
Technical Report Pattern Recognition and Image Processing Group
Institute of Computer Aided Automation
Vienna University of Technology
Favoritenstr. 9/1832
A-1040 Vienna AUSTRIA
Phone: +43 (1) 58801-18351
Fax: +43 (1) 58801-18392
E-mail: luc.brun@univ-reims.fr,

krw@prip.tuwien.ac.at

URL: http://www.prip.tuwien.ac.at/

PRIP-TR-82 July 8, 2003

Labeled Pyramids with Combinatorial Maps

Luc Brun and Walter Kropatsch1

Abstract

Combinatorial Pyramids are defined as a stack of successively reduced combinatorial maps.
The Pyramid construction plan defined in TR-63 [7] allows to describe a pyramid by two
functions level and state defined respectively on the set of darts of the initial combinatorial
map and the set of levels of the pyramid. These two functions encode respectively the
maximum level on which a dart survives and the type of each reduction operation. Based
on these functions any combinatorial map of the pyramid may be built from the base by
a one pass algorithm scanning all the darts of the initial combinatorial map [7]. In this
technical report we show that algorithms with a same sequential and parallel complexity
may be designed in order to build all the reduced combinatorial maps of the Pyramid.

1This Work was supported by the Austrian Science Foundation under P14445-
MAT.

Contents

1 Introduction 2

2 From successive to alternating kernels 8

3 Successors of the first dart of a connecting dart sequence 15

4 Successors relations within a connecting dart sequence 33

5 Sequential computation of the reduced combinatorial maps 57

6 Parallel Computation of the reduced combinatorial maps 63

7 Conclusion 66

8 Appendix 74
8.1 Proof of validity of Algorithm 1 74
8.2 Proof of validity of Algorithm 3 76

9 Index of Definitions and Notations 103

1

1 Introduction

Regular image pyramids have been introduced 1981/82 [12] as a stack of
images with decreasing resolutions. Since then, regular pyramids have been
widely used in image segmentation [12] and image analysis [24]. Using the
neighborhood relationships defined on each image the Reduction window re-
lates each pixel of the pyramid with a set of pixels defined in the level below.
The pixels belonging to one reduction window are the children of the pixel
which defines it. The value of each father is computed from the one of its
children using a Reduction function. A regular pyramid is thus defined by
the ratio N × N/q where N × N is the size of the reduction window, and q
the ratio between the size of two consecutive images in the pyramid.

The father-child relationship defined by the reduction window maybe ex-
tended by transitivity down to the base level image. The set of children
of one pixel in the base level is named its receptive field (RF) and defines
the embedding of this pixel on the original image. Using the father-child re-
lationship global properties of a receptive field RF (v) with a diameter m may
be computed in O(log(m)) parallel processing steps thanks to local calculus.
However, receptive fields defined within the regular pyramid framework are
not necessarily connected [1]. Furthermore, the adjacency of two pixels v and
w defined at level k may not be easily interpreted on the base level image.
This last drawback is illustrated in Fig. 1 where the initial 8 × 8 image is
reduced by a 2× 2/4 regular pyramid using the mean gray level as reduction
function. Each black pixel in the central region belongs to a 2× 2 reduction
window with 3 gray pixels. These pixels are thus mapped onto a gray father
and the black region which was disconnected at level 0 becomes connected
at level 1. Finally, the boundary between the receptive fields RF (v) and
RF (w) associated to this adjacency at level k may be disconnected and even
incomplete (see [1] for more details).

Irregular pyramids, first introduced by Meer, Montanvert and Jolion [22]
are defined as a stack of successively reduced simple graphs (i.e. graphs with-
out double edges nor self-loops). The base level graph may be built from a
sampling grid using one pixel adjacency such as the 4−neighborhood. Each
graph of the hierarchy is built from the graph below by selecting a set of ver-
tices named surviving vertices and mapping each non surviving vertex to a
surviving one [22]. This mapping induces a father-child relationship between
a surviving vertex and the set of non surviving vertices mapped to it. The
reduction window of one surviving vertex is then defined as its set of children.

2

2222
2222
22
22
22
22
2222
2222

(a) Initial Image

22
2
2
22

(b) level 1

2
2

(c) level 2

Figure 1: A 2 × 2/4 regular pyramid. The central black region is removed
from level 0 to 1 due to the fixed decimation ratio and the reduce size of
reduction windows.

The receptive field of one surviving vertex is defined by the transitive closure
of the father-child relationship. Using this reduction scheme, the receptive
field of each vertex in the hierarchy is a connected set of vertices in the
base level graph. However, using simple graphs, the adjacency between
two vertices is encoded by only one edge while the receptive fields of two ver-
tices may share several boundary segments. An edge in the hierarchy may
thus encode a non-connected set of boundaries between the associated recep-
tive fields. Moreover, the lack of self-loops in simple graphs does not allow
to differentiate an adjacency relationship between two receptive fields from
an inclusion relationship. These two drawbacks are illustrated in Fig. 2(b)
which represents the top of a simple graph pyramid encoding the connected
components of Fig. 2(a). The two boundaries between the white region (W)
and the black one on the right of the image (B1) are encoded by only one
edge. Moreover, the adjacencies between the gray region (G) and the two
black ones (B1 and B2) are encoded in the same way by a simple edge. There-
fore, these two different types of adjacency cannot be distinguished at the
top of a simple graph pyramid.

These last two drawbacks may be overcome by using the Dual graph pyra-
mids introduced by Kropatsch and Willersinn [26]. Using Kropatsch’s reduc-
tion scheme, the reduction operation is encoded by edge contractions [26].
This operation contracts one edge and its two end points into a single vertex.
It corresponds to the edge collapse operation used by Hoppe et al. [15] to
simplify triangular meshes. The contraction of a graph reduces the number

3

2222
2222
22
22
22
22
2222
2222

(a) Initial image

iW yG yB1

yB2

(b) Simple graph
pyramid

iW yG yB1yB2

irBg

(c) Dual graph
or combinatorial
pyramids

Figure 2: Encoding of the connected components of a 8 × 8 image (a) by a
simple graph pyramid (b) and the Dual Graph or Combinatorial Pyramids
(c). The vertex Bg in (c) encodes the background of the image.

of vertices while maintaining the connections to other vertices. As a conse-
quence some redundant edges such as self-loops or double edges may occur,
some encode relevant topological relations (e.g. an island in a lake) others
can be removed without any harm to the involved topology. These redundant
edges may be characterized in the dual of the contracted graph. The removal
of such edges is called a dual decimation step. Since the reduction scheme
requires both features of the initial graph and its dual, such pyramids are
called Dual graph pyramids. Within such hierarchies, each receptive field
is a connected set of vertices in the base level. Moreover, each edge
between two vertices encodes an unique connected boundary between the
associated receptive fields. Finally, the use of self-loops within the hierarchy
allows to differentiate adjacency relationships between receptive fields from
inclusion relations. These two properties are illustrated in Fig. 2(c) which
represents the top of a dual graph pyramid encoding the connected compo-
nents of Fig. 2(a). The inclusion of the central black region within the gray
one is encoded by the self-loop which surrounds the vertex B2 associated to
this region. Moreover, the two boundaries between the white region (W) and
the black one on the right of the image (B1) are encoded by two edges, each
edge being associated to one boundary.

Experiences with connected component analysis [20], universal segmen-
tation [18] and with topological analysis of line drawings [17, 19] show the

4

great potential of Dual graph pyramids. However, since decimation and dual
decimation require respectively features of the initial and dual graphs, both
graphs must be encoded and maintained [16]. Therefore, any contraction
operation in the initial graph must be followed by a removal operation in its
dual. In the same way, during the dual decimation stage, any removal in the
initial graph must be followed by a contraction operation in its dual. More-
over, the orientation of edges around one vertex is not explicitly encoded by
the data structure [6].

A combinatorial map [14, 25, 13, 10] may be seen as a planar graph
encoding explicitly the orientation of edges around a given vertex. Figure 3a)
demonstrates the derivation of a combinatorial map from a plane graph. First
edges are split into two half edges called darts, each dart having its origin at
the vertex it is attached to. The fact that two half-edges (darts) stem from the
same edge is recorded in the reverse permutation α. A second permutation
σ, called the successor permutation, defines the (local) arrangement of darts
around a vertex. Each orbit of σ is associated to one vertex and encodes the
set of darts encountered when turning counterclockwise around this vertex.
The symbols α∗(d) and σ∗(d) stand, respectively, for the α and σ orbits of
the dart d. For example, the upper-right vertex in Figure 3a) is associated
to the σ−orbit σ∗(1) = (1, 7). In the same way, the vertex located in the
first row and the second column of Figure 3a) is associated to the σ−orbit
σ∗(2) = (2,−1, 8). More generally, if d is a dart and π a permutation we will
denote the π-orbit of d by π∗(d).

w
w
w

w
w
w

w
w
w

1. -1/ 2. -2/

3. -3/ 4. -4/

5. -5/ 6. -6/

7
5

-74

10
5

-104

8
5

-8
4

11
5

-114

9
5

-94

12
5

-124 �� ��5

�� ��-10

�� ��3

�� ��-7�� ��10

�� ��1

�� ��7
�� ��-1�� ��8

�� ��2�� ��-8
�� ��-3�� ��11

�� ��4�� ��-11
�� ��-5�� ��6

�� ��-12

�� ��-6

�� ��12

�� ��-9

�� ��-4

�� ��9

�� ��-2

σ

σ

σ

σ σ

σ σ

σ σ

ϕ

ϕ

ϕ

ϕ

�� ��5

�� ��-10

�� ��3

�� ��-7�� ��10

�� ��1

�� ��7
�� ��-1�� ��8

�� ��2�� ��-8
�� ��-3�� ��11

�� ��4�� ��-11
�� ��-5�� ��6

�� ��-12

�� ��-6

�� ��12

�� ��-9

�� ��-4

�� ��9

�� ��-2� ���

� ���

��

?

? - -

6

6AAK���

���
HHj

AAU ���

��*
HHY

6

6

6
- - -

?

?

?���

- - -

��� ?

?

? 6

6

6
-

6
�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

a) b) c)

Figure 3: A 3 × 3 grid encoded by a combinatorial map

A combinatorial map G is the triplet G = (D, σ, α), where D is the set
of darts and σ, α are two permutations defined on D such that α is an

5

involution, e.g. satisfying

∀d ∈ D α2(d) = d

Note that, if the darts are encoded by positive and negative integers, the
involution α may be implicitly encoded by sign (Figure 3a)). This convention
is often used for practical implementations [3] where the combinatorial map
is simply implemented by an array of integers encoding the permutation σ.

Given a combinatorial map G = (D, σ, α), its dual is defined by G =
(D, ϕ, α) with ϕ = σ ◦ α. The orbits of the permutation ϕ encode the
set of darts encountered when turning around a face (see e.g. the ϕ-orbit
(1, 8,−3,−7) in Figure 3a)). Note that, using a counter-clockwise orientation
for permutation σ, each dart of a ϕ-orbit has its associated face on its right.

Figures 3b) and 3c) illustrate an alternative representation of the com-
binatorial map encoding. Within such a representation, each dart is repre-
sented by one vertex and one edge connects a dart d1 to d2 iff either d2 = σ(d1)
or d2 = ϕ(d1). Using this representation, the σ and ϕ orbits of the combina-
torial map are represented by the faces of the oriented graph. The α successor
of one dart may be retrieved on Figure 3c) by reading its σ-successor and then
taking the predecessor of the resulting dart by the permutation ϕ. Indeed,
since ϕ = σ ◦ α, we have α = ϕ−1 ◦ σ.

Using combinatorial maps, contraction and removal operations may be
defined in order to preserve the orientation of darts around each vertex [6].
Given these two basic operations decimation and dual decimation parameters
may be defined in order to produce a stack of successively reduced combina-
torial maps [8]. The expected advantages of combinatorial maps within the
irregular pyramid framework are:

1. Combinatorial maps encode multiple boundaries between regions. More-
over, edges encoding surrounding relationships may also be character-
ized.

2. Combinatorial maps explicitly encode the orientation of darts around
one vertex. This information is not encoded by region adjacency graphs
nor explicitly available in dual graph data structures.

3. Given a combinatorial map G defined by one set of darts D and the
permutations σ and α, its dual G is defined on the same set of darts by
the permutations ϕ = σ ◦α and α. The simplicity and the efficiency of

6

this transformation allows us to avoid an explicit encoding of the dual
graph [6]. Therefore, only one data structure has to be encoded and
maintained along the pyramid [8].

4. The combinatorial map formalism may be extended to higher dimen-
sions [21]. The definition of a partition of the 3D discrete grid using
combinatorial maps is an active research field [2].

Basic definitions and properties of Combinatorial maps used in this doc-
ument are defined in TR-54 [10]. This last technical report also defines the
notion of decimation parameters for combinatorial maps. Using decimation
parameters, each non surviving vertex has to be adjacent to a surviving one.
This constraint allows to map each vertex of the initial combinatorial map on
one processor and to perform the decimation process on a parallel machine
for real time image analysis. However this decimation process provides a slow
decimation rate. The contraction kernels, defined in TR-57 [11] extend the
notion of decimation parameter. A removal kernel encodes a set of removal
operations performed simultaneously and extends the notion of dual deci-
mation parameter. Such kernels provide a better control of the decimation
rate. If the pyramid is defined by one set of contraction kernels or one set
of removal kernels, the reduced combinatorial maps may be defined by walks
defined in the initial combinatorial map and named connecting walks [11].
Each connecting walk defined at level i of the pyramid, is defined by one
dart d which survives up to level i. We have shown [11], that if the pyramid
is defined by a sequence of contraction kernels, the ϕ successor of the last
dart of the connecting walk CWi(d) defined at level i by the dart d is equal to
the ϕ successor of d in the reduced combinatorial map. A similar result has
been shown for pyramids defined by a sequence of removal kernels. Therefore,
connecting walks allow us to determine all the reduced combinatorial maps of
the pyramids. However, this result holds only if all the kernels have the same
type e.g. either all kernels are contraction kernels or all kernels are removal
kernels. If the pyramid is defined by a sequence of contraction and removal
kernels connecting walks may be used to define a more general object named
connecting dart sequences. The notion of connecting dart sequence have been
introduced in TR-63 [7]. The essential property shown in TR-63, is that the
last dart of the connecting dart sequence defined at level i by a dart d in SDi

allows to retrieve either the ϕ or σ successor of d according to the type of the
kernel Ki. This property allows to retrieve all the contracted combinatorial
maps defining the pyramid. However, using algorithms proposed in TR-63

7

only the last dart of each connecting dart sequence is used to compute the
reduced combinatorial maps. In this technical report we show that all the
darts of the connecting dart sequences may be used to retrieve the reduced
combinatorial maps. The resulting algorithms have the same complexity as
the algorithms defined in TR-63. But while algorithms defined in TR-63
only compute the reduced combinatorial map defined at a given level i, the
proposed algorithms compute all the contracted combinatorial maps up to
level i.

The rest of this paper is organized as follows: In section 2 we show that
we can suppose without loss of generality that each kernel has a different
type than its predecessor. This technical property allows us to suppose that
each kernel have a different type than its predecessor during the construc-
tion of the pyramid. The following demonstrations are greatly simplified by
this assumption. In section 3 we provide theoretical results which allows to
determine all the successors of a given dart d surviving up to level i by one
scanning of its connecting dart sequence at level i. These results are general-
ized in section 4 where we determine all the successors of the darts belonging
to one connecting dart sequence in one scan of this sequence. These results
are then used in section 5 where we provide several algorithms which allows
to retrieve all the reduced combinatorial maps defined up to level i by one
scanning of the connecting dart sequences defined at this level.

2 From successive to alternating kernels

Connecting dart sequences are defined in TR-63 [7] (Definition 11) using a
recursive construction scheme. All the connecting dart sequences at level i
are defined from the connecting dart sequences at level i − 1. However, the
exact definition of one connecting dart sequence at level i is relative to the
respective types of Ki and Ki−1. More precisely, given a dart d in SDi:

• If Ki and Ki−1 have the same type:

CDSi(d) = CDSi−1(d1) · · ·CDSi−1(dp)

• If Ki and Ki−1 have different types:

CDSi(d) = d1 · CDS∗
i−1(α(d1)) · · ·dp · CDS∗

i−1(α(dp))
1

1The symbol CDS∗
i (d) denotes the connecting dart sequence CDSi(d) without its first

dart d (see TR-63 [7] for more details)

8

Where (d1, . . . , dp) is equal to the connecting walk CWi(d) of d defined at
level i.

The construction of connecting dart sequences is illustrated in Figure 5.
This Figure shows the connecting dart sequences defined at each level on the
3×3 grid illustrated in Figure 3. The sequence of kernels K1, K2, K3, K4 and
the resulting reduced combinatorial maps are illustrated in Figure 4. The se-
quence of kernel is composed of two contraction kernels K1 = α∗(1, 2, 7, 10, 12
, 6, 4) and K3 = α∗(3) and two removal kernels K2 = α∗(9, 8) and K4 = α∗(5)

Using the above definition of connecting dart sequences, the exact formu-
lation of the connecting dart sequences at level i from the connecting dart
sequences defined at a level k < i−1, depends on the different type of kernels
from k to i.

In this section, we show that this construction scheme may be simplified
by supposing, without loss of generality, that each kernel has a different type
than its predecessor. The basic idea of this new construction scheme is to
insert between each successive kernels with a same type, an empty kernel
having by convention a different type than the two surrounding ones. Note
that, the pyramid defined by this new sequence of kernels may be considered
as equivalent to the first one only if:

1. The sequence of reduced combinatorial map generated by the two se-
quence of kernels are the same.

2. The construction of the connecting dart sequences is not altered by the
insertion of the empty kernels.

Definition 1 Alternating sequence of kernels
Given an initial combinatorial map G0, a sequence of successive kernels

K1, . . . , Kn is alternated if n = 1 or if any two successive kernels do not have
the same type.

In oder to show that two sequences of kernels define the same pyramid
we first have to define precisely the notion of Equivalent sequence of kernels:

Definition 2 Equivalent sequence of kernels
Given an initial combinatorial map and two sequences of successive ker-

nels S = K1, . . . , Kn, and S ′ = K ′
1, . . . , K

′
p. The sequence S ′ is said to be

finer than S iff the sequence of reduced combinatorial maps G1, . . . , Gn defined

9

��
� �� �� �� �

���� � �	 	

��
 � �� �

���� � �� �

��

� ��

��

� ��

��

! ! ! !" " "

##
##

$$
$$

%%
%%

&&
&&

''
''

((
((

)*

+ +,
-.

/0

12

3 34 4

56

778
8

99:
:

; ;< <

=>

?@A A A A

BBC
C

DE
F FF FGG

HI

JK

LM

NO

PQ

R RS
T TU U

11

K2

1
= α∗(−12,−6,−4)

K1

1
= α∗(1, 2, 7, 10)

K1

K2

K3

K4

RK K1

2
= α∗(9, 8) G1 = (SD1, σ1, α)

CK K1

3
= α∗(3)

RK K1

4
= α∗(5)

G2 = (SD2, σ2, α)

G3 = (SD3, σ3, α)

G4 = (SD4, σ4, α)

G0 = (SD0 = D, σ0, α)

10

7

5

1

3

8

11

6

2

4

9

12

3

8

9

5

11

3
5

11

5

11

CK

Figure 4: Successive reductions of an initial 3×3 grid. Kernels with even indexes
denote contraction kernels (CK) while odd indexes denote removal kernels(RK).

10

�� �
5

�� �
-10

�� �
3

�� �
-7�� �
10

�� �
1

�� �
7
�� �
-1�� �
8

�� �
2�� �
-8
�� �
-3�� �
11

�� �
4�� �
-11
�� �
-5�� �
6

�� �
-12

�� �
-6

�� �
12

�� �
-9

�� �
-4

�� �
9

�� �
-2

& %
'$

' $
&%

��

?

?
- -

6

6A
AK�

��

���
HHj

A
AU �

��

��*
HHY

6

6

6

- - -

?

?

