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ABSTRACT

An irregular pyramid consists of a stack of successively
reduced graphs. Each smaller graph is deduced from the
preceding one by the contraction or the removal of a set
of edges. Using a fixed decimation ratio we need approxi-
matelyO(log(image size)) graphs to encode the whole pyra-
mid. A combinatorial map encodes a planar graph thanks to
two permutations encoding the edges and their orientation
around the vertices. We present in this article an encoding
of a combinatorial pyramid which allows to fold the whole
pyramid in the base level layer and provides at the same
time a measure of the relevance of every pixel. This en-
coding is used to retreive any reduced combinatorial map of
the pyramid from its base and to compute the borders of the
partition encoded by the combinatorial maps.

1. INTRODUCTION

Regular image pyramids have been introduced as a stack
of images with decreasing resolutions. Since then, regu-
lar pyramids have been widely used in image segmenta-
tion and image analysis. However, the rigidity of regu-
lar pyramids induces several drawbacks such as the shift-
dependence problem and the limited number of regions en-
coded at a given level of the pyramid [1]. Irregular pyra-
mids overcome these negative properties while keeping the
main advantages of their regular ancestors. These pyramids
are defined as a stack of successively reduced graphs. Each
graph is built from the graph below by selecting a set of ver-
tices named surviving vertices and mapping each non sur-
viving vertex to a surviving one [2]. If the initial graph is
planar its reduced versions are also planar. Moreover, given
an image, if each vertex of the initial graph is associated to
one pixel, the set of initial vertices mapped to a surviving
vertex defines a region of the image.
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The boundaries between two adjacent regions are en-
coded by the edges of the reduced graphs. Using simple
graphs (without multiple edges between vertices nor self-
loops) multiple boundaries between two regions are mapped
into only one edge. This drawback may be overcome by us-
ing the Dual graph reduction scheme [3]. Within this frame-
work, the reduction operation is performed in two steps:
First, the contraction of a set of edges identifies a set of
vertices. This operation may create redundant edges such
as empty self-loops or double edges [3]. These redundant
edges are characterized in the dual of the graph and removed
by a set of edge removals. Using such a reduction scheme
each edge in the reduced graph corresponds to one bound-
ary between two regions. Moreover, inclusion relationships
may be differentiated from adjacency ones in the dual graph.

Combinatorial Pyramids inherit all the useful properties
from the dual graph pyramids with the addition that they
also preserve the local orientation of edges around vertices
and faces. The expected advantages of such hierarchies
within the image analysis framework are presented in [4].

The remaining of this paper is as follows: We present
in section 2 the combinatorial map model together with its
main properties. In section 3 we define the contraction and
removal operations within the combinatorial map frame-
work. In Section 4 we present a folding of the Combina-
torial Pyramid based on an encoding of the maximal level
where an edge survives. Using such a folding the relevance
of an edge according to a particular reduction scheme is
stored in the base level combinatorial map. We thus com-
bine local and global information within a same representa-
tion. This encoding is used to build any combinatorial map
of the pyramid directly from the base level and to compute
the borders of the associated partition.

2. COMBINATORIAL MAPS

A combinatorial map [5] may be seen as a planar graph en-
coding explicitly the orientation of edges around a given



vertex. Fig. 1 demonstrates the derivation of a combina-
torial map from a plane graph. First edges are split into two
half edges called darts, each dart having its origin at the ver-
tex it is attached to. The fact that two half-edges (darts) stem
from the same edge is recorded in the reverse permutation
α. A second permutation σ encodes the set of darts encoun-
tered when turning counterclockwise around a vertex (see
e.g. the σ-orbit (−8,−3, 11, 4) encoding the central vertex
in Fig. 1).
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Fig. 1. A 3×3 grid encoded by a combinatorial map

The symbols α∗(d) and σ∗(d) stand, respectively, for
the α and σ orbits of the dart d. More generally, if d is a
dart and π a permutation we will denote the π-orbit of d by
π∗(d).

