAPR-TC15 Workshop on Graph-

based Representations in Pattern Recognition, pages 12–21, Ischia Italy, May 2001.
IAPR-TC15, CUEN.

3. C. Fiorio and J. Gustedt. Two linear time union-find strategies for image process-
ing. Technical Report 375/1994, Technische Universitat Berlin, 1994.

4. Y. Haxhimusa, R. Glantz, M. Saib, G. Langs, and W. G. Kropatsch. Logarithmic
Tapering Graph Pyramid. In L. Van Gool, editor, Pattern Recognition, 24th DAGM

Symposium, volume 2449 of Lecture Notes in Computer Science, pages 117–124,
Zurich, Switzerland, September 2002. Springer, Berlin Heidelberg.

5. J.-M. Jolion. Data driven decimation of graphs. In J.-M. Jolion, W. Kropatsch,
and M. Vento, editors, Proceedings of 3rd IAPR-TC15 Workshop on Graph based

Representation in Pattern Recognition, pages 105–114, Ischia-Italy, May 2001.
6. J. M. Jolion and A. Montanvert. The adaptative pyramid: A framework for 2d

image analysis. Computer Vision, Graphics, and Image Processing, 55(3):339–348,
May 1992.

7. P. Meer. Stochastic image pyramids. Computer Vision Graphics Image Processing,
45:269–294, 1989.

8. A. Montanvert, P. Meer, and A. Rosenfeld. Hierarchical image analysis using
irregular tessellations. IEEE Transactions on Pattern Analysis and Machine In-

telligence, 13(4):307–316, APRIL 1991.
9. R. E. Tarjan. Efficiency of a good but non linear set union algorithm. J. Assoc.

Comput. System Mach., 22:215–225, 1975.
10. D. Willersinn and W. G. Kropatsch. Dual graph contraction for irregular pyramids.

In International Conference on Pattern Recogntion D: Parallel Computing, pages
251–256, Jerusalem, Israel, 1994. International Association for Pattern Recogni-
tion.

11. S. Wong, S. Wan, and P. Prusinkiewicz. Monochrome image quantization. In Cana-

dian conference on electrical and computer engineering, pages 17–20, September
1989.