?
���

- - -

���
?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

�

�

�

�

�

�

�� �

�� �
 �� �
5

�� �
-10

�� �
3

�� �
-7�� �
10

�� �
1

�� �
7
�� �
-1�� �
8

�� �
2�� �
-8
�� �
-3�� �
11

�� �
4�� �
-11
�� �
-5�� �
6

�� �
-12

�� �
-6

�� �
12

�� �
-9

�� �
-4

�� �
9

�� �
-2

& %
'$

' $
&%

��

?

?
- -

6

6A
AK�

��

���
HHj

A
AU �

��

��*
HHY

6

6

6

- - -

?

?

?
���

- - -

���
?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

�
�

�
��

@
@@

�
�

�
��

@
@

�
�

�
�

��

@
@

@
@

@
@

@@

a) level 1 b) level 2

�� �
5

�� �
-10

�� �
3

�� �
-7�� �
10

�� �
1

�� �
7
�� �
-1�� �
8

�� �
2�� �
-8
�� �
-3�� �
11

�� �
4�� �
-11
�� �
-5�� �
6

�� �
-12

�� �
-6

�� �
12

�� �
-9

�� �
-4

�� �
9

�� �
-2

& %
'$

' $
&%

��

?

?
- -

6

6A
AK�

��

���
HHj

A
AU �

��

��*
HHY

6

6

6

- - -

?

?

?
���

- - -

���
?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

@@

�
�

�
�

�

�� �
5

�� �
-10

�� �
3

�� �
-7�� �
10

�� �
1

�� �
7
�� �
-1�� �
8

�� �
2�� �
-8
�� �
-3�� �
11

�� �
4�� �
-11
�� �
-5�� �
6

�� �
-12

�� �
-6

�� �
12

�� �
-9

�� �
-4

�� �
9

�� �
-2

& %
'$

' $
&%

��

?

?
- -

6

6A
AK�

��

���
HHj

A
AU �

��

��*
HHY

6

6

6

- - -

?

?

?
���

- - -

���
?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

@
@

@
@

�
�

��

�
�

�
�

�

c)level 3 d)level 4

Figure 5: Recursive definition of connection dart sequences

11

by S is included in the sequence of reduced combinatorial maps G′
1, . . . , G

′
p

defined by S ′.
The sequences S and S ′ are said equivalent if S is finer than S ′ and S ′ is

finer than S. In this case {G1, . . . , Gn} = {G′
1, . . . , G

′
p}.

Note that, this last relation between sequences of kernels is defined from
an inclusion relation between the sets of reduced combinatorial maps. There-
fore, given an initial combinatorial map G0 and a sequence of kernels S, such
that S produces the sequence of reduced combinatorial maps G1 . . . Gi . . . Gn.
A sequence of kernels S ′ producing the sequence of reduced combinatorial
maps (G1, . . . , Gi, Gi, . . . , Gn) is said to be finer than S.

The following propositions establish the expected result: The contraction
of a combinatorial map by an empty kernel produces an identical combina-
torial map.

Proposition 1 Given an empty contraction kernel K defined on a combi-
natorial map G = (D, σ, α), we have G/K = G.

Proof:
If K is empty, SD = D, and the restriction operator pD,SD (see TR-

54 [10] Lemma 1) is equal to the identity of D. Then, if G/K = (D, σ ′, α),
we have by definition of the contraction operation (see TR-54 definition 28):

∀d ∈ D σ′(d) = ϕ′ ◦ α(d) = ϕ ◦ pD,D ◦ α(d) = ϕ(α(d)) = σ(d)

The two permutations σ′ and σ are thus equal and G/K = G. 2

A same result may be obtained for removal kernels.

Theorem 1 Any sequence of kernels K1, . . . , Kn defined on an initial com-
binatorial map G0 is equivalent to an alternating sequence of kernels.

Proof:
From any sequence S = K1, . . . , Kn let us build a new sequence S ′ =

K ′
1, . . . , K

′
p such that an empty kernel is inserted between any two successive

kernels of S with a same type. The sequence S ′ is alternate by construction.
Moreover, using proposition 1 the two sequences are equivalent. 2

The above theorem shows that the same sequence of reduced combinato-
rial maps may be defined by a sequence of kernels and an equivalent alternat-
ing sequence. However, it remains to show that the definition of connecting

12

dart sequences remains consistent for empty kernels. Indeed, the set of re-
duced combinatorial maps defined by non-empty kernels remaining the same
for both sequence of kernels, the set of connecting dart sequences must satisfy
the same property.

Proposition 2 Given a generalized pyramid construction plan defined by an
alternating sequence of n kernels. If one kernel Ki with i ∈ {2, . . . , n− 1} is
empty then the connecting dart sequences at levels i − 1 and i + 1 are linked
by the following relationship:

CDSi+1(d) = CDSi−1(d)CDSi−1(d1) . . . CDSi−1(dp)

Where CWi+1(d) = dd1, . . . dp is the connecting walk of d defined at level
i + 1.

Proof:
Since Ki and Ki+1 have not the same type, we have for each dart d in

SDi+1:

CDSi+1(d) = dCDS∗
i (α(d))d1CDS∗

i (α(d1)) . . . dpCDS∗
i (α(dp))

Where CWi+1(d) = dd1, . . . dp is the connecting walk of d defined at level
i + 1.

Since Ki = ∅ by hypothesis, we have CWi(d
′) = d′ for each dart d′ ∈ SDi

by definition of connecting walks. Therefore (Figure 6):

∀d′ ∈ SDi CDSi(d) = d.CDS∗
i−1(α(d))

Or, and this is equivalent:

∀d′ ∈ SDi CDS∗
i (α(d)) = CDS∗

i−1(d)

Therefore, we obtain for each dart d in SDi+1:

CDSi+1(d) = dCDS∗
i (α(d))d1CDS∗

i (α(d1)) . . . dpCDS∗
i (α(dp))

= dCDS∗
i−1(d).d1CDS∗

i−1(d1) . . . dpCDS∗
i−1(dp)

= CDSi−1(d)CDSi−1(d1) . . . CDSi−1(dp)

Where CWi+1(d) = dd1, . . . dp is the connecting walk of d defined at level
i + 1. 2

13

�
�	5

�
�	-10

�
�	3

�
�	-7�
�	10

�
�	1

�
�	7
�
�	-1�
�	8

�
�	2�
�	-8
�
�	-3�
�	11

�
�	4�
�	-11
�
�	-5�
�	6

�
�	-12

�
�	-6

�
�	12

�
�	-9

�
�	-4

�
�	9

�
�	-2� �
��

� �
��

��

?

? - -

6

6AAK���

���
HHj

AAU ���

��*
HHY

6

6

6

- - -

?

?

?���

- - -

��� ?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

�

�
	

�

�
	

�
 �	
�
 �	 �
�	5

�
�	-10

�
�	3

�
�	-7�
�	10

�
�	1

�
�	7
�
�	-1�
�	8

�
�	2�
�	-8
�
�	-3�
�	11

�
�	4�
�	-11
�
�	-5�
�	6

�
�	-12

�
�	-6

�
�	12

�
�	-9

�
�	-4

�
�	9

�
�	-2� �
��

� �
��

��

?

? - -

6

6AAK���

���
HHj

AAU ���

��*
HHY

6

6

6

- - -

?

?

?���

- - -

��� ?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

�
�

�

@@ �
�

�

@@

@@

@
@@

@@
@@

�
�

��

��

a) level 1 b) empty kernel

Figure 6: Connecting dart sequences defined by an empty kernel

Note that, since each kernel has by hypothesis a different type than its
predecessor, two kernels indexed by i + 1 and i − 1 have the same type.
Proposition 2 shows that, when one kernel Ki is empty, the relationship which
links the connecting dart sequences at level i+1 and i− 1 is the same as the
one which relates the connecting dart sequences defined by two successive
kernels with the same type (see TR-63 definition 11). This proposition is
illustrated by Figure 6, which shows (Figure 6b)) the set of connecting dart
sequences defined by an empty kernel.

Therefore, given any sequence of successive kernels, the same sequence of
reduced combinatorial maps may be generated by an equivalent alternating
sequence of kernels. Moreover, the sequence of connecting dart sequences
associated to non-empty kernels is the same in both sequences of kernels.
Therefore, we can consider, without loss of generality, that all sequences of
kernels are alternating. The adjective alternating will thus be omitted in
the following sections. Under this general assumption the definition of a
connecting dart sequence is simplified as follows:

∀d ∈ D CDS0(d) = d

14

and

∀i ∈ {1, . . . , n}
∀d ∈ SDi

}

CDSi(d) = dCDS∗
i−1(α(d))d1CDS∗

i−1(α(d1)) . . . dpCDS∗
i−1(α(dp))

(1)

Where CWi(d) = dd1, . . . dp is the connecting walk of d defined at level i.

3 Successors of the first dart of a connecting

dart sequence

Let us consider the edge α∗(5) in Figures 4 and 5. The kernels K1 and K4

encoding contraction operations, the connecting walk associated to a dart d
belonging to SD1 or SD4 is defined as CWi(d) = d.ϕi−1(d) . . . , ϕn−1

i−1 (d) with
i ∈ {1, 4} and n = Min{k ∈ IN∗ | ϕk

i−1(d) ∈ SDi}. In the same way, the
kernel K2 being a removal kernel, the connecting walk of a dart d ∈ SD2 is
defined by CW2(d) = d.σ1(d) . . . σn−1

1 (d) with n = Min{k ∈ IN∗ | σk
1(d) ∈

SD2}. The edge α∗(5) being removed at level 4, the darts of this edge
define connecting dart sequences up to level 3. We have thus according to
equation 1:

CDS1(5) = 5ϕ0(5) . . . (2)

CDS2(−5) = −5CDS∗
1(5)σ1(−5). . . . and (3)

CDS3(5) = 5CDS∗
2(−5).ϕ2(5). . . . (4)

If we insert equations 2 and 3 into equation 4 we obtain:

CDS3(5) = 5ϕ0(5)ϕ1(5).ϕ2(5) (5)

where ϕ1(5) has been substituted to σ1(−5) in equation 3.
One traversal of CDS3(5) may thus allow us to retrieve the ϕ successors

of 5 from level 0 to level 2. Note that, the ϕ or σ successor of the last dart
of CDS3(5) must be equal to ϕ3(5) (TR-63, Proposition 17).

Using TR-63 Theorem 1 , we are able to traverse any connecting dart
sequence. However, the determination of the ϕi, i ∈ {0, 1, 2} successors of the
dart 5 may be achieved only if we are able to determine when we encounter

15

one of the ϕ successors of 5 within its connecting dart sequence at level 3.
We use to this end the Proposition 13 (TR-63) which shows that the first
dart of a connecting dart sequence defined at level i is the only one to survive
up to level i. Therefore, the dart σ1(−5) is removed at level 2 by definition
of connecting walks and has thus a level equal to 2 (TR-63, Proposition 23).
Conversely, all the darts within CDS1(5) have been contracted at level 1 and
have thus a level equal to 1. The dart σ1(−5) is thus the first dart of level 2
that we encounter when we traverse CDS2(−5). In the same way, ϕ2(5) is
the first dart with level 3 that we encounter when traversing CDS3(5). The
traversal of CDS3(5) begins thus with ϕ0(5) (TR-63, Proposition 12) and
after the traversal of a series of darts with level 1, the first encountered dart
with a level equal to 2 is equal to σ1(−5) = ϕ1(5). Then after, ϕ1(5), the
first encountered dart with a level greater than 3 is ϕ2(5).

6
level

4

5
b

1

6
b1

ϕ0(5)

1

−12
b2

2

−9
b3

ϕ1(5)

1

−4
b4

2

−8
b5

3

−3
b6

ϕ2(5)

1

−7
b7

1

1
b8

2

8
b9

1

2
b10

2

9
b11

1

−2
b12

1

−1
b13

1

7
b14

1

10
b15

4

5
b16

ϕ3(5)

Figure 7: The sequence of darts CDS3(5)ϕ3(5). The level of each dart is
indicated in its associated bar.

Figure 7 shows the sequence CDS3(5)ϕ3(5). The ϕ successors of 5 are
represented by dashed bars. We can note that each ϕ successor of level j is
the first dart of the sequence CDS∗(5)ϕ3(5) with a level greater than j.

A formal study of these results requires a precise description of the re-
lationships between the connecting dart sequences of one dart at different
levels. To this end we have to define the notions of sub word, prefix and
suffix within the connecting dart sequences framework:

Definition 3 Sub-word, Prefix, Suffix and Empty sequence
Given two sequences of darts S1 and S2, S1 is said to be a sub-word of S2

(S1 � S2) iff there exist two sequences S3 and S4 such that:

S2 = S3.S1.S4

16

The empty dart sequence is denoted by ε. If S3.S4 is non empty, S1 is said
to be a strict sub-word of S2. This relation is denoted: S1 � S2.

• If S3 is empty, S1 is said to be a prefix of S2 (S1 �pre S2). If S4 is non
empty, S1 is a strict prefix of S2. This relation is denoted: S1 ≺pre S2.

• If S4 is empty, S1 is said to be a suffix of S2 (S1 �suff S2). If S3 is
non empty, S1 is said to be a strict suffix of S2 (S1 ≺suff S2).

Remark 1 In the following the notions of sub-word, prefix and suffix (Def-
inition 3) will only be used for connecting dart sequences. However, since
these notions do not require any particular properties of connecting dart se-
quences we defined them on general sequences of dart.

Given a connecting dart sequence CDSi(d) defined at level i, the determina-
tion of the σ or ϕ successors of d at levels j < i is based on a determination
of the sequences CDSj(d) or CDSj(α(d)) included in CDSi(d). For ex-
ample, the determination of ϕ2(5) from CDS3(5) requires to determine the
relationship between CDS3(5) and CDS2(−5) (equation 4). The following
proposition states which connecting dart sequence (CDSj(d) or CDSj(α(d)))
is included in CDSi(d) according to the parity of i − j.

Proposition 3 Given a generalized pyramid construction plan defined by
n kernels, for each connecting dart sequence CDS i(d) defined by d at level
i < level(d), for each j ∈ {0, . . . , i}:

• If (i − j) mod 2 = 0, CDSj(d) �pre CDSi(d)

• If (i − j) mod 2 = 1, d.CDS∗
j(α(d)) �pre CDSi(d)

Proof:
Let us make a recurrence on j, the proposition is trivial if j = i. Let us

suppose it true for a given j. Since d is not contracted before level j, we can
consider the two following connecting walks:

{

CWj(d) = d.d1, . . . , dp

CWj(α(d)) = α(d).b1, . . . , bq

17

• If (i − j) mod 2 = 0, then we have by our recurrence hypothesis:
CDSj(d) �pre CDSi(d) and:

CDSj(d) = dCDS∗
j−1(α(d)).d1CDS∗

j−1(α(d1)) . . . dpCDS∗
j−1(α(dp))

Therefore:

dCDS∗
j−1(α(d)) �pre CDSj(d) �pre CDSi(d)

with (i − j − 1) mod 2 = 1.

• If (i − j) mod 2 = 1, then we have by our recurrence hypothesis:
dCDS∗

j(α(d)) �pre CDSi(d) and:

CDSj(α(d)) = α(d)CDS∗
j−1(d).b1CDS∗

j−1(α(b1)) . . . bqCDS∗
j−1(α(bp))

Thus:
CDSj−1(d) �pre dCDS∗

j(α(d)) �pre CDSi(d),

with (i − j − 1) mod 2 = 0.

2

The above proposition may be illustrated using once again the connecting
dart sequence CDS3(5). Indeed, we have :

CDS3(5) = 5.6. − 12. − 9. − 4. − 8. − 3. − 7.1.8.2.9. − 2. − 1.7.10
5.CDS∗

2(−5) = 5.6. − 12. − 9. − 4. − 8
CDS1(5) = 5.6. − 12

Corollary 1 Given a pyramid construction plan defined by n kernels, and a
dart d in SDi such that CDS∗

i (d) = ε, then:

∀j ∈ {1, . . . , i}

{

CDS∗
j(d) = ε If (i − j) mod 2 = 0

CDS∗
j(α(d)) = ε If (i − j) mod 2 = 1

Proof:
Let us consider a given j ∈ {1, . . . , i}.
If (i − j) mod 2=0, we have by proposition 3: CDSj(d) �pre CDSi(d).

Therefore, if CDS∗
i (d) = ε, CDSi(d) = d and CDSj(d) must be equal to d.

Thus CDS∗
j(d) = ε.

If (i − j) mod 2=1, we have by proposition 3: dCDS∗
j(α(d)) �pre CDSi(d).

Then, if CDSi(d) = d, CDS∗
j(α(d)) must be empty. 2

18

Using the example displayed in Figure 5, we have CDS3(11) = ε (Fig-
ure 5(c)). Therefore, using the above corollary we have CDS2(−11) = ε
(Figure 5(b)) and CDS1(11) = ε (Figure 5(a)).

The examples of equations 2 to 5 show that the first dart with a level
greater than j in CDSi(d) with j < i is a promising tool for finding the ϕ
or σ successor of d at level j. In the following we will often have to search
for such darts. However, we first have to define on which conditions such
darts exist. The following definition set the maximum level which may be
encountered in a given non empty connecting dart sequence.

Definition 4 MaxLevel function
Given a pyramid construction plan defined by n kernels, the MaxLevel

function Li maps each dart d ∈ SDi with CDS∗
i (d) 6= ε to the greatest level

contained in CDS∗
i (d).

Li(d) = max
d′∈CDS∗

i (d)

{level(d′)}

Remark 2 Note that, if Li(d) is defined for a given i ≤ n and d ∈ SDi+1,
then Li+1(α(d)) is also defined. Indeed, using corollary 1, if CDS∗

i (d) is non
empty, CDS∗

i+1(α(d)) is also non empty.

The maximum level encountered in CDS3(5) being equal to 3 we have
L3(5) = 3. In the same way, we have CDS2(5) = 5.−10 with level(−10) = 1
(Figure 5) thus L2(5) = 1. The maxlevel function Li seems thus to be
bounded by i. The following proposition confirms this result:

Proposition 4 Given a pyramid construction plan defined by n kernels, the
MaxLevel function Li satisfies the following properties:

1. For each i in {1, . . . , n}, Li is bounded by i.

∀i ∈ {1, . . . , n}, ∀d ∈ SDi | CDS∗
i (d) 6= ε Li(d) ≤ i

2. For each i in {1, . . . , n − 1}, and for each dart d in SDi+1, such that
CDS∗

i (d) 6= ε, Li(d) is less than Li+1(α(d)):

∀i ∈ {1, . . . , n− 1}, ∀d ∈ SDi+1 | CDS∗
i (d) 6= ε Li(d) ≤ Li+1(α(d))

19

Proof:
The first property, is a direct consequence of TR-63 [7] proposition 13.

Indeed, we have:

∀i ∈ {1, . . . , n} ∀d ∈ SDi CDS∗
i (d) ⊂

i
⋃

j=0

Kj

Therefore, using TR-63 proposition 23:

∀d′ ∈ CDS∗
i (d), level(d′) ≤ i ⇒ Li(d) ≤ i

Given a level i in {1, . . . , n − 1}, and a dart d in SDi+1, we have by propo-
sition 3:

CDS∗
i (d) �pre CDS∗

i+1(α(d)) ⇒ Li(d) ≤ Li+1(α(d))

2

Given a pyramid construction plan defined on an initial combinatorial
map G0 = (D, σ, α) by a sequence of kernels K1, . . . , Kn, the set of connecting
dart sequences forms a partition of D at each level i ∈ {1, . . . , n}(see TR-
63 proposition 18). Since the set of surviving darts decreases from levels
to levels, the mean size of connecting dart sequences defined at each level
increases. However, the growing of each connecting dart sequence is not
uniform and some of them may remain unchanged for several levels. In the
following we show that such connecting dart sequences may be characterized
by Li(d) < i. We also study the properties of these connecting dart sequences.