A combinatorial map G is the triplet G = (D, σ, α),
where D is the set of darts and σ, α are two permutations
defined on D such that α is an involution:

∀d ∈ D α2(d) = d (1)

Note that, if the darts are encoded by positive and nega-
tive integers, the involution α may be implicitly encoded by
sign (Fig. 1).

Given a combinatorial map G = (D, σ, α), its dual is
defined by G = (D, ϕ, α) with ϕ = σ ◦ α. The orbits of
the permutation ϕ encode the set of darts encountered when
turning around a face (see e.g. the ϕ-orbit (1, 8,−3,−7)
encoding the top-left face in Fig. 1). Note that, using a
counter-clockwise orientation for permutation σ, each dart
of a ϕ-orbit has its associated face on its right.

3. COMBINATORIAL PYRAMIDS

As in the dual graph pyramid scheme [3] (Section 1) a com-
binatorial pyramid is defined by an initial combinatorial map
successively reduced by a sequence of contraction or re-
moval operations. In order to preserve the number of con-
nected components of the initial combinatorial map, we for-
bid the removal of bridges and the contraction of self-loops.
Such contractions may be avoided by using a contraction
kernel defined as a forest of the initial combinatorial map.
Given a contraction kernel defined by a set K of darts to be
contracted, the set of surviving darts denoted bySD is equal

to D − K where D denotes the initial set of darts. In the
same way, the removal of bridges may be avoided by using a
removal kernel defined as a forest of the dual combinatorial
map. Note that, while a contraction kernel is application de-
pendent a removal kernel is automatically defined from one
combinatorial map. Indeed, within our reduction scheme
a contraction kernel specifies a set of regions to be merged
while a removal kernel is restrained to the removal of double
edges and empty self-loops defining redundant boundaries
between the merged regions.

The creation of the reduced combinatorial map from a
contraction or a removal kernel is performed in parallel by
using dart’s reduction window [4]. Given a combinatorial
map G = (D, σ, α), a kernel K and a surviving dart d ∈
SD = D−K , the reduction window of d is either equal to:

RW (d) = d, σ(d), . . . , σn−1(d)

with n = Min{p ∈ IN∗ | σp(d) ∈ SD} if K is a removal
kernel or

RW (d) = d, ϕ(α(d)), . . . , ϕn−1(α(d))

with n = Min{p ∈ IN∗ | ϕp(α(d)) ∈ SD}, if K is a
contraction kernel.

Given a kernel K and a surviving dart d ∈ SD, such
that RW (d) = d.d1 . . . dp, the successor of d within the
reduced combinatorial map G ′ = G/K = (SD, σ′, α) is
retrieved from RW (d) = d.d1 . . . .dp by [4]:

σ′(d) =
{

σ(dp) if K is a removal kernel
ϕ(dp) if K is a contraction kernel

(2)

Note that the reduction window of a surviving dart d
connects d ∈ G′ to a sequence of darts in the initial com-
binatorial map G. The notion of dart’s reduction window
connects thus two successive levels of the pyramid and cor-
responds to the usual notion of reduction window [1].

4. FOLDING AND UNFOLDING THE PYRAMID

Dart’s reduction windows allow us to reduce a combinato-
rial map either by contraction or removal kernels. Start-
ing from an initial combinatorial map G0 = (D, σ, α) and
given a sequence of kernels K1, . . . , Kn we can thus build
the sequence of reduced combinatorial maps G0, G1, . . . , Gn

encoding explicitly the pyramid as a stack of successively
reduced combinatorial maps. The aim of this section is to
define an implicit encoding of the pyramid by additional at-
tributes stored in the initial combinatorial map G0.

As mentioned in Section 3, the notion of darts reduction
window establishes a father-child relationship between two
successive levels of the pyramid. The transitive closure of
this father-child relationship defines the notion of receptive



field. The receptive field at level i: RFi(d) = d1. . . . .dp of
a dart d belonging to Gi = (SDi, σi, α) is defined by [4] :

d1 = d, d2 = σ(d) and
for each j in {2, . . . , p}
dj =

{
ϕ(dj−1) if dj−1 has been contracted
σ(dj−1) if dj−1 has been removed

(3)

Dart’s receptive fields may be understood as the transitive
closure of the hierarchical relationship defined by reduc-
tion windows. Both sequences should thus satisfy simi-
lar properties. Indeed, given one dart d ∈ SD i, such that
RFi(d) = d.d1, . . . , dp we have [4]:

σi(d) =
{

ϕ(dp) if dp has been contracted
σ(dp) if dp has been removed

(4)

Note that equations 4 is similar to equation 2 defined for
reduction windows.

The receptive field RFi(d) = d.d1. . . . .dp of a dart
d ∈ Gi connects d to a sequence of darts in the base level
combinatorial map. This notion corresponds thus to the
usual notion of receptive field. We additionally showed [5]
that given the dart’s receptive field RFi(d) = d.d1. . . . .dp,
with d ∈ SDi, we have {d1, . . . , dp} ⊂ ∪i

j=1Kj . The first
dart of a receptive field is thus the only one which survives
up to level i.

4.1. Folding the Pyramid

According to equation 3, a dart’s receptive field may be tra-
versed if we know the initial dart in SD i defining it and if
we determine the operation which has reduced each dart of
the sequence. The above remark suggests an encoding of
the pyramid by two functions:

1. one function state from {1, . . . , n} to the binary states
{Contracted, Removed} which specifies the type of
each kernel.

2. One function level defined for all darts in D such
that level(d) is equal to the maximal level where d
survives:

∀d ∈ D level(d) = Max{i ∈ {1, . . . , n + 1} |
d ∈ SDi−1}

a dart d surviving up to the top level has thus a level
equal to n + 1. Note that the level of an initial vertex
(i.e. a pixel) may be implicitly defined as the minimal
level of its darts.

One encoding of the pyramid based on the functions level
and state is called an implicit encoding of the pyramid.

Using a pyramid made of n levels whose apex is re-
duced to a self-loop, the memory requirements of an im-
plicit and explicit encoding of the pyramid are respectively

equal to [4]: 1
2 |D| log2(n) and 2|D|n log2(k) where D de-

notes the initial set of darts and k the reduction factor. The
memory requirement of an implicit encoding of the pyra-
mid varies thus as a logarithmic function of its height while
the memory requirement of an explicit encoding of all the
combinatorial maps is linear according to the height n of the
pyramid.

4.2. Unfolding the Pyramid

Given the function level, the sequence of kernels and the set
of surviving darts may be retrieved by the following equa-
tions [5]:

∀i ∈ {1, . . . , n}
{

Ki = {d ∈ D | level(d) = i}
SDi = {d ∈ D | level(d) > i}

(5)
Moreover, given a dart d ∈ SD i and using both functions
state and level, the traversal of a receptive field (equa-
tion 3) may be written as follows:

d1 = σ(d)
and for each j in {2, . . . , p}
dj =

{
ϕ(dj−1) If state(level(dj−1)) = Contracted
σ(dj−1) If state(level(dj−1)) = Removed

(6)
Given a dart’s receptive field RFi(d) = d.d1 . . . , dp, if

we define dp+1 by ϕ(dp) if dp is contracted and σ(dp) is dp

is removed, dp+1 is equal to σi(d) (equation 4). We have
thus in both cases, dp+1 ∈ SDi and level(dp+1) > i (equa-
tion 5). This last remark allows us to determine the last dart
of dart’s receptive field as the one whose successor defined
by equation 6 has a level strictly greater than i. Using this
last property we designed [4] an algorithm based on equa-
tion 6 which traverses the receptive field of each dart surviv-
ing up to level i. Note that using equation 4, this algorithm
allows to retrieve any combinatorial map of the pyramid.