Proposition 5 Given a pyramid construction plan defined by n kernels, for
each connecting dart sequence CDSi(d) 6= d defined by d at level i < level(d),
if Li(d) < i the following property holds:

∀j ∈ {Li(d) + 1, . . . , i}

{

CDS∗
j(d) = CDS∗

j−1(α(d)) If (i − j) mod 2=0
CDS∗

j(α(d)) = CDS∗
j−1(d) If (i − j) mod 2=1

Proof:
Let us consider a given j in {Li(d) + 1, . . . , i}.

• If (i − j) mod 2=0, CDSj(d) �pre CDSi(d) (Proposition 3). More-
over:

CDSj(d) = dCDS∗
j−1(α(d))d1CDS∗

j−1(α(d1)) . . . dpCDS∗
j−1(α(dp))

20

With CWj(d) = dd1, . . . dp.

Since level(d1) = j ∈ {Li(d) + 1, . . . , i}, the maximum level inside
CDS∗

j(d) �pre CDSi(d) do not exceed Li(d) only if p = 0. Therefore
CDSj(d) = dCDS∗

j−1(α(d)) and:

CDS∗
j(d) = CDS∗

j−1(α(d))

• If (i − j) mod 2=1, we have: dCDS∗
j(α(d)) �pre CDSi(d) (Proposi-

tion 3). Moreover:

CDSj(α(d)) = α(d)CDS∗
j−1(d)b1CDS∗

j−1(α(b1)) . . . bqCDS∗
j−1(α(bq))

With CWj(α(d)) = db1, . . . bq.

As previously, the two properties CDS∗
j(α(d)) �pre CDSi(d) and j >

Li(d) may be simultaneously true only if q = 0, we thus obtain:

CDS∗
j(α(d)) = CDS∗

j−1(d)

2

Given one dart d ∈ SDi such that Li(d) < i, Proposition 5 shows that for j ∈
{Li(d), . . . , i} the growth of CDSj(d) and CDSj(α(d)) must be alternatively
blocked according to the parity of i − j in order to produce the connecting
dart sequence CDSi(d) whose max level does not exceed Li(d). In other
words, these connecting dart sequences have reached a “plateau”. The first
property of Corollary 2 uses this result to show that for j ∈ {Li(d), . . . , i},
the connecting dart sequences CDS∗

j (d) with (i-j) even and CDS∗
j (α(d)) with

(i-j) odd must be equal to CDS∗
i (d). This result is thus another formulation

of the fact that the growth of the connecting dart sequences between levels
Li(d) and i must be blocked until level i. The second property of Corollary 2
uses this last formulation in conjunction with TR-63, proposition 17 to show
that either the ϕ of σ successor of the dart d should remain the same from
level Li(d) to level i.

Corollary 2 Given a pyramid construction plan defined by n kernels, for
each connecting dart sequence CDSi(d) 6= (d) defined by d at level i <
level(d) the following properties hold:

1. Plateau of connecting dart sequences.

∀j ∈ {Li(d), . . . , i}

{

CDS∗
j(d) = CDS∗

i (d) If (i − j) mod 2=0
CDS∗

j(α(d)) = CDS∗
i (d) If (i − j) mod 2=1

21

2. Shrinkage blocking for Li(d) < i.

The ϕ or σ successors remain unchanged at each level j in {Li(d), . . . , i}
according to the type of Ki.

∀j ∈ {Li(d), . . . , i}

{

ϕj(d) = ϕi(d) If Ki is a contraction kernel
σj(d) = σi(d) If Ki is a removal kernel

Proof:
Note that if Li(d) = i the above properties are trivial. Let us thus suppose

that Li(d) < i. The first property may be easily deduced by iterating the
equalities defined in proposition 5. Let us now consider j ∈ {Li(d), . . . , i}
such that (i − j) mod 2= 0, then Ki and Kj have the same type, using TR-63
proposition 17,

• If Ki (and Kj) is a contraction kernel:

ϕi(d) = ϕj(d) =

{

ϕ(d′) If d′ is contracted
σ(d′) If d′ is removed

where d′ denotes the last dart of CDSi(d) = CDSj(d).

• In the same way, if Ki is a removal kernel, we obtain we the same
notations:

σi(d) = σj(d) =

{

ϕ(d′) If d′ is contracted
σ(d′) If d′ is removed

If (i − j) mod 2=1, Ki and Kj have different types, thus using TR-63-proposition 17:

• If Ki is a contraction kernel, Kj is a removal kernel and:

ϕi(d) = σj(α(d)) = ϕj(d) =

{

ϕ(d′) If d′ is contracted
σ(d′) If d′ is removed

where d′ is the last dart of CDSi(d) = d.CDS∗
j(α(d)).

• If Ki is a removal kernel, we obtain with the same notations:

σi(d) = ϕj(α(d)) = σj(d) =

{

ϕ(d′) If d′ is contracted
σ(d′) If d′ is removed

22

2

The second point of Corollary 2 provides an intuitive explanation of the
“plateau’ phenomenon states in the first property of the same corollary. In-
deed, in such a case (Li(d) < i), CDSj(d) and CDSj(α(d)) are alternatively
blocked by either ϕi(d) or σi(d). These darts are reduced after level i and
can’t thus belong to a connecting walk before this level. In other words, the
connecting dart sequences “want” to pass by one of these dart but they can
do so only after level(d) and are thus blocked until this level.

Remark 3 If the first property of Corollary 2 holds, Li(d) is equal to Lj(d)
if (i − j) mod 2 = 0 and Lj(α(d)) if (i − j) mod 2 = 1. In both cases we
obtain Li(d) ≤ j < i. The implication of Proposition 5 is thus an equivalence.

Moreover, note that, the second property of Corollary 2, is equivalent to:

∀k ∈ {Li(d)+1, . . . , i+1}

{

ϕk−1(d) = ϕi(d) If Ki is a contraction kernel
σk−1(d) = σi(d) If Ki is a removal kernel

with k = j + 1.
This last notation will be used in the following.

The MaxLevel function Li(d) allows us to encode the maximum level
which may be encountered in the connecting dart sequence CDS∗

i (d). There-
fore, if Li(d) is defined we can ensure, for any j ≤ Li(d) that at least one
dart with a level greater or equal to j belongs to CDS∗

i (d). The use of this
function already allows us to retrieve the successors of a given dart for all
levels inside {Li(d), . . . , i} (see corollary 2). In order to retrieve the succes-
sors at the other levels (i.e. in {0, . . . , Li(d) − 1}), we need to define more
precisely the first dart with a level greater than j ≤ Li(d) encountered when
traversing CDS∗

i (d):

Definition 5 IndexLevel function
Given a pyramid construction plan defined by n kernels, a level i in

{1, . . . , n}, and one dart d in SDi, the connecting dart sequence of which
is still empty at level i, the index-level function li,d maps each level j ∈
{1, . . . , Li(d)} to the index of the first dart in CDSi(d) with a level greater
or equal to j:

li,d

(

{1, . . . , Li(d)} → IN∗

j 7→ min{k ∈ {1, . . . , p} | level(dk) ≥ j}

with CDSi(d) = d.d1 . . . dp, p > 0.

23

�� �
5

�� �
−101

�� �
33

�� �
−71�� �
101

�� �
11

�� �
71

�� �
−11�� �
82

�� �
21�� �
−82

�� �
−33�� �
11

�� �
41�� �
−11

�� �
−5�� �
61

�� �
−121

�� �
−61

�� �
121

�� �
−92

�� �
−41

�� �
92

�� �
−21

& %
'$

' $
&%

��

?

?
- -

6

6A
AK�

��

���
HHj

A
AU �

��

��*
HHY

6

6

6

- - -

?

?

?
���

- - -

���
?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

@@

�
�

�
�

�

Figure 8: Connecting dart sequences at level 3. The index of each non
surviving dart shows its level.

Figure 8 shows the third level of the pyramid displayed in Figure 5. The
level of each non surviving dart is presented on this figure as an index (see
also Figure 7). The greatest level encountered in CDS∗

3(−11) = 4.12. − 6 is
1. We have thus L3(−11) = 1. In the same way, the dart −3 with a level
3 belongs to CDS3(5). Since L3(5) ≤ 3 (Proposition 4) we have L3(5) = 3.
The first darts with a level greater or equal to 1, 2 and 3 encountered when
traversing CDS3(5) are respectively 6(level 1),−9(level 2) and −3(level 3).
The indices of these darts in CDS3(5) being respectively 1, 3 and 6 (Figure 7
and 9) we have:

l3,5(1) = 1, l3,5(2) = 3, l3,5(3) = 6

Note that using Figure 7, we observe (see also Figure 4) that:

ϕ0(5) = bl3,5(1) = b1 = 6
ϕ1(5) = bl3,5(2) = b3 = −9
ϕ2(5) = bl3,5(3) = b6 = −3.

The remaining of this section provides an exhaustive proof of this observation.
Using equation 1 the connecting dart sequence at level i+1 of α(d) ∈ SDi

24

6
level

4

5
b

1

6
b1

l3,5(1)

1

−12
b2

2

−9
b3

l3,5(2)

1

−4
b4

2

−8
b5

3

−3
b6

l3,5(3)

1

−7
b7

1

1
b8

2

8
b9

1

2
b10

2

9
b11

1

−2
b12

1

−1
b13

1

7
b14

1

10
b15

Figure 9: The index levels of the dart 5 at level 3 superimposed to CDS3(5).
The level of each dart is indicated in its associated bar.

is defined by:
CDSi+1(α(d)) = α(d)CDS∗

i (d) . . . (6)

Let d′ be the first dart with a level greater than j encountered when
traversing CDS∗

i (d). Using equation 6 this dart is also the first dart with a
level greater than j encountered when traversing CDS∗

i (α(d)). The following
proposition confirms this result:

Proposition 6 Given a pyramid construction plan defined by n kernels, the
index-level function satisfies the following property:

∀i ∈ {1, . . . , n − 1}
∀d ∈ SDi+1 | CDS∗

i (d) 6= ε

}

∀j ∈ {1, . . . , Li(d)} li,d(j) = li+1,α(d)(j)

Proof:
First note, that the condition CDS∗

i (d) 6= ε insures that Li(d) and
Li+1(α(d)) are well defined. Using proposition 4, Li(d) ≤ Li+1(α(d)). There-
fore, li+1,α(d)(j) is well defined for all j ∈ {1, . . . , Li(d)}. Moreover, using
proposition 3, CDS∗

i (d) is a prefix of CDS∗
i+1(α(d)). Therefore, dli,d(j) is

the first dart with a level greater or equal to j encountered when traversing
CDS∗

i+1(α(d)) and its index is the same in CDSi(d) and CDSi+1(α(d)). We
have thus li,d(j) = li+1,α(d)(j). 2

This last proposition is illustrated in Figure 10 which represents the con-
necting dart sequences of −3 and α(−3) respectively at levels 1 and 2. The
greatest level encountered in CDS∗

1(−3) being equal to 1 we have L1(−3) = 1.
Proposition 6 can thus be applied only on the index l1,−3(1). Since CDS∗

1(−3)
is a prefix of CDS2(3) we have as stated by Proposition 6: l2,3(1) = l1,−3(1).

We have shown in Proposition 15 (TR-63) that if a connecting dart se-
quence satisfies CDSi(d) = d we have either ϕi(d) = ϕ(d) or σi(d) = σ(d)

25

CDS1(−3)

6
level

3

−3
b

1

−7
b1

l1,−3(1)

1

1
b2

CDS2(3)

6
level

3

3
b

1

−7
b1

l2,3(1)

1

1
b2

2

8
b3

l2,3(2)

1

2
b4

2

9
b5

2

−2
b6

1

−1
b7

1

7
b8

1

10
b9

Figure 10: The connecting dart sequences CDS1(−3) and CDS2(3). As
mentioned in Proposition 6 we have l1,−3(1) = l2,3(1)

according to the type of Ki. On the other hand, we have shown in Corol-
lary 1 of this report that if CDSi(d) = d, we have for all j ∈ {1, . . . , i} either
CDSj(d) = d or CDSj(α(d)) = α(d). The following theorem combines these
two results:

Theorem 2 Given a pyramid construction plan defined by n kernels, for
each connecting dart sequence CDSi(d) = (d) defined by d at level i <
level(d):

• If Ki is a contraction kernel:

∀j ∈ {0, . . . , i} ϕj(d) = ϕ(d)

• If Ki is a removal kernel:

∀j ∈ {0, . . . , i} σj(d) = σ(d)

Proof:
Let us suppose that Ki is a contraction kernel. Given a dart d ∈ SDi

such that CDSi(d) = d and a level j in {0, . . . , i}:

• If (i − j) mod 2=0, Kj is a contraction kernel and we have by Corol-
lary 1: CDSj(d) = d. Therefore, using TR-63 proposition 15:

ϕj(d) = ϕ(d)

26

• If (i − j) mod 2=1, Kj is a removal kernel and CDSj(α(d)) = α(d)
(see Corollary 1). Therefore, using TR-63 proposition 15:

σj(α(d)) = ϕj(d) = σ(α(d)) = ϕ(d)

In the same way, if Ki is a removal kernel:

• If (i − j) mod 2=0, Kj is a removal kernel and CDSj(d) = d. There-
fore, using TR-63 proposition 15:

σj(d) = σ(d)

• If (i − j) mod 2=1, Kj is a contraction kernel and CDSj(α(d)) = α(d).
Therefore:

ϕj(α(d)) = σj(d) = ϕ(α(d)) = σ(d)

2

Using the example displayed in Figure 4, we have CDS3(11) = 11 (Fig-
ure 5) with K3 being a contraction kernel. Using Theorem 2 we obtain
(Figure 4):

ϕ1(11) = ϕ2(11) = ϕ3(11) = ϕ(11) = −5

Note that, if Ki is a contraction kernel, CDSi(d) = d only if ϕ(d) has a
level greater than i. For example, CDS3(11) is reduced to 11 due to the dart
−5 whose level is equal to 3. Therefore, this theorem establishes one quite
natural result: If one dart d and its ϕ-successor ϕ(d) are not reduced until
level i, the ϕ successor of d remains unchanged until this level.

In the more general case (CDSi(d) 6= (d)), the following theorem allows
us to retrieve the successors of a dart d ∈ SDi for all levels which are not
covered by corollary 2:

Theorem 3 Given a pyramid construction plan defined by n kernels, for
each connecting dart sequence CDSi(d) 6= (d) defined by d at level i <
level(d):

∀j ∈ {1, . . . , Li(d)}

{

ϕj−1(d) = dli,d(j) If Ki is a contraction kernel
σj−1(d) = dli,d(j) If Ki is a removal kernel

27

Proof:
Let us show this proposition by a recurrence on i. If i = 1 and CDS1(d) 6=

(d), L1(d) = 1 and CDS1(d) may be written as:

CDS1(d) = d.d1, . . . , dp with p > 0

By definition of connecting dart sequence, we must have level(d1) = 1, there-
fore l1,d(1) = 1, and (TR-63-Proposition 16):

• d1 = ϕ0(d) If K1 is a contraction kernel.

• d1 = σ0(d) If K1 is a removal kernel.

The property is thus true at rank 1. Let us suppose it is true for all darts
defined at level i − 1 ∈ {0, . . . , n − 1}. Given a dart d in SDi such that
CDS∗

i (d) 6= ε:

CDSi(d) = d.d1. . . . dp

CDSi(d) = d.CDS∗
i−1(α(d))b1CDS∗

i−1(α(b1)) . . . bqCDS∗
i−1(α(bq))

with CWi(d) = d.b1 . . . , bq.
If CDS∗

i−1(α(d)) = ε, since CDS∗
i (d) 6= ε we must have q > 0 and b1 = d1.

Since b1 is contracted at level i we have level(b1) = i and thus Li(d) = i.
Moreover, by definition of the function li,d:

∀j ∈ {1, . . . , i} li,d(j) = 1

Using the definition of connecting walks b1 is equal to:

• ϕi−1(d) if Ki is a contraction kernel and,

• σi−1(d) is Ki is a removal kernel.

Since Ki and Ki−1 have not the same type, Theorem 2 applied on CDS i−1(α(d))
provides the following equations:

• If Ki is a contraction kernel, Ki−1 is a removal kernel and:

∀l ∈ {0, . . . , i − 1}σl(α(d)) = ϕl(d) = σi−1(α(d)) = ϕi−1(d) = b1

• If Ki is a removal kernel, Ki−1 is a contraction kernel and:

∀l ∈ {0, . . . , i − 1}ϕl(α(d)) = σl(d) = ϕi−1(α(d)) = σi−1(d) = b1

28

Using j = l + 1 and the fact that li,d(j) is equal to 1 for all j, we obtain the
expected result:

∀j ∈ {1, . . . , Li(d)}

{

ϕj−1(d) = dli,d(j) If Ki is a contraction kernel
σj−1(d) = dli,d(j) If Ki is a removal kernel

If CDS∗
i−1(α(d)) 6= ε, using propositions 4 and 6 Li(d) ≥ Li−1(α(d)),

and:
∀j ∈ {1, . . . , Li−1(α(d))} li−1,α(d)(j) = li,d(j)

Using our recurrence hypothesis on CDSi−1(α(d)):

∀j ∈ {1, . . . , Li−1(α(d))}















If Ki−1 is a removal kernel:
σj−1(α(d)) = dli−1,α(d)(j) = dli,d(j)

If Ki−1 is a contraction kernel:
ϕj−1(α(d)) = dli−1,α(d)(j) = dli,d(j)

Since Ki and Ki−1 have not the same type, we obtain:

∀j ∈ {1, . . . , Li−1(α(d))}















If Ki is a contraction kernel
ϕj−1(d) = dli,d(j)

If Ki is a removal kernel
σj−1(d) = dli,d(j)

(7)

If q = 0, we have CDSi(d) = d.CDSi−1(α(d)) and thus Li(d) = Li−1(α(d)).
In this case, nothing remains to be demonstrated at level i for the dart d.

If q 6= 0, let us consider k such that b1 = dk. We have by definition of a
connecting walk level(dk) = i thus Li(d) = i. Moreover, using proposition 4,
Li−1(α(d)) ≤ i − 1, therefore li,d(i) = k.

• If Li−1(α(d)) = i − 1, we have only to show that equation 7 remains
valid for j = Li(d) = i. Using the definition of a connecting walk:

{

ϕi−1(d) = dk If Ki is a contraction kernel
σi−1(d) = dk If Ki is a removal kernel

with k = li,d(i). Thus, using equation 7:

∀j ∈ {1, . . . , Li(d)}

{

ϕj−1(d) = dli,d(j) If Ki is a contraction kernel
σj−1(d) = dli,d(j) If Ki is a removal kernel

29

• If Li−1(α(d)) < i − 1. Then, by definition of function Li, all the darts
of CDSi−1(α(d)) have a level less than Li−1(α(d)). Moreover, since:

CDS∗
i (d) = CDS∗

i−1(α(d))b1CDS∗
i−1(α(b1)) . . . bqCDS∗

i−1(α(bq))

dk = b1 is the first dart of CDS∗
i (d) with a level strictly greater than

Li−1(α(d)). We have thus:

∀j ∈ {Li−1(α(d)) + 1, . . . , i} li,d(j) = k (8)

Since Li−1(α(d)) < i−1, using Corollary 2 and remark 3 with CDSi−1(α(d))
we obtain:

∀j ∈ {Li−1(α(d))+1, . . . , i}















If Ki−1 is a removal kernel
σj−1(α(d)) = σi−1(α(d)) = dk

If Ki−1 is a contraction kernel
ϕj−1(α(d)) = ϕi−1(α(d)) = dk

Since Ki and Ki−1 have not the same type, using equation 8, the above
equation may be written as:

∀j ∈ {Li−1(α(d)) + 1, . . . , i}















If Ki is a contraction kernel
ϕj−1(d) = dk = dli,d(j)

If Ki is a removal kernel
σj−1(d) = dk = dli,d(j)

Since Li(d) = i, the above equation, combined with equation 7 provides
the expected result:

∀j ∈ {1, . . . , Li(d)}















If Ki is a contraction kernel
ϕj−1(d) = dli,d(j)

If Ki is a dual contraction kernel
σj−1(d) = dli,d(j)

2

Note that Theorem 3 is consistent with TR-63 Proposition 16 which states
that the second dart of a connecting dart sequence CDS i(d) is equal to ϕ0(d)
if Ki is a contraction kernel and σ0(d) if Ki is a removal kernel. Indeed, since
each dart has a level greater or equal to 1, we have li,d(1) = 1 for each dart
d and level i such that CDSi(d) 6= (d). In this case using Theorem 3, we

30

�� �
54

�� �
−101

�� �
33

�� �
−71�� �
101

�� �
11

�� �
71

�� �
−11�� �
82

�� �
21�� �
−82

�� �
−33�� �
115

�� �
41�� �
−115

�� �
−54�� �
61

�� �
−121

�� �
−61

�� �
121

�� �
−92

�� �
−41

�� �
92

�� �
−21

& %
'$

' $
&%

��

?