4.3. Embedding

The receptive field of a dart encodes its embedding in the
base level combinatorial map. If this initial combinatorial
map is associated to a planar sampling grid, each initial ver-
tex corresponds to one pixel and a vertex defined at level i
of the pyramid encodes a connected set of vertices, i.e. a
region. Within the combinatorial map framework a vertex
surviving up to level i is defined by its σi orbit. The em-
bedding of such a vertex in the initial combinatorial map is
called a vertex’s receptive field and is defined as the con-
catenation of the dart’s receptive fields belonging to its σ i

orbit. Given one dart d ∈ SD i, the receptive field of its
associated vertex σ∗

i (d) = (d1, . . . , dp) is thus defined by:

Rσ∗
i
(d) =

⊙p
j=1RFi(dj)



where
⊙

denotes the concatenation operator.
A connected set of pixels is encoded within the com-

binatorial map framework by a connected set of vertices,
each vertex being encoded by its σ orbit (Fig. 1). The set of
darts belonging to the σ orbits of one region encodes both
the adjacency relationships between adjacent couple of pix-
els inside the region and between the pixels of the region
and their adjacent neighbors outside the region. The former
darts are called internal boundaries while the second ones
encode the external boundary of the region.

Let us consider for example, the first row of Fig. 1. This
connected region is defined by the set of darts {1, -1, 2,
-2, 7, 8, 9}. The darts {1,-1,2,-2} correspond to internal
boundaries while {7, 8, 9} correspond to external ones.

Let Bi be the set of external boundary darts correspond-
ing to the partition defined at level i. Given a dart d ∈
SDi, we denote by ∂RFi(d) = RFi(d) ∩ Bi the sequence
of external boundary darts belonging to the receptive field
RFi(d). The order in ∂RFi(d) is deduced from the one
defined on RFi(d). Given one dart d ∈ SDi, the exter-
nal boundary of the vertex σ∗

i (d) = (d1, . . . , dp) is de-
fined by the concatenation of the sequences ∂RF i(dj) with
j ∈ {1, . . . , p}:

∂Rσ∗
i
(d) =

⊙p
j=1∂RFi(d)

The sequence ∂Rσ∗
i
(d) encodes the set of external bound-

ary darts of the connected set of vertices Rσ∗
i (d).

Given one dart d ∈ SDi, the sequence ∂Rσ∗
i
(d) = d1, . . . , dp

may be retrieved by [4]:

∀j ∈ {1, . . . , p − 1} dj+1 = ϕnj (α(dj)) (7)

with nj = Min{k ∈ IN∗ | ϕk(α(dj)) ∈ Bi}
Note that ϕ is defined on the initial sampling grid. Using

a 4 connected grid the rank of each orbit is equal to 4. The
number of iterations required by equation 7 is thus bounded
by 4.

We designed [4] an algorithm which traverses the se-
quence of external boundary darts of a vertex’s receptive
field. Each of this dart is associated to one pixel belonging
to the border of the region. This sequence provides thus the
boundary of the region. The sequential complexity of this
algorithm is linear in the total length of the borders of the
partition.

Fig. 2(a) represents a satellite image1 whose connected
components are encoded by a combinatorial pyramid. The
folding of this pyramid is represented in Fig 2(b) where each
pixel encodes the level of two darts. Each dart is encoded
on 12 bits in order to produce a 24 bits color image. The
border of the partition encoded on the top of the pyramid
are represented in Fig 2(c).

1Data provided by the institute of Surveying Remote Sensing and Land
Information, BOKU Vienna

(a) image (b) Folding (c) Borders

Fig. 2. Folding (b) of a combinatorial pyramid encoding
the connected components of image (a). The borders of the
partition are represented in (c).

5. CONCLUSION

A combinatorial pyramid can be folded into its base level
combinatorial map by two functions state() and level().
Using these functions and the local orientation of edges around
each vertex any reduced combinatorial map may be unfolded
directly from the base level. Our method stores in the base
level combinatorial map the relevance of each edge accord-
ing to a particular decimation process. This combination
of local and global information in the same representation
should improve the performances of matching algorithms
applied to images or to the skeleton of shapes.
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