?
- -

6

6A
AK�

��

���
HHj

A
AU �

��

��*
HHY

6

6

6

- - -

?

?

?
���

- - -

���
?

?

? 6

6

6

-

6

�

?

σ σ σ

σ σ σ

σ σ σ

ϕ ϕ

ϕ ϕ

@
@

@
@

�
�

��

�
�

�
�

�

Figure 11: Successors of the surviving darts

obtain ϕ0(d) = d1 if Ki is a contraction kernel and σ0(d) = d1 if Ki is a
removal kernel with CDSi(d) = d1 . . . , dp.

Figure 11 presents the two connecting dart sequences defined at level 4
by the sequence of kernels described in Section 2(Figure 5). Each dart of this
figure is indexed by its level. An unfolded representation of these sequence
is provided by Figure 12.

On this example, the dart −5 with a level 4 follows immediately −11
in CDS4(−11) (see also Figure 12(a)). We have thus L4(−11) = 4 and
l4,−11(1) = l4,−11(2) = l4,−11(3) = l4,−11(4) = 1. Since K4 is a removal kernel,
we have according to Theorem 3 (see also Figure 4):

σ0(−11) = σ1(−11) = σ2(−11) = σ3(−11) = −5

The successor of −11 at level 4 is provided by TR-63 Proposition 17. Since
the last dart of CDS4(−11) is 3 which is contracted before level 4 we have:

σ4(−11) = ϕ(3) = 11

In the same way, all darts of CDS∗
4(11) have a level equal to 1. We have thus

L4(11) = 1 and σ0(11) is equal to the first dart of CDS4(11): 4. Moreover,
using TR-63 Proposition 17, we have σ4(11) = ϕ(−6) = −11. Then, using

31

6
level

5

−11
b

4

−5
b1

σ0(−11), σ1(−11), σ2(−11), σ3(−11)

1

6
b2

1

−12
b3

2

−9
b4

1

−4
b5

2

−8
b6

3

−3
b7

1

−7
b8

1

1
b9

2

8
b10

1

2
b11

2

9
b12

1

−2
b13

1

−1
b14

1

7
b15

1

10
b16

4

5
b17

1

−10
b18

3

3
b19

5

11
b20

σ4(11)

(a) CDS4(−11)σ4(−11)

6
level

5

11
b

1

4
b1

σ0(11)
1

12
b2

1

−6
b3

5

−11
b4

σ1(11), σ2(11), σ3(11), σ4(11)

(b) CDS4(11)σ4(11)

Figure 12: The sequence of darts CDS4(−11)σ4(−11) and CDS4(11)σ4(11).
The level of each dart is indicated in its associated bar.

Corollary 2:
σ1(11) = σ2(11) = σ3(11) = σ4(11) = −11

32

4 Successors relations within a connecting dart

sequence

Given a generalized pyramid construction plan defined by n kernels and a
level i ∈ {1, . . . , n}, the conjoint use of theorems 3 and corollary 2 allows us
to compute the σ successors of all the darts in SDi for all levels in {1, . . . , i}.
However, for each level j < i the σ successors of the darts contained in the
sets SDj − SDi remain to be computed.

For example, the connecting dart sequences of −11 and 11 at level 4
allow us to compute the σ successors of 11 and −11 from level 0 to level 4
(Figures 11 and 12). However, if we wish to compute the combinatorial map
defined at level 2, we have to compute the σ successors at level 2 of the darts
SD2 = α∗(5, 3, 11) (Figure 4). The σ successors of 5,−5, 3 and −3 remain
thus to be computed. Let us study the construction of the pyramid defined
by Figure 4 from level 2 to level 4. We have (TR-63 Tables 4 and 5):

CW3(5) = 5. − 3 (9)

CDS3(5) = 5.CDS∗
2(−5). − 3.CDS∗

2(3) (10)

CW4(−11) = −11. − 5.5 (11)

CDS4(−11) = −11.CDS∗
3(11). − 5.CDS∗

3(5).5.CDS∗
3(−5) (12)

We obtain by combining equations 10 and 12:

CDS4(−11) = −11.CDS∗
3(11). −5.CDS∗

2(−5). − 3.CDS∗
2(3) .5.CDS∗

3(−5)

The successors of −5 and 3 from level 0 to 2 may thus be determined
(by Theorems 3 and corollary 2) from CDS4(−11) if we are able to retrieve
CDS∗

2(−5) and CDS∗
2(3) from CDS4(−11). One first step toward this result

consists to determine the dart at level i whose connecting dart sequence
contains a given non surviving dart d. Such a dart is denoted di. We have
for example, 54 = −34 = −11 (equation 12) and −33 = 5 (equation 10).
Note that, using TR-63-propositions 18 and 19, the set of connecting dart
sequences forms a partition of D at each level i in {1, . . . , n}. Therefore,
any dart d in D may be associated to an unique dart di ∈ SDi such that
d ∈ CDSi(d

i). In the following we will determine the σ or ϕ successors of d
within CDSi(d

i).

33

Proposition 7 Given a pyramid construction plan defined by n kernels and
an initial combinatorial map G0 = (D, σ0, α). Given a dart d ∈ D, the
sequence of darts di such that d ∈ CDSi(d

i) satisfies:

• d belongs to its own connecting dart sequence until it is contracted or
removed:

∀i ∈ {0, . . . , l − 1} di = d

with l = level(d).

Note that if d is not contracted nor removed until level n, we have
l = n + 1. Therefore, in this case the above equation becomes:

∀i ∈ {0, . . . , n} di = d

• If d belongs to one Kl, the sequence dl, . . . , dn satisfies:

d ∈ CWl(d
l) and d.CDS∗

l−1(α(d)) � CDS∗
l (d

l)

Moreover,

∀i ∈ {l + 1, . . . , n}

{

α(di−1) ∈ CWi(d
i) and

d ∈ CDS∗
i−1(d

i−1) � CDS∗
i (d

i)

where CWi(d
i) denotes the connecting walk of di defined at level i.

Proof:
The first property is a direct consequence of the definition of connecting

dart sequences. Let us now suppose that d is contracted or removed at level
l and let us consider dl ∈ SDl such that d ∈ CWl(d

l). The dart dl is fully
determined by this relation since each dart in SDl−1 belongs to exactly one
connecting walk defined at level l. Moreover, by definition of connecting dart
sequences :

CDSl(d
l) = d1CDS∗

l−1(α(d1)), · · ·dCDS∗
l−1(α(d)) · · · , dpCDS∗

l−1(α(dp))

with CWl(d
l) = d1, . . . , d, . . . , dp.

We have thus d ∈ CDSl(d
l). Moreover, since d is contracted at level l it

can’t be the first dart of CDSl(d
l), therefore d 6= d1 and:

d.CDS∗
l−1(α(d)) � CDS∗

l (d
l)

34

Let us now consider dl+1 such that α(dl) ∈ CWl+1(d
l+1). Like previously,

dl+1 is fully determined by this relation. Using the definition of connecting
dart sequences:

CDSl+1(d
l+1) = b1CDS∗

l (α(b1)), · · ·α(dl)CDS∗
l (d

l) · · · , bpCDS∗
l (α(bp))

with CWl+1(d
l+1) = b1, . . . , α(dl), . . . , bp. Therefore:

d ∈ CDS∗
l (d

l) � CDS∗
l+1(d

l+1) ⇒ d ∈ CDS∗
l+1(d

l+1)

The property is thus true at level l. Let us suppose it true at a given
level i and let us consider di+1 such that α(di) ∈ CWi+1(d

i+1). We have by
definition of connecting dart sequences:

α(di)CDS∗
i (d

i) � CDSi+1(d
i+1) ⇒ CDS∗

i (d
i) � CDS∗

i+1(d
i+1)

Since by our recurrence hypothesis, d ∈ CDS∗
i (d

i), d belongs to CDS∗
i+1(d

i+1).
2

Remark 4 With the same hypothesis as proposition 7, if d ∈ Kl, using the
transitivity of the sub-word relation:

∀i ∈ {l, . . . , n} d.CDS∗
l−1(α(d)) � CDS∗

i (d
i)

Note that this last equation implies that:

∀i ∈ {l, . . . , n} CDS∗
i (d

i) 6= ∅

CDS1(9): 9 -4
CDS2(3): 3 -7 1 8 2 9 -2 -1 7 10
CDS3(5): 5 6 -12 -9 -4 -8 -3 -7 1 8 2 9 -2 -1 7 10

Table 1: Connecting dart sequences containing the dart 9 from level 1 to
level 3. The sequence 9.CDS∗

1(−9) is surrounded.

Table 1 shows the different connecting dart sequences containing the dart
9 from level 1 to 3 (Figure 5). The dart 9 is removed at the level l = 2
and 9CDS∗

1(−9) = 9. − 2. − 1.7.10 (surrounded sequence in Table 1). We
have from Table 1: 92 = 3 and 93 = 5. As stated by Proposition 7 and
Remark 4, the sequence 9.CDS1(−9) is a sub word of the sequences CDS2(3)
and CDS3(5). We can note that on this example that 9.CDS1(−9) is a suffix
of CDS2(3), CDS3(5). This last configuration being particularly interesting
in the following we define it precisely:

35

Definition 6 Set Jd

Given a pyramid construction plan defined by n kernels and an initial
combinatorial map G0 = (D, σ0, α). Given a dart d ∈ D with level l, the set
Jd is the subset of levels included in {l, . . . , n} such that dCDS∗

l−1(α(d)) is a
suffix of CDS∗

i (d
i):

Jd = {i ∈ {l, . . . , n} | dCDS∗
l−1(α(d)) �suff CDS∗

i (d
i)}

Corollary 3 Using the same hypothesis and notations as Definition 6, the
set Jd is equal to Id′ ∩ {l, . . . , n} (see TR-63 proposition 21) where d′ is the
last dart of dCDS∗

l−1(α(d)). Moreover, the set Jd is either empty or is a
contiguous interval of {l, . . . , n} including l.

Proof:
If i ∈ Jd, we have i ≥ l and d′ is the last dart of CDSi(d

i). Consequently
i ∈ Id′ and Jd ⊂ Id′ ∩ {l, . . . , n}.

Conversely, dCDS∗
l−1(α(d)) is a sub-word of CDS∗

i (d
i) for each i in

{l, . . . , n}:

∀i ∈ {l, . . . , n}, ∃S1
i , S

2
i | CDS∗

i (d
i) = S1

i dCDS∗
l−1(α(d))S2

i

Therefore, d′ belongs to CDSi(d
i) for each i ∈ {l, . . . , n}.

If i ∈ Id′ ∩ {l, . . . , n}, since d′ ∈ dCDS∗
l−1(α(d)) � CDS∗

i (d
i) and each

dart appears at most once in each connecting dart sequence defined at level
i (TR-63-Proposition 19), d′ does not belong to S2

i . The dart d′ being by
hypothesis the last one of CDSi(d

i), the sequence S2
i must thus be empty.

The sequence dCDS∗
l−1(α(d)) is thus a strict suffix of CDS∗

i (d
i) and we have:

Id′ ∩ {l, . . . , n} ⊂ Jd =⇒ Id′ ∩ {l, . . . , n} = Jd

If Id′∩{l, . . . , n} is empty Jd is empty. Otherwise, using TR-63-Proposition 21,
Id′ = {level(d′), . . . , m} where m is the upper bound of Id′ . Note that, since
d′ ∈ CDSl−1(α(d)) we have level(d′) < l. Therefore, the intersection be-
tween Id′ and {l, . . . , n} is non-empty only if m is greater than l. We have
then:

Jd = Id′ ∩ {l, . . . , n} = {level(d′), . . . , m} ∩ {l, . . . , n} = {l, . . . , m}

The set Jd is thus a non empty interval of {l, . . . , n} including l. 2

36

Using Table 1, the dart 9 is removed at level 2 and 9CDS∗
1(−9) (sur-

rounded sequence in Table 1) is a suffix of CDS2(3) and CDS3(5). Note
that 94 = −11 (Figure 5) and 9CDS∗

1(−9) is not a suffix of CDS4(−11).
Consequently the set J9 is equal to {2, 3}. Since I10 = {1, 2, 3}, we obtain
by using corollary 3:

J9 = I10 ∩ {l, . . . , n} = {1, 2, 3} ∩ {2, 3, 4} = {2, 3}

Note that since CDS∗
1(−9) ⊂ K1, 9 is the last dart with a level 2 in CDS2(3)

and CDS3(5).
Conversely, the sequence 8CDS1(−8) = 8.2 is not a suffix of CDS2(8

2 =
3) (Table 1 or Figure 5). We have in this case J8 = ∅. In this case, the set
I2 = {1} has an empty intersection with {l, . . . , n} = {2, 3, 4}.

Proposition 8 Given a Pyramid construction plan defined by n kernels, a
dart d ∈ Kl and a level i ∈ Id we have:

∀j ∈ {0, . . . , l − 1}































If d is contracted

ϕj(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

If d is removed

σj(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

Proof:
Since (Remark 4):

∀i ∈ {l, . . . , n} d.CDS∗
l−1(α(d)) � CDS∗

i (d
i)

The dart d, is the last dart of CDSi(d
i), only if CDS∗

l−1(α(d)) = ∅. Then,
using Theorem 2 on CDS∗

l−1(α(d)):

∀j ∈ {0, . . . , l − 1}















If Kl−1 is a removal kernel
σj(α(d)) = σ(α(d))

If Kl−1 is a contraction kernel
ϕj(α(d)) = ϕ(α(d))

Since Kl and Kl−1 have not the same type, and d is contracted or removed
at level l, the above equation may be written as:

∀j ∈ {0, . . . , l − 1}















If d is contracted
ϕj(d) = ϕ(d)

If d is removed
σj(d) = σ(d)

37

Then, using TR63-proposition 17 [7]:

∀j ∈ {0, . . . , l−1}































If d is contracted

ϕj(d) = ϕ(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

If d is removed

σj(d) = σ(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

2

Note that, this last proposition allows us to retrieve all the successors of
the last dart of a connecting dart sequence. Using the example displayed in
Figure 11, the dart 3, contracted at level 3 is the last dart of CDS3(−11).
Using Proposition 8 we have:

ϕ0(3) = ϕ1(3) = ϕ2(3) = ϕ3(−11) = 11

Proposition 9 Given a dart d ∈ Kl, the series (dj)j∈Jd
, satisfy the following

properties:

1. The set Jd is nonempty iff d is the last dart of CWl(d
l).

2. If Jd is nonempty, then for each j in Jd such that j + 1 ∈ Jd, α(dj) is
the last dart of CWj+1(d

j+1)

Proof:

1. Equivalence between Jd nonempty and d last dart of CWl(d
l):

Since d ∈ CWl(d
l)(Proposition 7) it exists two sequences of darts S1

and S2 such that:

CDSl(d
l) = S1.d.CDS∗

l−1(α(d))S2

If Jd is nonempty, it contains at least l (Corollary 3). Therefore S2

must be empty by definition of Jd. If d is not the last dart of CWl(d
l),

it exists at least one dart in S2 which is refused by hypothesis.

Conversely, if d is the last dart of CWl(d
l), S2 is empty by definition

of connecting dart sequences. Therefore, l ∈ Jd which is not empty.

38

2. Jd nonempty implies that if {j, j + 1} ⊂ Jd, α(dj) is the last dart of
CWj+1(d

j+1)

Given a level j in Jd such that j + 1 ∈ Jd, we have:

CDSj+1(d
j+1) = d1CDS∗

j(α(d1)) · · ·α(dj)CDS∗
j(d

j) · · ·dpCDS∗
j(α(dp))

with α(dj) ∈ CWj+1(d
j+1) = d1, . . . , α(dj) . . . , dp(Proposition 7).

Since j ∈ Jd, the sequence dCDS∗
l−1(α(d)) is a suffix of CDS∗

j(d
j).

Therefore, j+1 belongs to Jd only if CDS∗
j(d

j) is a suffix of CDSj+1(d
j+1).

This last relation holds only if α(dj) is the last dart of CWj+1(d
j+1).

2

Considering the dart 9 in Figure 5, we have 92 = 3, 93 = 5 and:

{

CW2(3) = 3.8.9
CW3(5) = 5. − 3

The dart 9 is thus the last dart of CW2(9
2) while α(92) = −3 is the last dart

of CW3(9
3).

Note that we have according to the definition of connecting walks: σ2(3) =
σ1(9) = 5 and ϕ3(5) = ϕ2(−3) = σ2(3) = σ1(9) = 5. The following corollary
generalizes this observation:

Corollary 4 With the same hypothesis as Proposition 9, given a dart d ∈ Kl

with l < n:

∀i ∈ Jd































If d is contracted

ϕl−1(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

If d is removed

σl−1(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

Proof:
Since d is the last dart of CWl(d

l) (Proposition 9), we have by definition
of a connecting walk (TR-54, Definition 21):

• If Kl is a contraction kernel ϕl(d
l) = ϕl−1(d)

39

• If Kl is a removal kernel σl(d
l) = σl−1(d)

Since d is either contracted or removed according to Kl, the proposition is
true at rank l. Let us suppose it true for a given i in Jd such that i +1 ∈ Jd.
Since α(di) is the last dart of CWi+1(d

i+1):

• If Ki+1 is a contraction kernel, Ki is a removal kernel and:

ϕi+1(d
i+1) = ϕi(α(di)) = σi(d

i)

• If Ki+1 is a removal kernel, Ki is a contraction kernel and:

σi+1(d
i+1) = σi(α(di)) = ϕi(d

i)

Let us now decompose the demonstration according to the type of Kl.

• If Kl is a contraction kernel, d is contracted and:

– If Ki+1 is a contraction kernel, Ki is a removal kernel. Moreover
according to our recursive hypothesis:

ϕi+1(d
i+1) = σi(d

i) = ϕl−1(d)

– If Ki+1 is a removal kernel:

σi+1(d
i+1) = ϕi(d

i) = ϕl−1(d)

• If Kl is a removal kernel, d is removed at level l and:

– If Ki+1 is a contraction kernel:

σi+1(d
i+1) = ϕi(d

i) = σl−1(d)

– If Ki+1 is a contraction kernel:

ϕi+1(d
i+1) = σi(d

i) = σl−1(d)

2

Using the example displayed in Figure 5, the dart 9 is removed at level
2 and J9 = {2, 3} (see page 36). Moreover, we have 92 = 3 and 93 = 5.
Using TR-63, Proposition 17, σ1(9) = ϕ1(−9) is equal to the ϕ0 successor of

40

the last dart of CDS1(−9) which is equal to 5(Figure 5a)). Since K2 is a
removal kernel and K3 a contraction one, we obtain by Corollary 4 (see also
Figure 4):

σ1(9) = σ2(3) = ϕ3(5) = 5

Note that σ2(3) and ϕ3(5) may also be obtained from CDS2(3) and CDS3(5)
by using TR-63, Proposition 17. The major interest of Corollary 4 is that
it allows us to retrieve the σl−1 or ϕl−1 successor of one dart d such that Jd

is non empty by using the connecting dart sequences defined at the current
level. In the above example, the value of σ1(9) may be retrieve by using the
connecting dart sequences defined at level 2 or 3.

The following corollary extends this result to the successors of a dart d
from level Ll−1(α(d)) to level l = level(d):

Corollary 5 Given a dart d in Kl, with l < n, if CDS∗
l−1(α(d)) 6= ε:

∀ i ∈ Jd

∀ j ∈ {Ll−1(α(d)), . . . , l − 1}

}































If d is contracted

ϕj(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

If d is removed

σj(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

(13)

Proof:
If Jd is empty the demonstration is trivial. Otherwise, using Corollary 2

on CDSl−1(α(d)):

∀j ∈ {Ll−1(α(d)), . . . , l − 1}















If Kl−1 is a removal kernel:
σj(α(d)) = σl−1(α(d))

If Kl−1 is a contraction kernel:
ϕj(α(d)) = ϕl−1(α(d))

Since Kl−1 and Kl have not the same type and d ∈ Kl:

∀j ∈ {Ll−1(α(d)), . . . , l − 1}















If d is contracted
ϕj(d) = ϕl−1(d)

If d is removed
σj(d) = σl−1(d)

41

Using the above equation and Corollary 4, for each (i, j) in Jd×{Ll−1(α(d)), . . . , l−
1}:

If d is contracted

ϕj(d) = ϕl−1(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

If d is removed

σj(d) = σl−1(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

2

Corollary 5 may thus be considered as an extension of Corollary 4. Indeed,
under an additional hypothesis (CDS∗

l−1(α(d)) 6= ε), this corollary allows to
retrieve additional ϕ or σ successors of one dart d such that dCDS∗

l−1(α(d))
is a suffix of some CDSi(d

i) with i ≥ l .
In the following we will study more carefully the sequence of darts en-

countered in a connecting dart sequence after a given dart. However, we have
first to define in which case such a sequence exists.

Definition 7 Set for successors
Given a pyramid construction plan defined by n kernels and a dart d ∈ D,

the set DSd is the set of levels in {1, . . . , n} such that d is neither the last
nor the only dart of CDSi(d

i):

DSd = {i ∈ {1, . . . , n} | ∃S1, S2, CDSi(d
i) = S1dS2 with S2 6= ε}

Remark 5 Note that given a dart d contracted or removed at level l < n,
we have:

DSd = {i ∈ {1, . . . , l − 1} | CDS∗
i (d) 6= ε} ∪ ({l, . . . , n} − Id)

Since Id is a contiguous interval of {l, . . . , n} including l:

DSd ∩ {l, . . . , n} = {m, . . . , n}

where m−1 is equal to l−1 if Id is empty and the upper bound of Id otherwise.

Proposition 10 Given a pyramid construction plan defined by n kernels, a
dart d ∈ D and a level i < l ∈ DSd. The sets DSd and DSα(d) include the
following sets:

{j ∈ {i, . . . , l − 1} | (j − i) mod 2 = 0} ⊂ DSd

{j ∈ {i, . . . , l − 1} | (j − i) mod 2 = 1} ⊂ DSα(d)

with l = level(d)

42

Proof:
Since i < l, i ∈ DSd iff CDSi(d) 6= (d)(Remark 5). Using Proposition 3:

∀j ∈ {i, . . . , l − 1}

{

CDSi(d) �pre CDSj(d) if (j − i) mod 2 = 0
CDS∗

i (d) �pre CDS∗
j(α(d)) if (j − i) mod 2 = 1

Therefore, if (j − i) mod 2 = 0, CDS∗
i (d) is not empty and is a prefix of

CDS∗
j(d) which is thus non-empty. Therefore j ∈ DSd. If (j − i) mod 2 = 1,

since CDS∗
i (d) is non empty CDS∗

j(α(d)) is non empty and j ∈ DSα(d). 2

Remark 6 Proposition 10 states only necessary conditions. Therefore, using
the same hypothesis and notations, we may have j ∈ DSd with i < level(d)
while (j − i) mod 2 = 1.

Our analysis of the sequence of darts which follows a given dart d in
CDSi(d

i) is mainly based on the level of each dart following d in CDSi(d
i).

The study of this sequence of darts requires to define the range of levels
encountered after d in CDSi(d

i) and the index of the first dart with a level
greater than a given value encountered after d in CDSi(d

i).

Definition 8 Index, Max-level and successor functions
Given a pyramid construction plan defined by n kernels:

• The index of a dart d at level i: Indi(d) is equal to its index in the
connecting dart sequence CDS i(d

i) which contains it at level i.

• For each dart d ∈ D, for each i ∈ DSd, L i(d) is defined as the mini-
mum between level(d) and the greater level of the darts which follow d
in CDS∗

i (d
i):

L i(d) = min(level(d), max
k∈{Indi(d)+1,...,p}

{level(dk)}) (14)

with CDSi(d
i) = d1, . . . , dp.

• The j − successor of a dart d at level i ∈ DSd: succi,d(j) with j ∈
{1, . . . ,L i(d)} is the index of the first dart which follows d in CDS i(d

i)
with a level greater than j.

∀d ∈ D

∀i ∈ DSd

∀j ∈ {1, . . . ,L i(d)}







succi,d(j) = min{k ∈ {Indi(d) + 1, . . . , p} | level(dk) ≥ j} (15)

with CDSi(d
i) = d1, . . . , dp.

43

6
level

5

−11
b

4

−5
b1

1

6
b2

1

−12
b3

2

−9
b4

1

−4
b5

2

−8
b6

3

−3
b7

1

−7
b8

succ4,−3(1)

?
1

1
b9

2

8
b10

succ4,−3(2)

?

1

2
b11

2

9
b12

1

−2
b13

1

−1
b14

1

7
b15

1

10
b16

4

5
b17

succ4,−3(3)

?

1

−10
b18

3

3
b19

Considered dart
j-successors

Figure 13: The connecting dart sequence CDS4(−11) with the j-successors
of the dart −3 at levels 1, 2 and 3. The level of each dart is indicated in its
associated bar.

Using example displayed in Figure 13, the dart −3 with level 3 belongs
to CDS4(−11). The index of −3 in CDS4(−11) is equal to 7. The maximal
level encountered after −3 is the one of the dart 5 and is equal to 4. We have
thus: L 4(−3) = min(3, 4) = 3. The first darts encountered after −3 with a
level greater than 1, 2 and 3 are respectively −7, 8 and 5. The indexes of these
darts are respectively equal to: 8, 10 and 17. We finally obtain (Figure 13):

Ind4(−3) = 7, L 4(−3) = 3 and
succ4,−3(1) = 8, succ4,−3(2) = 10, succ4,−3(3) = 17

Note that the function succi,d is not bijective. For example using the dart 5
in Figure 13 we obtain:

Ind4(5) = 17, L 4(5) = 3 and
succ4,5(1) = 18, succ4,5(2) = 19, succ4,5(3) = 19

The function L i may be considered as an extension of the MaxLevel
function Li (Definition 4). Indeed, both functions provide the maximum
level which may be encountered in a connecting dart sequence after a given
dart (Proposition 11). In the same way, the function succi,d may be con-
sidered as an extension of the function li,d (Definition 5). The following
proposition formalize the relations between functions Li and L i and extends
some properties of the function Li(Proposition 4) to L i.

44

Proposition 11 Given a pyramid construction plan defined by n kernels,
and a dart d in D with a level l:

1. The functions Li(d) and L i(d) are equal for each i in {1, . . . , l − 1} ∩ DSd.

∀i ∈ {1, . . . , l − 1} ∩ DSd L i(d) = Li(d)

2. If l < n:

∀i ∈ {1, . . . , l − 1} ∩ DSα(d) L i(α(d)) ≤ L i+1(d)
∀i ∈ {l, . . . , n − 1} ∩ DSd L i(d) ≤ L i+1(d)

3. If l < n for each level i in {l, . . . , n − 1} ∩ DSd, each dart indexed by
succi,d(k) in CDSi(d

i) with k ∈ {1, . . . ,L i(d)}, is indexed by succj,d(k)
in CDSj(d

j) for each j greater than i.

∀i ∈ {l, . . . , n − 1} ∩ DSd

∀j ∈ {i, . . . , n}
∀k ∈ {1, . . . ,L i(d)}







dsucci,d(k) = bsuccj,d(k)

with:

{

CDSi(d
i) = d1, . . . , dp

CDSj(d
i+1) = b1, . . . , bq

Proof:

1. If i ≤ l − 1, we have di = d and Indi(d) = 0, with CDSi(d) = d =
d0, d1, . . . , dp. Therefore, if p > 0:

max
k∈{Indi(d)+1,...,p}

{level(dk)} = max
k∈{1,...,p}

{level(dk)} = Li(d)

Moreover, in this case Li(d) ≤ i < l (see proposition 4), thus L i(d) =
Li(d).

2. First note that according to Proposition 10, if i < l − 1 belongs to
DSα(d) then i + 1 ∈ DSd. Therefore, if L i(α(d)) with i < l − 1 is
defined L i+1(d) is also defined.

In the same way, since {l, . . . , n−1}∩DSd may be written as {m, . . . , n−
1} (Remark 5), if L i(d) is defined, i ∈ {m, . . . , n − 1}. Therefore,
i + 1 ∈ {m + 1, . . . , n} ⊂ DSd and L i+1(d) is also defined.

45

Using Proposition 4:

∀i ∈ {1, . . . , l − 2} ∩ DSα(d) Li(α(d)) ≤ Li+1(d)

Moreover, if l − 1 ∈ DSα(d), we must have CDS∗
l−1(α(d)) 6= ε. Using

Proposition 7:

d ∈ dCDS∗
l−1(α(d)) � CDS∗

l (d
l) ⇒ Ll−1(α(d)) ≤ L l(d)

Since L i(d) = Li(d) for each i in {1, . . . , l − 1}, we obtain:

∀i ∈ {1, . . . , l − 1} ∩ DSα(d) L i(α(d)) ≤ L i+1(d)

Let us now suppose that l < n, using Proposition 7:

∀i ∈ {m, . . . , n − 1} d ∈ CDS∗
i (d

i) � CDS∗
i+1(d

i+1)

where m is the lower bound of {l, . . . , n − 1} ∩ DSd.

Therefore, given the sequences of dart S1, S2, S ′
1, and S ′

2 such that:

CDS∗
i+1(d

i+1) = S1CDS∗
i (d

i)S2

CDS∗
i (d

i) = S ′
1dS ′

2

L i(d) = min(l, max
d′∈S′

2

{level(d′)}) ≤ min(l, max
d′∈S′

2S2

{level(d′)}) = L i+1(d)

Note that, since i ∈ DSd, S ′
2 6= ∅. We obtain thus:

∀i ∈ {1, . . . , l − 1} L i(α(d)) ≤ L i+1(d)
∀i ∈ {m, . . . , n − 1} L i(d) ≤ L i+1(d)

3. Using Proposition 7 and the transitivity of the sub word relation we
have for each i ∈ DSd ∩ {l, . . . , n} and for each j ≥ i:

CDS∗
i (d

i) � CDS∗
j(d

j)

Since L i(d) is defined, at level i, the function succi,d is also defined (Re-
mark 6). Given a level j greater than i and an index k in {1, . . . ,L i(d)}
we can consider the sequences of darts S1, S2, S ′

1 and S ′
2 such that:

CDS∗
j(d

j) = S1CDS∗
i (d

i)S2

CDS∗
i (d

i) = S ′
1d.d′ . . . dsucci,d(k)S

′
2

46

We obtain:

CDS∗
j(d

j) = S1S
′
1d.d′ . . . dsucci,d(k)S

′
2S2

= b1, . . . , bq

With level(dsucci,d(k)) ≥ k and:

∀b ∈ {d′, . . . , dsucci,d(k)−1} level(b) < k

Therefore, dsucci,d(k) is the first dart with a level greater than k encoun-
tered when traversing CDS∗

j(d
j) starting from d. Thus bsuccj,d(k) =

dsucci,d(k) and:

∀j ∈ {i, . . . , n} ∀k ∈ {1, . . . ,L i(d)} dsucci,d(k) = bsuccj,d(k)

2

The third point of the above proposition only shows that given a level k
and a dart d, if succi,d(k) exists for some level i, dsucci,d(k) will remain the
same in all connecting dart sequences defined at level j ≥ i although its index
may vary.

Proposition 11 establishes some relations between functions Li and L i. In
the same way, Proposition 12 formalizes some relations between the functions
li,d(Definition 5) and succi,d.

Proposition 12 Given a pyramid construction plan defined by n kernels,
and a dart d in D the function succi,d satisfies the following properties:

∀i ∈ {1, . . . , l − 1} ∩ DSd

∀j ∈ {1, . . . , Li(d)}

}

succi,d(j) = li,d(j)

If CDS∗
l−1(α(d)) 6= ε:

∀i ∈ {l, . . . , n},
∀j ∈ {1, . . . , Ll−1(α(d))}

}

dsucci,d(j) = dll−1,α(d)(j)

with l = level(d). Note that if d does not belong to any kernel, l = n + 1 and
thus the set {l, . . . , n} is empty.

Proof:
If i < l, since d ∈ DSd, CDSi(d) 6= ε and the functions li,d and succi,d

are both defined. Moreover, since d is not yet contracted nor removed at

47

level i, Indi(d) = 1 and L i(d) = Li(d) (Proposition 11). Thus the research
of the first dart with a level greater than j ∈ {1, . . . , Li(d)} is performed on
CDS∗

i (d). This last calculus corresponds to the computation of li,d(j):

∀i ∈ {1, . . . , l − 1}, ∀j ∈ {1, . . . , Li(d)} succi,d(j) = li,d(j)

Let us now suppose that d is contracted or removed at level l. Since the
sequence CDS∗

l−1(α(d)) is not empty, Ll−1(α(d)) is defined. We can thus
consider an index j in {1, . . . , Ll−1(α(d))}. By definition of the function
ll−1,α(d), dll−1,α(d)(j) 6= α(d). Therefore, using Remark 4:

∀i ∈ {l, . . . , n} d . . . dll−1,α(d)(j) � d.CDS∗
l−1(α(d)) � CDS∗

i (d
i)

Therefore, for each i in {l, . . . , n}, dll−1,α(d)(j) is the first dart with a level

greater than j encountered when traversing CDSi(d
i) starting from d. There-

fore:
∀i ∈ {l, . . . , n},
∀j ∈ {1, . . . , Ll−1(α(d))}

}

dsucci,d(j) = dll−1,α(d)(j)

2

Given one dart d such that Jd is non empty, and one level i ∈ Jd,
dCDS∗

l−1(α(d)) is a suffix of CDSi(d
i)(Definition 6). This last property

should have an influence on the value of L i(d). The following proposition
formalizes the relations between Jd and L i(d).

Proposition 13 Given a pyramid construction plan defined by n kernels, a
dart d in Kl and a level i ∈ DSd ∩ {l, . . . , n}. If CDS∗

l−1(α(d)) 6= ∅ the
following propositions are equivalent:

1. i ∈ Jd

2. L i(d) = Ll−1(α(d))

3. L i(d) < l

Proof:

(1)⇒(2): If i ∈ Jd, it exists a sequence S of darts such that: CDS i(d
i) =

S.d.CDS∗
l−1(α(d)). Thus:

L i(d) = Max
d′∈CDS∗

l−1(α(d))
{level(d′)} = Ll−1(α(d))

48

(2)⇒(3): Since Ll−1(α(d)) ≤ l− 1 (Proposition 4) the implication is trivial.

(3)⇒(1): If Jd is empty, d is not the last dart of CWl(d
l) (Proposition 9).

Thus it exists one dart d′ such that CWl(d
l) = . . . d.d′ . . . with level(d′) =

l. Moreover, by definition of connecting dart sequences:

CDSl(d
l) = · · · .d.CDS∗

l−1(α(d))d′ · · ·

Therefore L l(d) = l ≤ L i(d)(Proposition 11). This last result being
refused by hypothesis we have Jd 6= ∅. Let us denote by m the upper
bound of Jd. The set Jd being an interval we have Jd = {l, . . . , m}. If
m is strictly lower than i it exists one dart d′′ such that:

CDSm+1(d
m+1) = · · · , dCDS∗

l−1(α(d))d′′ · · ·

with level(d′′) = m.

Then: L m+1(d) = l ≤ L i(d) which is again refused by hypothesis.
Therefore we must have i ≤ m and thus i ∈ Jd.

2

Remark 7 Note that using proposition 13, Ll−1(α(d)) may be replaced by
L i(d) in Corollary 5.

The two following theorems use the results already obtained to retrieve
the successors of a dart d from the darts which follow it in a connecting
dart sequence. In order to not overload the demonstration this result has
been split into two theorems according to the value of CDS∗

l−1(α(d)) with
l = level(d).

Theorem 4 Given a pyramid construction plan defined by n kernels, and
a dart d with a level l < n such that CDS∗

l−1(α(d)) = ε. For each i ∈
{l, . . . , n} ∩DSd, the ϕ or σ successors of d defined at level j < L i(d), may
be retrieved by the following property:

∀i ∈ {l, . . . , n} ∩ DSd,
∀j ∈ {1, . . . ,L i(d)}

} {

ϕj−1(d) = dsucci,d(j) If d is contracted
σj−1(d) = dsucci,d(j) If d is removed

49

Proof:
Since CDS∗

l−1(α(d)) = ε, Theorem 2 applied on CDS∗(α(d)) provides
the following result:

∀k ∈ {0, . . . , l − 1}















If Kl−1 is a removal kernel
σk(α(d)) = σ(α(d))

If Kl−1 is a contraction kernel
ϕk(α(d)) = ϕ(α(d))

Since Kl−1 and Kl have not the same type and d ∈ Kl we obtain, with
j = k + 1:

∀j ∈ {1, . . . , l}















If d is contracted
ϕj−1(d) = ϕ(d)

If d is removed
σj−1(d) = σ(d)

Note that, this last equation is equivalent to:

∀j ∈ {1, . . . , l}















If d is contracted
ϕj−1(d) = ϕl−1(d) = ϕ(d)

If d is removed
σj−1(d) = σl−1(d) = σ(d)

(16)

Since CDS∗
l−1(α(d)) = ε, dCDS∗

l−1(α(d)) = d and Jd = Id. Therefore (Re-
mark 5):

{l, . . . , n} ∩ DSd = {l, . . . , n} − Jd

Let us now decompose the demonstration according to the value of Jd.

If Jd is empty, {l, . . . , n} ∩ DSd = {l, . . . , n}.

In this case d is not the last dart of CWl(d
l) (Proposition 9). Therefore,

if k denotes the index of d in CWl(d
l), using the definition of connecting

walks, bk+1 satisfies:

bk+1 =

{

ϕl−1(d) If d is contracted
σl−1(d) If d is removed

Moreover, dCDS∗
l−1(α(d))bk+1 = dbk+1 is a sub word of CDS l(d

l).
Therefore, since level(bk+1) = l, we have:

{

∀i ∈ {l, . . . , n} L i(d) = l
∀j ∈ {1, . . . , l} dsuccl,d(j) = bk+1

50

Using the above equations and equation 16:

∀j ∈ {1, . . . , l}















If d is contracted
ϕj−1(d) = ϕl−1(d) = bk+1 = dsuccl,d(j)

If d is removed
σj−1(d) = σl−1(d) = bk+1 = dsuccl,d(j)

Therefore, using Proposition 11:

∀i ∈ {l, . . . , n}
∀j ∈ {1, . . . , l = L i(d)}















If d is contracted
ϕj−1(d) = dsuccl,d(j) = dsucci,d(j)

If d is removed
σj−1(d) = dsuccl,d(j) = dsucci,d(j)

Which corresponds to the expected result.

If Jd is non empty, for each j in Jd = Id, d is the last dart of CDSi(d
i).

In this case, L i(d) is undefined for each i in Jd. Let us denote by m
the upper bound of Id = Jd. If m = n we have nothing to demonstrate
since L i(d) is undefined for all levels in {l, . . . , n}. In this case the
successors of d are provided by Proposition 8.

If m < n, let us denote by k the index of α(dm) in CWm+1(d
m+1). We

have:

CDSm+1(d
m+1) = b1CDS∗

m(α(b1)) · · ·α(dm) . . . dbk+1 · · · bpCDS∗
m+1(α(bp))

with CWm+1(d
m+1) = b1, . . . , α(dm)bk+1 . . . bp.

We have thus, by definition of connecting walks:

bk+1 =

{

σm(α(dm)) If Km+1 is a removal kernel
ϕm(α(dm)) If Km+1 is a contraction kernel

=

{

ϕm(dm) If Km is a contraction kernel
σm(dm) If Km is a removal kernel

Using TR-63 proposition 17:

• If d is contracted:

ϕ(d) =

{

ϕm(dm) If Km is a contraction kernel
σm(dm) If Km is a removal kernel

51

• If d is removed:

σ(d) =

{

ϕm(dm) If Km is a contraction kernel
σm(dm) If Km is a removal kernel

Therefore:

bk+1 =

{

ϕ(d) If d is contracted
σ(d) If d is removed

Since level(bk+1) = m > l:

∀i ∈ {m + 1, . . . , n} L i(d) = l
∀j ∈ {1, . . . , l} dsuccl,d(j) = bk+1

Using equation 16:

∀j ∈ {1, . . . , l}

{

ϕj−1(d) = ϕ(d) = bk+1 = dsuccl,d(j) If d is contracted
σj−1(d) = σ(d) = bk+1 = dsuccl,d(j) If d is removed

Using Proposition 11:

∀i ∈ {m + 1, . . . , n}
∀j ∈ {1, . . . , l = L i(d)}

}















If d is contracted
ϕj−1(d) = dsuccl,d(j) = dsucci,d(j)

If d is removed
σj−1(d) = dsuccl,d(j) = dsucci,d(j)

2

This last theorem may be illustrated by Figure 14 (see also Figure 5).
We have indeed, l = level(−8) = 2 with CDS∗

2(α(−8)) = CDS∗
2(8) = ε.

Moreover, CDS∗
1(−8) 6= ε and −8 is the last dart of the connecting dart

sequence which contains it only at level 2. We have thus:
{

J−8 = I−8 = {2} and
DS−8 = {1} ∪ {3, 4}

Using the notations of Theorem 4 we are thus in the case where Jd is not
empty. The upper bound m of J−8 is in this case equal to 2 with −82 = −5
and −83 = 5. We have additionally:

CW3(5) = 5. − 3 = α(dm).bk+1

We have thus, bk+1 = −3 and since −8 is removed:

σ0(−8) = dsucc4,−8(1) = σ1(−8) = dsucc4,−8(2) = bk+1 = −3

52

6
level

5

−11
b

4

5
b1

1

6
b2

1

−12
b3

2

−9
b4

1

−4
b5

2

−8
b6

3

−3
b7

bk+1 =
succ4,−8(1)
succ4,−8(2)

?

1

−7
b8

1

1
b9

2

8
b10

1

2
b11

2

9
b12

1

−2
b13

1

−1
b14

1

7
b15

1

10
b16

4

5
b17

1

−10
b18

3

3
b19

Considered dart

j-successors

Figure 14: The connecting dart sequence CDS4(−11) with the j-successors
of the dart −8 at levels 1 and 2. The level of each dart is indicated in its
associated bar.

Theorem 5 Given a pyramid construction plan defined by n kernels, and a
dart d with level l < n such that CDS∗

l−1(α(d)) 6= ε. For each i ∈ {l, . . . , n},
the ϕ or σ successors of d defined at level j < L i(d), may be retrieved by the
following property:

∀i ∈ {l, . . . , n},
∀j ∈ {1, . . . ,L i(d)}

}{

ϕj−1(d) = dsucci,d(j) If d is contracted
σj−1(d) = dsucci,d(j) If d is removed

Proof:
First note that since CDS∗

l−1(α(d)) 6= ε, and dCDS∗
l−1(α(d)) � CDSi(d

i)
for any i in {l, . . . , n}(Remark 4), the set Id is empty. We have thus (Re-
mark 5):

{l, . . . , n} ∩ DSd = {l, . . . , n}

Moreover, since CDS∗
l−1(α(d)) 6= ε, Ll−1(α(d)) is defined and Theorem 3

may be applied on CDSl−1(α(d)):

∀j ∈ {1, . . . , Ll−1(α(d))}

{

σj−1(α(d)) = dll−1,α(d)(j) If Kl−1 is a removal kernel

ϕj−1(α(d)) = dll−1,α(d)(j) If Kl−1 is a contraction kernel

Since d belongs to Kl which has not the same type than Kl−1:

∀j ∈ {1, . . . , Ll−1(α(d))}

{

ϕj−1(d) = dll−1,α(d)(j) If d is contracted

σj−1(d) = dll−1,α(d)(j) If d is removed

53

Using Proposition 12, dll−1,α(d)(j) = dsucci,d(j) for each (i, j) in {l, . . . , n} ×
{1, . . . , Ll−1(α(d))}. Therefore:

∀i ∈ {l, . . . , n}
∀j ∈ {1, . . . , Ll−1(α(d))}

}















If d is contracted:
ϕj−1(d) = dsucci,d(j)

If d is removed:
σj−1(d) = dsucci,d(j)

(17)

Let us now decompose the demonstration according to the value of Jd.

If Jd is empty, d is not the last dart of CWl(d
l) = b1 . . . , bp (Proposition 9).

Let us denote by k the index of d in CWl(d
l). The connecting dart

sequence of dl at level l is then equal to:

CDSl(d
l) = b1CDS∗

l−1(α(b1) . . . dCDS∗
l−1(α(d))bk+1 . . . bpCDS∗

l−1(α(bp))

The sequence dCDS∗
l−1(α(d))bk+1 is thus a sub-word of CDS l(d

l). More-
over, by definition of connecting walks:

ϕl−1(d) = bk+1 If Kl is a contraction kernel
σl−1(d) = bk+1 If Kl is a removal kernel

Since level(bk+1) = l, and Ll−1(α(d)) ≤ l− 1, bk+1 is the first dart with
a level strictly greater than Ll−1(α(d)) encountered when traversing
CDS∗

l (d
l) from d. Therefore:

∀j ∈ {Ll−1(α(d)) + 1, . . . , l} bk+1 = dsuccl,d(j)

Using Corollary 2 and Remark 3, with CDS l−1(α(d)):

∀j ∈ {Ll−1(α(d)) + 1, . . . , l}















If Kl−1 is a removal kernel:
σj−1(α(d)) = σl−1(α(d))

If Kl−1 is a contraction kernel:
ϕj−1(α(d)) = ϕl−1(α(d))

Since Kl−1 and Kl have not the same type, and d ∈ Kl:

∀j ∈ {Ll−1(α(d))+1, . . . , l}















If d is contracted:
ϕj−1(d) = ϕl−1(d) = bk+1 = dsuccl,d(j)

If d is removed:
σj−1(d) = σl−1(d) = bk+1 = dsuccl,d(j)

54

Using Proposition 11:

∀i ∈ {l, . . . , n}
∀j ∈ {Ll−1(α(d)) + 1, . . . , l}

}















If d is contracted:
ϕj−1(d) = dsuccl,d(j) = dsucci,d(j)

If d is removed:
σj−1(d) = dsuccl,d(j) = dsucci,d(j)

(18)
Where succl,d(j) and succi,d(j) denote the index of the same dart re-
spectively in CDSl(d

l) and CDSi(d
i).

The combination of equations 17 and 18 provides the expected result.
Note that in this case, since level(bk+1) = l we have L l(d) = l and
thus L i(d) = l for each i in {l, . . . , n}.

If Jd is non empty, let us denote by m the greater level contained in Jd.
For each i in Jd, dCDS∗

l−1(α(d)) is a suffix of CDS∗
i (d

i). Therefore,
L i(d) = Ll−1(α(d)) for all i in {l, . . . , m}. If m = n, equation 17
provides the expected result.

Otherwise, let us suppose that m < n and let us denote by k the index
of α(dm) in CWm+1(d

m+1) = b1, . . . , bq. Since dCDS∗
l−1(α(d)) is a suffix

of CDS∗
m(dm), CDSm+1(d

m+1) is equal to:

b1CDS∗
m(α(b1)) · · · α(dm)CDS∗

m(dm)bk+1 · · · bqCDS∗
m(α(bq))

b1CDS∗
m(α(b1))) · · · α(dm)SdCDS∗

l−1(α(d))bk+1 · · · bqCDS∗
m(α(bq))

with S such that CDS∗
m(dm) = SdCDS∗

l−1(α(d)).

Therefore, dCDS∗
l−1(α(d))bk+1 is a sub word of CDSm+1(d

m+1). More-
over, since level(bk+1) = m ≥ l, L m+1(d) = l and:

∀j ∈ {Ll−1(α(d)) + 1, . . . , l} bk+1 = dsuccm+1,d(j)

Using Corollary 5 with i = m ∈ Jd, we have for each j in {Ll−1(α(d))+
1, . . . , l}:

If d is contracted:

ϕj−1(d) =

{

ϕm(dm) If Km is a contraction kernel
σm(dm) If Km is a removal kernel

If d is removed:

σj−1(d) =

{

ϕm(dm) If Km is a contraction kernel
σm(dm) If Km is a removal kernel

55

Moreover, since bk+1 follows α(dm) in CWm+1(d
m+1) and Km, Km+1

have not the same type:

bk+1 =

{

σm(α(dm)) = ϕm(dm) If Km is a contraction kernel
ϕm(α(dm)) = σm(dm) If Km is a removal kernel

Therefore:

∀j ∈ {Ll−1(α(d)) + 1, . . . , l}















If d is contracted:
ϕj−1(d) = bk+1 = dsuccm+1,d(j)

If d is removed:
σj−1(d) = bk+1 = dsuccm+1,d(j)

Using Proposition 11:

∀i ∈ {m + 1, . . . , n}
∀j ∈ {Ll−1(α(d)) + 1, . . . , l}

}















If d is contracted:
ϕj−1(d) = dsuccm+1,d(j) = dsucci,d(j)

If d is removed:
σj−1(d) = dsuccm+1,d(j) = dsucci,d(j)

(19)
Moreover, since L m+1(d) = l, L i(d) = l for each i in {m + 1, . . . , n}.
We have thus:

∀i ∈ {l, . . . , m} L i(d) = Ll−1(α(d))
∀i ∈ {m + 1, . . . , n} L i(d) = l

Therefore, for each i in {l, . . . , m} equation 17 provides the expected
result. If i ∈ {m + 1, . . . , n}, the expected result is provided by the
conjoint use of equation 17 and 19

2

Let us consider the dart −5 in Figure 15 removed at level 4 (Figure 4).
The first darts with a level greater than 1, 2, 3 and 4 which follow −5 in
CDS4(−11) are respectively equal to 6,−9,−3 and 5. The indices of these
darts are equal to 3, 5, 8 and 18. Since the greater level encountered after 5
in CDS4(−11) is equal to 4 we have L 4(−5) = 4. We thus obtain:

Ind4(−5) = 2, L 4(−5) = 4 and
succ4,−5(1) = 3, succ4,−5(2) = 5, succ4,−5(3) = 8, succ4,−5(4) = 18

The sequence CDS∗
3(5) being non empty (Figure 5), Theorem 5 applies

and we obtain:

σ0(−5) = dsucc4,−5(1) = 6, σ1(−5) = dsucc4,−5(2) = −9,
σ2(−5) = dsucc4,−5(3) = −3, σ3(−5) = dsucc4,−5(4) = 5

56

More precisely, using the notations of Theorem 5, the greatest level en-
countered in CDS3(5) is the one of the dart −3 equal to 3 (Figure 9). We
have thus L3(α(−5)) = L3(5) = 3 and since −5 is removed, equation 17
provides the σ successors of the dart −5 from levels 0 to 2. Moreover:

−54 = −11 and CW4(−11) = −11. − 5.5

The dart −5 is thus not the last dart of CW4(−54) and the set J−5 is empty
(Proposition 9). We are thus in the first case of theorem 5 with bk+1 = 5.
Since level(−5) = 4, the set {Ll−1(α(d)) + 1, . . . , l} = {L3(5) + 1, level(−5)}
is reduced to {4} and equation 18 only provides the σ successor of −5 at
level 3.

6
level

5

−11
b

4

−5
b1

1

6
b2

σ0(−5)

?
1

−12
b3

2

−9
b4

σ1(−5)

?

1

−4
b5

2

−8
b6

3

−3
b7

σ2(−5)

?

1

−7
b8

1

1
b9

2

8
b10

1

2
b11

2

9
b12

1

−2
b13

1

−1
b14

1

7
b15

1

10
b16

4

5
b17

σ3(−5)

?

1

−10
b18

3

3
b19

Considered dart
σ-successors

Figure 15: The connecting dart sequence CDS4(−11) with the σ-successors
of the dart −5 from level 1 to level 3. The level of each dart is indicated in
its associated bar.

5 Sequential computation of the reduced com-

binatorial maps

If a dart d is not contracted nor removed at a given level i, Theorems 2
and 3 allow us to retrieve all its ϕ or σ successors until level i by traversing
CDSi(d). In the same way, if d has been contracted or removed before,
level i, Theorems 4 and 5 allow us to retrieve its ϕ or σ successors until

57

level level(d) by traversing CDSi(d
i). This traversal may be performed by

algorithm survive (see TR-63 section 3.2). Indeed, algorithm 2 uses the same
instructions as algorithm survive to traverse the connecting dart sequence
(Algorithm 2, lines 16 to 22). However, using theorems 2 to 5 the successors of
a given dart have a greater index than the current dart in the connecting dart
sequence which contains it. Therefore, a trivial adaptation of the algorithm
survive to compute all the successors of the darts within a connecting dart
sequence CDSi(d) would require a call to survive(i, d′) for each dart d′ ∈
CDSi(d). Since the number of steps required by the algorithm survive to
traverse CDSi(d) is equal to its length |CDSi(d)|, the complexity of such a
trivial algorithm is about |CDSi(d)|2.

Given a level i we avoid the time overhead induced by the trivial algo-
rithm by storing an array prec of size i + 1. At each step of Algorithm 2,
this array contains the previous darts within the connecting dart sequence
which have a level greater or equal to j ∈ {1, . . . , i + 1} (see Table 3 and
the sequence above the table). Therefore given a dart d whose level is
greater or equal to i, if d′ ∈ CDSi(d) denotes the current dart traversed
by the algorithm pyramid up to(i, d, prec), all the darts between prec[j] and
d′ within CDSi(d) have a level strictly less than j. Therefore for each j in
{1, . . . , level(d′)}, d′ is the first dart with a level greater than j encountered
when traversing CDSi(d) form prec[j]. In other words:

∀ d′ ∈ CDSi(d)
∀ j ∈ {1, . . . , level(d′)}

}

dsucci,precj = d′ (20)

Algorithm 1 is based on the above property. Indeed, Algorithm 1 with
parameters i ∈ {1, . . . , n} and d ∈ SDi initializes the array prec to d, and
then call Algorithm 2. Since the recursive calls of this last algorithm are the
same as the ones of algorithm survive (Algorithm 2, lines 16-22 and TR-63
section 3.2), Algorithm 2 traverses the sequence CDS∗

i (d)ϕi(d), if Ki is a
contraction kernel, and CDS∗

i (d)σi(d) if Ki is a removal kernel. Moreover,
since the set of connecting dart sequences at level i defines a partition of
D, Algorithm 1 will consider twice the surviving darts in SDi and only
once the non surviving darts in D − SDi. Its complexity is thus equal to
O(|D| + |SDi|).

At each step of the algorithm we consider a new dart d and use equation 20
and Theorems 2 to 5 to initialize the σj or ϕj successors of the dart prec[j] to
d (lines 3 to 11). The array prec is then updated up to level(d) (lines 13-14).

58

1 void pyramid up to(int i, dart d)

2 {
3 int prec[1..i+1];

4

5 for(int j=1;j ≤ i+1;j++)

6 prec[j]=d;

7 if (state(i)==Contracted)

8 pyramid up to rec(i,ϕ(d),prec);
9 else

10 pyramid up to rec(i,σ(d),prec);
11 }

Algorithm 1: This algorithm initializes the array prec and run
pyramid up to rec(See Algorithm 2) which will traverse CDS∗

i (d)

A complete proof of the validity of this algorithm is provided in Section 8.1.
Tables 2 and 3 illustrate the behavior of algorithms 1 and 2. These tables

are relative to the pyramid defined on Figure 4 (see also Figure 5). At level
4 the initial 3× 3 grid is reduced to a single loop defined by the darts 11 and
−11.

The first two columns of Table 2 describe CDS4(−11).σ4(−11) and the
level of each dart of this sequence. Columns 3 to 7 of each line represents
the assignments to the function Σ performed by Algorithms 1 and 2. For
example, since −11 is the first dart of the connecting dart sequence and
K4 is a removal kernel, the following darts of the sequence which are equal
to some dli,d(j) for j ∈ {1, . . . , 5} are equal to σj−1(−11) (Theorem 3 and
section 8.1.2). Note that the darts dli,d(j) may be easily read on Table 2 as
the darts belonging to the first line with a level greater than j (Table 3).
In the same way, since the dart −5 has been removed at level 4, its σj−1-
successors are equal to the first darts with a level greater than j for each
j ∈ {1, . . . , 4} (see Theorem 4, 5 and section 8.1.3).

Table 3 presents the different values taken by the array prec[] along the
calls to Algorithm 2. The first column of this table displays the value of
the dart passed to Algorithm 2, the level of this dart is indicated in the
second column. For example, when Algorithm 2 is called with −5 which is
the second dart of CDS4(−11), the array prec has been initialized to −11
by Algorithm 1(for loop). This state of the array prec[] is displayed on the

59

1 void pyramid up to rec(int i, dart d, dart prec[i])

2 {
3 for(int j=1;j ≤ min(level(d), i + 1);j++)
4 {
5 if(state(level(prec[j]))==Contracted or

6 (level(prec[j]) > i and

7 state(i) == Contracted))

8 Σ(j − 1, α(prec[j])) = d; //ϕj−1(prec[j]) = d

9 else

10 Σ(j − 1, prec[j]) = d; //σj−1(prec[j]) = d

11 }
12

13 for(int j =1;j ≤ min(level(d), i + 1);j++)
14 prec[j]=d;

15

16 if(level(d)>i)

17 return;

18

19 if(state(level(d))==Contracted)

20 return pyramid up to rec(i,ϕ(d),prec)
21

22 return pyramid up to rec(i,σ(d),prec)
23 }

Algorithm 2: This algorithm builds all the combinatorial maps up to level i

60

first line of Table 3. Algorithm 2 called with −5 fills the array prec[] by
−5 until level(−5) = 4(lines 13-14). This new state is displayed on the
second line of Table 3. Note that the value of prec[5] remains initialized
to −11 until the end of the traversal of CDS4(−11)σ4(−11). Indeed since
L4(−11) ≤ 4(Proposition 4), σ4(−11) = 11 is the first dart with a level
greater or equal to 5 encountered in CDS∗

4(−11)σ4(−11).

level G4 G3 G2 G1 G0

d σ4(d) σ3(d) σ2(d) ϕ2(d) σ1(d) ϕ1(d) σ0(d) ϕ0(d)
−11 5 11 −5 −5 −5 −5
−5 4 5 −3 −9 6

6 1 −12
−12 1 −9
−9 2 −8 −4
−4 1 −8
−8 2 −3 −3
−3 3 5 8 −7
−7 1 1

1 1 8
8 2 9 2
2 1 9
9 2 5 −2

−2 1 −1
−1 1 7

7 1 10
10 1 5
5 4 11 3 3 −10

−10 1 3
3 3 11 11 11

11 5

Table 2: The connecting dart sequence CDS4(−11) with the level of each
dart and the assignments performed by Algorithm 2

61

6
level

5

−11
b

4

−5
b1

1

6
b2

1

−12
b3

2

−9
b4

1

−4
b5

2

−8
b6

3

−3
b7

1

−7
b8

1

1
b9

2

8
b10

1

2
b11

2

9
b12

1

−2
b13

1

−1
b14

1

7
b15

1

10
b16

4

5
b17

1

−10
b18

3

3
b19

�
�

�
�

?

prec[5]

prec[4]
prec[3]

prec[2]
prec[1]

The successive values of the array prec
darts level prec[5] prec[4] prec[3] prec[2] prec[1]
-5 4 -11 -11 -11 -11 -11
6 1 -11 -5 -5 -5 -5
-12 1 -11 -5 -5 -5 6
-9 2 -11 -5 -5 -5 -12
-4 1 -11 -5 -5 -9 -9
-8 2 -11 -5 -5 -9 -4
-3 3 -11 -5 -5 -8 -8
-7 1 -11 -5 -3 -3 -3
1 1 -11 -5 -3 -3 -7
8 2 -11 -5 -3 -3 1
2 1 -11 -5 -3 8 8
9 2 -11 -5 -3 8 2
-2 1 -11 -5 -3 9 9
-1 1 -11 -5 -3 9 -2
7 1 -11 -5 -3 9 -1
10 1 -11 -5 -3 9 7
5 4 -11 -5 -3 9 10
-10 1 -11 5 5 5 5
3 3 -11 5 5 5 -10

11 5 -11 5 3 3 3

Table 3: The different values taken by the array prec during a call to Algo-
rithm 2 on CDS4(−11). The histogram above the table illustrates the value
of the array prec for the dart 7.

62

6 Parallel Computation of the reduced com-

binatorial maps

The aim of this section is to study a parallel implementation of Algorithms 1
and 2. One trivial parallel algorithm would consist to allocate one processor
for each dart and to design the parallel algorithm in such a way that each
processor associated to a dart d traverses the sequence CDS i(d

i) from the
dart d to the first dart of the sequence with a level greater or equal to
level(d) or i. However, the complexity of such a parallel algorithm would
be determined by the length of the longest connecting dart sequence defined
at level i. Therefore, if i = n and only two surviving darts remains at level
n the time required by the parallel algorithm should be close to the one of
its sequential counter part which has to traverse only two connecting dart
sequences.

The main improvements of Algorithms 3 and 4 besides the basic parallel
algorithm explained above is to allow each processor to use the results already
obtained by the other processors. Indeed, using the example displayed in
Figure 12 (see also Figure 11), once the processor associated to −11 has
updated (σj)j∈{0,1,2,3}(−11) to −5, the determination of σ4(−11) is equivalent
to the determination of the first dart in CDS4(−11)σ4(−11) with a level
greater than 4. If σ3(−5) has been set to 5 by the processor associated to −5,
we can insure by Theorems 4 and 5 that all the darts of CDS4(−11)σ4(−11)
between Ind4(−5) and Ind4(5) have a lower level than level(σ3(5)) = 4. The
index of σ4(−11) in CDS4(−11) is thus greater than the one of σ3(−5) and
the processor associated to −11 can continue the traversal of CDS4(−11)
from σ3(−5) = 5 without traversing the sequence from −5 to 5. In the same
way if the processor associated to −5 has already reached the dart 11 we
can set σ4(−11) to 11 without any additional traversal. However, since the
dart −5 is removed at level 4, the value of σ4(−5) = Σ(4,−5) is not defined.
In order to allow each processor to store the value of the darts which have
a greater level than the ones previously encountered we define a function
First(., .) from {0, . . . , i} × D to D. Let us denote by Si(d) the sequence
CDSi(d)σi(d) if d is removed and CDSi(d)ϕi(d) if d is contracted and let us
consider one dart d ∈ D and one level j ∈ {0, . . . , i}. The value of First(j, d)
is defined by:

• The first dart in Si(d
i) whose index in Si(d

i) is strictly greater than
the one of d and whose level is greater or equal to j if d is removed.

63

• The first dart in Si(α(d)i) whose index in Si(α(d)i) is strictly greater
than the one of d and whose level is greater or equal to j if d is con-
tracted.

Note that, First(j, d) is defined for all j ∈ {0, . . . , i} since the last dart
of Si(d

i) and Si(α(d)i) have a level greater or equal to i + 1.

1 void pyramid up to par(GLP G,int i)

2 {
3 for each d ∈ D do in parallel

4 next[d] = σ(d)
5 for all d ∈ D do in parallel

6 get successors(d,i);

7 for all d ∈ D do in parallel

8 for j= 0 to level(d) -1

9 Σ(j, d) = First(j, d)
10

11 }

Algorithm 3: Initialization of common variables (lines 3-4), calls to Algorithm 4
(lines 5-6) and mapping of the results in the array Σ(., .) (lines 7-9)

The current dart considered by the processor associated to a dart is stored
in a shared array next[] indexed by D. If nextk[d] denotes the value of the
array next at iteration k, this array is defined by next0[d] = σ[d] (Algorithm 3
line 4) and the following recursive construction scheme (see Algorithm 4, lines
3, 17 and 24):

• If nextk[d] is removed before level i or if it survives up to level i + 1
and state(i) = Removed:

nextk+1[d] = nextk[nextk[d]]

• If nextk[d] is contracted before level i or if it survives up to level i + 1
and state(i) = Contracted:

nextk+1[d] = nextk[α(nextk[d])]

64

1 void get successors(dart d,int i)

2 {
3 dart d’=next[d]

4 int max level=MIN(level(d’),i+1);

5

6 // Initialisation of the array First

7 for(int j=1;j≤ max level;j++)

8 First(j − 1, d) = d′

9

10 min level[d]=max level+1;

11

12

13 while(level(d’)≤ i)

14 {
15 d’’ = (state(level(d’)) == Contracted?α(d′):d’)
16 if(min level[d’’] > min level[d])

17 {
18 // d’ has determined some interesting darts

19 // => copy them into First(.,d)
20

21 for(int j=min level[d];j< min level[d’’];j++)

22 First(j − 1, d) = First(j − 1, d′′)
23 min level[d]=min level[d’’];

24 }
25 d’=next[d]=next[d’’];

26 }
27

28 }

Algorithm 4: Parallel algorithm associated to a dart d(first parameter). This
algorithm fills the array First(., d) whose values up to level(d) are equal to
Σ(., d)(Algorithm 3, lines 7-9)

65

Tables 4 to 9 present the successive values of the array next and First
defined by Algorithms 3 and 4. The pyramid used in this example is displayed
in Figure 4. Both algorithms compute the whole pyramid and are thus run
with i = 4. The successive values of the array next are displayed in the
second column, each dart being indexed by its level.

For example, next0[−11] is initialized to σ0(−11) = −5 (First row of
Figure 4 and Table 4 line 2). Since the dart −5 is removed at level 4,
we have next1[−11] = next0[next0[−11]] = next0[−5] = 6 (Table 4 lines 2
and 8 and Table 5 line 2). In the same way, next0[−12] is initialized to
σ0(−12) = −6(Table 4 line 1). Since −6 is contracted at level 1, we have
(Table 4 lines 1 and 18 and Table 5, line 1):

next1[−12] = next0[α(next0[−12])] = next0[α(−6)] = next0[6] = −11

The complexity of Algorithm 4, is determined by the number of itera-
tions performed in the while loop (line 13-26) and thus by the length of the
sequence nextk[d]. We have shown (proposition 14, section 8.2) that the
sequence nextk[d] is included in a given connecting dart sequence at level i
(say CDSi(d

′)) and that the distance between nextk[d] and nextk+1[d] within
CDSi(d

′) growth exponentially as a function of k. The complexity of Algo-
rithm 4 is thus equal to O(log2(|CDSi(d

max)|)) where |CDSi(d
max)| is the

length of the longest connecting dart sequence defined at level i. In the worst
case where level i is composed of only two connecting dart sequences, one
being reduced to one dart: |CDSi(d

max)| = |D|−1 and the complexity of the
parallel algorithm is equal to O(log2(|D|)). However, if all connecting dart

sequences defined at level i have about the same size |CDSi(d
max)| ≈ |D|

|SDi|

the complexity is equal to O(log2(|D|) − log2(|SDi|)). A complete proof of
the validity of algorithms 3 and 4 is provided in Section 8.2.

7 Conclusion

We have shown in this technical report that the whole pyramid may be
retrieved from its base by storing for each initial dart the level where it is
reduced in the pyramid and the operation applied at this level. We defined
one sequential and one parallel algorithm to restore the pyramid from its base.
The complexity of these algorithms is respectively linear and logarithmic in
the number of darts of the initial combinatorial map.

66

The fact that a pyramid may be unfold from its base using the function
level and state show that all the information about the pyramid is captured
by these two functions. We plan to use them in order to retrieve efficiently
the whole receptive field [1] of one vertex or some of its features such as the
set of boundary points defining the associated regions. Such an encoding
may allow to compute a pyramid by storing only the top level combinatorial
maps, all the other features such as an intermediate combinatorial map or
a receptive field being computed from the functions level and state. We
called such an encoding of a pyramid an implicit encoding by opposition of
the classical encoding of all intermediate reduced graphs which is called an
explicit encoding. We also plan to study other type of hierarchical encoding
using default reduction rules.

Finally, an implementation of combinatorial pyramids2 should allow to
study interesting applications of our model such as: segmentation [5, 3, 4, 9],
structural matching [23] or integration of moving objects.

2see : http://www.univ-reims.fr/leri/membre/luc/PYRAMIDES/
or http://www.prip.tuwien.ac.at/

67

First(j,d)
d next[d] j=0 j=1 j=2 j=3 j=4

-12 −61 -6
-11 −54 -5 -5 -5 -5
-10 54 5 5 5 5
-9 −41 -4
-8 −33 -3 -3 -3
-7 101 10
-6 −121 -12
-5 61 6
-4 121 12
-3 115 11 11 11 11 11
-2 92 9 9
-1 82 8 8
1 71 7
2 −11 -1
3 −71 -7
4 −82 -8 -8
5 −101 -10
6 −115 -11 -11 -11 -11 -11
7 11 1
8 21 2
9 −21 -2

10 33 3 3 3
11 41 4
12 −92 -9 -9

Table 4: Initialization step of Algorithm 4: values of First(.,.) and next[.]

68

First(j,d)
d next[d] j=0 j=1 j=2 j=3 j=4

-12 −115 -6 -11 -11 -11 -11
-11 61 -5 -5 -5 -5
-10 −101 5 5 5 5
-9 −82 -4 -8
-8 −71 -3 -3 -3
-7 54 10 5 5 5
-6 −92 -12 -9
-5 −121 6
-4 −61 12
-3 115 11 11 11 11 11
-2 −21 9 9
-1 21 8 8
1 101 7
2 71 -1
3 11 -7
4 −33 -8 -8 -3
5 33 -10 3 3
6 −115 -11 -11 -11 -11 -11
7 82 1 8
8 92 2 9
9 −11 -2

10 115 3 3 3 11 11
11 121 4
12 −41 -9 -9

Table 5: First step of Algorithm 4

69

First(j,d)
d next[d] j=0 j=1 j=2 j=3 j=4

-12 −115 -6 -11 -11 -11 -11
-11 −92 -5 -5 -5 -5
-10 115 5 5 5 5 11
-9 −71 -4 -8 -3
-8 82 -3 -3 -3
-7 33 10 5 5 5
-6 −82 -12 -9
-5 −41 6 -9
-4 −115 12 11 11 11 11
-3 115 11 11 11 11 11
-2 71 9 9 -3
-1 −21 8 8
1 −101 7 5 5 5
2 54 -1 5 5 5
3 21 -7 8
4 11 -8 -8 -3
5 115 -10 3 3 11 11
6 −115 -11 -11 -11 -11 -11
7 92 1 8 -3
8 −11 2 9
9 101 -2

10 115 3 3 3 11 11
11 −115 4 -11 -11 -11 -11
12 −33 -9 -9 -3

Table 6: Second step of Algorithm 4

70

First(j,d)
d next[d] j=0 j=1 j=2 j=3 j=4

-12 −115 -6 -11 -11 -11 -11
-11 −71 -5 -5 -5 -5
-10 115 5 5 5 5 11
-9 92 -4 -8 -3
-8 −11 -3 -3 -3
-7 115 10 5 5 5 11
-6 82 -12 -9 -3
-5 11 6 -9 -3
-4 −115 12 -11 -11 -11 -11
-3 115 11 11 11 11 11
-2 33 9 9 -3 5
-1 54 8 8 5 5
1 115 7 5 5 5 11
2 115 -1 5 5 5 11
3 71 -7 8 -3
4 −21 -8 -8 -3
5 115 -10 3 3 11 11
6 −115 -11 -11 -11 -11 -11
7 101 1 8 -3
8 −101 2 9 5 5
9 115 -2 5 5 11 11

10 115 3 3 3 11 11
11 −115 4 -11 -11 -11 -11
12 21 -9 -9 -3

Table 7: Third step of Algorithm 4

71

First(j,d)
d next[d] j=0 j=1 j=2 j=3 j=4

-12 −115 -6 -11 -11 -11 -11
-11 101 -5 -5 -5 -5
-10 115 5 5 5 5 11
-9 115 -4 -8 -3 11 11
-8 115 -3 -3 -3 5 11
-7 115 10 5 5 5 11
-6 −101 -12 -9 -3 5
-5 54 6 -9 -3 5
-4 −115 12 -11 -11 -11 -11
-3 115 11 11 11 11 11
-2 115 9 9 -3 5 11
-1 115 8 8 5 5 11
1 115 7 5 5 5 11
2 115 -1 5 5 5 11
3 115 -7 8 -3 5 11
4 115 -8 -8 -3 5 11
5 115 -10 3 3 11 11
6 −115 -11 -11 -11 -11 -11
7 115 1 8 -3 5 11
8 115 2 9 5 5 11
9 115 -2 5 5 11 11

10 115 3 3 3 11 11
11 −115 4 -11 -11 -11 -11
12 33 -9 -9 -3 5

Table 8: Fourth step of Algorithm 4

72

First(j,d)
d next[d] j=0 j=1 j=2 j=3 j=4

-12 −115 -6 -11 -11 -11 -11
-11 115 -5 -5 -5 -5 11
-10 115 5 5 5 5 11
-9 115 -4 -8 -3 11 11
-8 115 -3 -3 -3 5 11
-7 115 10 5 5 5 11
-6 115 -12 -9 -3 5 11
-5 115 6 -9 -3 5 11
-4 −115 12 -11 -11 -11 -11
-3 115 11 11 11 11 11
-2 115 9 9 -3 5 11
-1 115 8 8 5 5 11
1 115 7 5 5 5 11
2 115 -1 5 5 5 11
3 115 -7 8 -3 5 11
4 115 -8 -8 -3 5 11
5 115 -10 3 3 11 11
6 −115 -11 -11 -11 -11 -11
7 115 1 8 -3 5 11
8 115 2 9 5 5 11
9 115 -2 5 5 11 11

10 115 3 3 3 11 11
11 −115 4 -11 -11 -11 -11
12 115 -9 -9 -3 5 11

Table 9: Fifth step of Algorithm 4

73

8 Appendix

8.1 Proof of validity of Algorithm 1

Let us decompose the different actions performed by Algorithms 1 and 2
(pages 59 and 60) according to the different cases described by Theorems 2
to 5.

8.1.1 If Theorem 2 applies

Algorithm 1 is applied with parameters i and d such that i < level(d) and
CDSi(d) = d. Let us denote by d′ the dart ϕ(d) if Ki is a contraction kernel
and σ(d) if Ki is a removal kernel. Algorithm 1 initializes the array prec to
d and calls Algorithm 2 with the dart d′. Note that d′ is equal ϕi(d) or σi(d)
according to the type of Ki (TR-63 Proposition 15). The level of d′ is thus
greater or equal to i + 1.

The first loop of Algorithm 2(line 3) is thus performed from 1 to i + 1.
Moreover, since prec is initialized to d, Σ(j − 1, α(d)) = ϕj−1(d) will be
initialized to ϕ(d) = d′ if Ki is a contraction kernel (line 8) while Σ(j−1, d) =
σj−1(d) will be initialized to σ(d) = d′ if Ki is a removal kernel(line 10) with
j ∈ {1, . . . , i+1}. In both cases, the initialization are validated by Theorem 2
and all the σ or ϕ successors of d up to level i are initialized. Note that since
level(d′) > i, Algorithm 1 terminates after this call on lines 16-17. This
algorithm can be slightly improved by moving lines 16 and 17 to line 12
(before the loop). The present presentation has been chosen to keep all the
lines concerned with the traversal of the connecting dart sequences at the
end of Algorithm 2(lines 16 to 22).

8.1.2 If Theorem 3 applies

Then Algorithm 1 is applied with two parameters i and d such that i <
level(d) and CDS∗

i (d) 6= ∅. As in Section 8.1.1, the array prec is initialized
to d and Algorithm 2 is called with the second dart of CDS i(d) (TR-63
Proposition 16). Let us consider a given k in {1, . . . , Li(d)} and d′ = dli,d(k).
Since d′ belongs to CDSi(d) it will be traversed by Algorithm 2. Moreover,
since d′ is the first dart with a level greater than k < i+1, the loop described
on line 13 of Algorithm 2 do not reach k until Algorithm 2 is called with d′.
Therefore prec[k] is not reassigned until Algorithm 2 is called with parameters
i, d′ and prec with prec[k] = d. Then since k ≤ level(d′) < i + 1, the

74

loop described on line 3 consider j = k, and d′ = dli,d(k) is assigned to
Σ(k−1, α(d)) = ϕk−1(d) if Ki is a contraction kernel and Σ(k−1, d) = σk−1(d)
otherwise. In both cases, the assignments are validated by Theorem 3.

Let us now consider a given k in {Li(d) + 1, . . . , i + 1}. Note that this
set contains at least i + 1 since Li(d) ≤ i (Proposition 4). By definition of
Li(d), k is greater than all the dart’s level contained in CDS∗

i (d). Therefore,
prec[k] is not reassigned until the last dart CDSi(d) is traversed by Algo-
rithm 2(lines 13 and 14). Since Algorithm 2 and algorithm survive traverse
the same sequence of darts, the next encountered dart d′ is equal to ϕi(d) if
Ki is a contraction kernel and σi(d) otherwise(TR-63 Proposition 25). Since
level(d′) ≥ i+1, the loop defined on line 3 of Algorithm 2 is performed until
i + 1 and k ≤ i + 1 is considered in the loop. Since prec[k] = d and level(d)
is strictly greater than i, d′ = ϕi(d) is assigned to Σ(k−1, α(d)) = ϕk−1(d) if
Ki is a contraction kernel and d′ = σi(d) is assigned to Σ(k− 1, d) = σk−1(d)
if Ki is a removal kernel. These assignments are validated by Corollary 2
and Remark 3.

8.1.3 If Theorems 4 or 5 apply

Let us consider a dart d contracted or removed before level i. If Algorithm 1
is applied at level i with the dart di, Algorithm 2 will traverse d ∈ CDS∗

i (d
i).

Since level(d) ≤ i, Algorithm 2, called with parameters i, d and prec will fill
the array prec until level(d) (loop on line 13).

• If d is not the last dart of CDSi(d
i), i ∈ DSd and L i(d) is defined.

Let us consider a given k in {1, . . . ,L i(d)} and d′ = dsucci,d(k). Since
L i(d) ≤ level(d) (Definition 8), Algorithm 2 assigns d to prec[k] when
it is called with the parameter d. Moreover, d′ ∈ CDS∗

i (d
i) has an

index in CDSi(d
i) greater than d by definition of succi,d(k), therefore

it will be traversed by Algorithm 2 after the dart d. Since d′ is the
first dart with a level greater than k encountered since Algorithm 2
has traversed d, prec[k] is still assigned to d when Algorithm 2 is called
with d′ as second parameter. Then since k ≤ level(d′) < i+1, the loop
defined on line 3 of Algorithm 2 will consider j = k and thus assigns
d′ = dsucci,d(k) to Σ(k − 1, α(d)) = ϕk−1(d) if d is contracted and to
Σ(k − 1, d) = σk−1(d) otherwise. These assignments are validated by
Theorems 4 or 5 according to CDS∗

level(d)−1(d).

Let us now suppose that L i(d) < l = level(d), and let us consider

75

a given k in {L i(d) + 1, . . . , l + 1}. Note that this set contains at
least l + 1. The first dart with a level greater or equal to k traversed
by Algorithm 2, is ϕi(d

i), if Ki is a contraction kernel and σi(d
i) if

Ki is a removal kernel. Therefore, as previously, ϕi(d
i) is assigned to

Σ(k − 1, α(d)) = ϕk−1(d) if Ki is a contraction kernel, and σi(d
i) will

be assigned to Σ(k − 1, d) = σk−1(d) if Ki is a removal kernel. Since
L i(d) < level(d) we have i ∈ Jd (Proposition 13). Moreover, since d
is not the last dart of CDSi(d

i), CDS∗
l−1(α(d)) must be non-empty.

Therefore, the above assignments are validated by Corollary 5 (see also
Remark 7).

• If d is the last dart of CDSi(d
i), the loop defined on line 13 of Algo-

rithm 2 initializes the array prec to d from 1 up to level(d). Then the
next call to Algorithm 2 traverses ϕi(d

i) if Ki is a contraction kernel
and σi(d

i) otherwise. Since level(d) < i + 1, the loop on line 3 of
Algorithm 1 considers the indices from 1 to level(d) and assigns for
each j ∈ {1, . . . , level(d)}, ϕi(d

i) to Σ(j − 1, α(d)) = ϕj−1(d) if Ki is a
contraction kernel and σi(d

i) to Σ(j − 1, d) = σj−1(d) otherwise. These
assignments are validated by Proposition 8.

8.2 Proof of validity of Algorithm 3

The following proposition studies the main properties of the series (nextk[d])
with k in {0, . . . , p} where p denotes the index of the last iteration of Al-
gorithm 4. As shown in this proposition the sequence (nextk[d])k∈{0,...,p}

traverses a connecting dart sequence defined at level i and reaches the ϕi

or σi successor of the surviving dart which defines the connecting dart se-
quence. Given a dart d ∈ SDi we will thus have to consider the sequence
Si(d) defined by:

Si(d) =

{

CDSi(d)ϕi(d) If Ki is a contraction kernel
CDSi(d)σi(d) If Ki is a removal kernel

Such a sequence will be often used in the following demonstrations. Moreover,
the notation Indi(d) will be used to denote the index of d in Si(d

i) instead
of CDSi(d

i) (Definition 8) when no ambiguity occurs.

Proposition 14 Let us consider a dart d ∈ D, and the sequence next0[d], . . . ,
nextp[d] which denotes the successive values taken by next[d] in Algorithm 4.
This sequence satisfies next0[d] = σ(d) and:

76

• If d is removed before level i + 1 or if state(i) = Removed:

∀j ∈ {0, . . . , p − 1}

{

nextj[d] ∈ CDSi(d
i) and

Indi(nextj[d]) − Indi(d) = 2j

Moreover,

nextp[d] =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

• If d is contracted before level i + 1 or if state(i) = Contracted:

∀j ∈ {0, . . . , p − 1}

{

nextj [d] ∈ CDSi(α(d)i) and
Indi(nextj [d]) − Indi(α(d)) = 2j

Moreover,

nextp[d] =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

Proof:
Since Algorithm 3 initializes next[d] to σ[d] we have next0[d] = σ(d).
Let us show that the remaining properties hold for j = 0:

• After the initialization step:

– If d is removed before level i + 1 or if state(i) = Removed.

∗ If i ∈ DSd, d is not the last nor the only dart of CDSi(d
i),

therefore σ(d) ∈ CDSi(d
i) (TR-63, Theorem 1) and using

Proposition 4: level(σ(d)) ≤ Li(d
i) ≤ i. Moreover, in this

case σ(d) follows d in CDSi(d
i) and thus:

Indi(σ(d)) − Indi(d) = 1 = 20

∗ Otherwise, d is either the last or the only dart of CDSi(d
i).

In this case, next0[d] = σ(d) is equal to σi(d
i) or ϕi(d

i) ac-
cording to Ki(TR-63, Propositions 15 and 17). We have thus
level(σ(d)) > i and Algorithm 4 does not enter in the while
loop (line 13). Therefore:

next0[d] = nextp[d] =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

77

– If d is contracted,before level i + 1 or if state(i) = Contracted,
α(d) satisfies the same property.

∗ If i ∈ DSα(d), α(d) is not the last nor the only dart of CDSi(α(d)i),
therefore, σ(d) ∈ CDSi(α(d)i) and level(σ(d)) ≤ Li(α(d)i) ≤
i(Proposition 4). Moreover, in this case next0[d] = σ(d) =
ϕ(α(d)) follows α(d) in CDSi(α(d)i) and we have:

Indi(ϕ(α(d))) − Indi(α(d)) = 1 = 20

∗ Otherwise, σ(d) is equal to σi(α(d)i) or ϕi(α(d)i) accord-
ing to Ki(TR-63, Propositions 15 and 17). In both cases,
level(σ(d)) > i and Algorithm 4 does not enter in the while
loop. We have thus:

next0[d] = nextp[d] =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

The property is thus true before the first iteration for all darts. Let us
suppose it true until a given iteration k for any d ∈ D and let us show
that the property holds after the (k + 1)th iteration.

• If d is removed before level i + 1 or if state(i) = Removed.

According to our recurrence hypothesis, nextk[d] either belongs to CDSi(d
i)

or is equal to σi(d
i) or ϕi(d

i) according to Ki. In this latter case
level(nextk[d]) > i and Algorithm 4 terminates on nextk[d](line 13).
We have thus k = p with:

nextp[d] =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

If nextk[d] ∈ CDSi(d
i), level(nextk[d]) ≤ Li(d

i) ≤ i and Algorithm 4
performs an additional iteration (line 13). Moreover, using our recur-
rence hypothesis, the dart nextk[d] satisfies:

{

nextk[d] ∈ CDSi(d
i) and

Indi(nextk[d]) − Indi(d) = 2k

Note that we have in this case nextk[d]i = di (since nextk[d] ∈ CDSi(d
i)).

78

– If nextk[d] is removed we have nextk+1[d] = nextk[nextk[d]].

Since nextk+1[d] = nextk[nextk[d]], we can apply our recurrence
hypothesis on nextk[d]. Therefore, nextk+1[d] either belongs to
CDSi(nextk[d]i) or is equal to ϕi(nextk[d]i) or σi(nextk[d]i) ac-
cording to Ki.

If nextk+1[d] ∈ {ϕi(nextk[d]i), σi(nextk[d]i)} we have:

nextk+1[d] =

{

ϕi(nextk[d]i) = ϕi(d
i) If Ki is a contraction kernel

σi(nextk[d]i) = σi(d
i) If Ki is a removal kernel

In this case level(nextk+1[d]) > i and Algorithm 4 exit from the
while loop at this iteration (line 13). We have thus p = k + 1.

If nextk+1[d] ∈ CDSi(nextk[d]i), we have by our recurrence hy-
pothesis:

{

nextk+1[d] ∈ CDSi(nextk[d]i) = CDSi(d
i) and

Indi(nextk+1[d]) − Indi(nextk[d]) = 2k

Thus:

Indi(nextk+1[d]) − Indi(d) =

Indi(nextk+1[d]) − Indi(nextk[d]) + Indi(nextk[d]) − Indi(d)

= 2.2k

= 2k+1

(21)

Moreover, level(nextk+1[d]) ≤ Li(d
i) ≤ i and Algorithm 4 per-

forms an additional iteration.

– If nextk[d] is contracted, α(nextk[d]) is also contracted and nextk+1[d] =
nextk[α(nextk[d])].

Since nextk+1[d] = nextk[α(nextk[d])] we can apply our recur-
rence hypothesis on α(nextk[d]). Therefore, nextk+1[d] either be-
longs to CDSi(α(α(nextk[d]))i) = CDSi(nextk[d]i) or is equal to
σi(α(α(nextk[d]))i) or ϕi(α(α(nextk[d]))i) according to Ki.

∗ If nextk+1[d] ∈ {ϕi(α(α(nextk[d]))i), σi(α(α(nextk[d]))i)} we

79

have by our recurrence hypothesis:

nextk+1[d] =















If Ki is a contraction kernel
ϕi(α(α(nextk[d]))i) = ϕi(nextk[d]i) = ϕi(d

i)
If Ki is a removal kernel

σi(α(α(nextk[d]))i) = σi(nextk[d]i) = σi(d
i)

In this case level(nextk+1[d]) > i and Algorithm 4 exit from
the while loop at this iteration (line 13). We have thus p =
k + 1.

∗ If nextk+1[d] ∈ CDSi(nextk[d]i) we have:

{

nextk+1[d] = nextk[α(nextk[d])] ∈ CDSi(nextk[d]i) = CDSi(d
i) and

Indi(nextk+1[d]) − Indi(nextk[d]) = 2k

We obtain as previously (equation 21):

Indi(nextk+1[d]) − Indi(d) = 2k+1

• If d is contracted before level i + 1 or if state(i) = Contracted:

As previously, if nextk[d] 6∈ CDSi(α(d)i) we have k = p with:

nextp[d] =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

If nextk[d] ∈ CDSi(α(d)i), level(nextk[d]) ≤ i and Algorithm 4 per-
forms thus an additional iteration (line 13). Using our recurrence hy-
pothesis the dart nextk[d] satisfies:

{

nextk[d] ∈ CDSi(α(d)i) and
Indi(nextk[d]) − Indi(α(d)) = 2k

We have thus nextk[d]i = α(d)i.

– If nextk[d] is removed we have nextk+1[d] = nextk[nextk[d]].

As previously, using our recurrence hypothesis on nextk[d], nextk+1[d]
belongs either to CDSi(nextk[d]i) or {ϕi(nextk[d]), σi(nextk[d])}:

80

∗ If nextk+1[d] ∈ {ϕi(nextk[d]), σi(nextk[d])}, we have:

nextk+1[d] =

{

ϕi(nextk[d]i) = ϕi(α(d)i) If Ki is a contraction kernel
σi(nextk[d]i) = σi(α(d)i) If Ki is a removal kernel

In this case level(nextk+1[d]) > i and Algorithm 4 exit from
the while loop at this iteration (line 13). We have thus p =
k + 1.

∗ If nextk+1[d] ∈ CDSi(nextk[d]i), we have by our recurrence
hypothesis on nextk[d]:

{

nextk+1[d] ∈ CDSi(nextk[d]i) = CDSi(α(d)i) and
Indi(nextk+1[d]) − Indi(nextk[d]) = 2k

Therefore:

Indi(nextk+1[d]) − Indi(α(d)) =

Indi(nextk+1[d])−Indi(nextk[d])+Indi(nextk[d])−Indi(α(d))

= 2.2k

= 2k+1

(22)

– If nextk[d] is contracted, then α(nextk[d]) is also contracted and
we have nextk+1[d] = nextk[α(nextk[d])].

According to our recurrence hypothesis on α(nextk[d]), nextk+1[d]
belongs either to CDSi(α(α(nextk[d]))i) = CDSi(nextk[d]i) or
{ϕi(nextk[d]i), σi(nextk[d]i)} (this last relation was obtained by
using the relation α(α(nextk[d]))i = nextk[d]i)

∗ If nextk+1[d] ∈ {ϕi(nextk[d]i), σi(nextk[d]i)} we have:

nextk+1[d] =
{

ϕi(nextk[d]i) = ϕi(α(d)i) If Ki is a contraction kernel
σi(nextk[d]i) = σi(α(d)i) If Ki is a removal kernel

(23)

As previously, we have in this case p = k + 1.

81

∗ If nextk+1[d] ∈ CDSi(nextk[d]i) we have by our recurrence
hypothesis on α(nextk[d]):

nextk+1[d] ∈ CDSi(nextk[d]i) = CDSi(α(d)i)
Indi(nextk+1[d]) − Indi(nextk[d]) = 2k

As previously:

Indi(nextk+1[d]) − Indi(α(d)) = 2k+1

2

Corollary 6 With the same notations and hypothesis as Proposition 14 we
have:

level(nextp[d]) > i
∀j ∈ {0, . . . , p − 1} level(nextj [d]) ≤ i

Proof:
Since nextp[d] is the ϕi or σi successor of either di or α(d)i(Proposition 14),

we have nextp[d] ∈ SDi and thus level(dp) > i. Moreover, using Proposi-
tion 14 we have:

• If d is removed before level i + 1 or if state(i) = Removed:

∀j ∈ {0, . . . , p − 1}

{

nextj[d] ∈ CDSi(d
i) with

Indi(nextj[d]) − Indi(d) > 0

Therefore, given an index j ∈ {0, . . . , p − 1}, if nextj [d] = di we have
Indi(nextj [d]) = Indi(d

i) ≤ Indi(d). This last hypothesis being re-
fused by Proposition 14, we have nextj [d] 6= di and thus nextj[d] ∈
CDS∗

i (d
i). Thus (Proposition 4):

∀j ∈ {0, . . . , p − 1} level(nextj [d]) ≤ Li(d
i) ≤ i

• If d is contracted before level i + 1 or if state(i) = Contracted:

∀j ∈ {0, . . . , p − 1}

{

nextj[d] ∈ CDSi(α(d)i) with
Indi(nextj [d]) − Indi(α(d)) > 0

As previously, given j ∈ {0, . . . , p−1}, the hypothesis nextj [d] = α(d)i

contradict Proposition 14. Therefore, nextj [d] ∈ CDS∗
i (α(d)i) and:

∀j ∈ {0, . . . , p − 1} level(nextj [d]) ≤ Li(α(d)i) ≤ i

82

2

Remark 8 Note that Corollary 6 may be used to characterize nextp[d] since
this dart is the first one in the sequence (next0[d], . . . , nextp[d]) with a level
strictly greater than i.

As an example, let us consider the dart −11 in Table 4 (line 1). The suc-
cessive values taken by next[−11] are equal to −5, 6,−9,−7, 10, 11(Tables 4
to 9(line 1)). The dart −11 is not contracted nor removed at level 4 but since
K4 is a removal kernel the dart −11 fulfills the first requirement of Proposi-
tion 14. Therefore, the series −5, 6,−9,−7, 10, 11 is included in CDS4(−11)
(Figure 16 or 5). The index of these darts within CDS4(−11) is respectively
equal to: 1, 2, 4, 8, 16, 20 (we supposed that the index of −11 is 0). The
exponential growth of the index of next[−11] is thus verified.

6
level

5

−11
b

4

−5
b1

1

6
b2

1

−12
b3

2

−9
b4

1

−4
b5

2

−8
b6

3

−3
b7

1

−7
b8

1

1
b9

2

8
b10

1

2
b11

2

9
b12

1

−2
b13

1

−1
b14

1

7
b15

1

10
b16

4

5
b17

1

−10
b18

3

3
b19

5

11
b20

successive values of nextk[−11]

Figure 16: The connecting dart sequence CDS4(−11) with the successive
values taken by nextk[−11] during Algorithm 4

In the same way, the dart 3 is contracted at level 3. The successive val-
ues of next[3] are equal to −7, 1, 2, 7, 11(Tables 4 to 9(line 15)). Since 3 is
contracted before level 4, this sequence of darts belongs to CDS4(−34) =
CDS4(−11) (in this this case, the darts 3 and −3 belong to the same con-
necting dart sequence at level 4). The indices of −7, 1, 2, 7, 11 in CDS4(−11)
are respectively equal to 8, 9, 11, 15, 20. Since Ind4(−3) = 7, the exponential
growth of Ind4(next[−3]) − Ind4(−3) is verified.

83

Proposition 15 Using the same hypothesis and notations as Proposition 14,
given a dart d ∈ D:

• If d ∈ SDi and if one of the two following proposition is true:

1. Ki is a removal kernel and CDSi(d) = d

2. Ki is a contraction kernel and CDS i(α(d)) = α(d)

Then:
∀j ∈ {0, . . . , i} First(j, d) = σi(d)

• If d ∈ ∪i
j=0Kj and i ∈ Id

– If d is removed:

∀j ∈ {0, . . . , i}First(j, d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

– If d is contracted:

∀j ∈ {0, . . . , i}First(j, d) =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

In all cases, Algorithm 4 does not enter in the while loop and the sequence
of successive values of next[d] is reduced to next0[d].

Proof:
Let us follow the decomposition of the proposition.

• If d ∈ SDi and CDSi(d) = d

If Ki is a removal kernel and CDSi(d) = d, we have by Theorem 2:

∀j ∈ {0, . . . , i} σj(d) = σ(d)

and more particularly σi(d) = σ(d).

In the same way, if Ki is a contraction kernel and CDSi(α(d)) = α(d),
we have by Theorem 2:

∀j ∈ {0, . . . , i} ϕj(α(d)) = σj(d) = ϕ(α(d)) = σ(d)

and thus σi(d) = σ(d).

84

In both cases Algorithm 4 is called with a parameter d′ = σ(d) whose
level is greater than i. The variable max level (Algorithm 4, line 4)
is thus initialized to i + 1 and the array First(., d) is filled by σ(d) =
σi(d) from level 0 to level i(Algorithm 4, lines 7,8). Moreover, since
level(σ(d)) > i, Algorithm 4 does not enter in the while loop (line 13)
and next0[d] = σ(d) is the first and last value of next[d].

• If d ∈ ∪i
j=0Kj and i ∈ Id.

– If d is removed, we have by Proposition 8:

σ(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

Therefore, in both cases, Algorithm 4 is called with a parameter
d′ = σ(d) with a level strictly greater than i. As previously, Al-
gorithm 4 fills the array First(., d) by σ(d) from level 0 to level i
and terminates without entering in the while loop.

– If d is contracted, α(d) is also contracted and Proposition 8 applied
to α(d) gives:

ϕ(α(d)) = σ(d) =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

In both cases, Algorithm 4 is called with a parameter d′ = σ(d)
such that level(σ(d)) > i. As previously, Algorithm 4 fills the
array First(., d) by σ(d) from level 0 to level i and terminates
without entering in the while loop.

2

Proposition 15 considers the cases where a dart d is either the only or the
last dart of the connecting dart sequence which contains it. In these cases,
Algorithm 4 does not enter in the while loop (line 13).

If Algorithm 4 does enter in the while loop for each iteration such that
min level[d′′] is greater than min level[d], the algorithm fills the array First(., d)
from min level[d] to min level[d′′] (lines 15 and 21). Let us denote by mink[d]
the value of min level[d] at iteration k. Intuitively, mink[d] encodes the level
of the next dart required by the processor associated to d in order to add an
entry to the array First(., d) (comments in Algorithm 4).

The following proposition establishes the main properties of the series
mink[d].

85

Proposition 16 With the same notations as Proposition 14, given a dart
d ∈ D, min0[d], . . . , minp[d] denote the values of min level[d] during the
successive iterations of Algorithm 4, we have:
{

∀j ∈ {0, . . . , p − 1} min(level(nextj [d]), i + 1) + 1 ≤ minj[d] < i + 2
minp[d] = i + 2

Proof:
Let us first show that the condition is true before the loop. For each dart

d ∈ D, we have next0[d] = σ(d) and min0[d] is set to (lines 4 and 10):

min0[d] = min(level(next0[d]), i + 1) + 1

• If level(next0[d]) ≤ i, min0[d] = level(next0[d]) + 1 < i + 2. Moreover,
Algorithm 4 performs in this case at least one iteration (Remark 8).
Therefore next0[d] is not the last dart of the sequence next0[d] . . . nextp[d].

• If level(next0[d]) > i, min0[d] = i + 2. In this case, we have p =
0(line 13).

The condition is thus true for each dart d ∈ D before the while loop. Let
us now suppose that the condition is true for all darts until a given iteration
k.

Given one dart d ∈ D such that the value of next[d] at iteration k is not
the last one (k 6= p), we have by our recurrence hypothesis:

min(level(nextk[d]), i + 1) + 1 ≤ mink[d] < i + 2

Let us denote by d′′ the dart nextk[d] if nextk[d] is removed and α(nextk[d]) if
nextk[d] is contracted (Algorithm 4, line 15). Note that we have nextk+1[d] =
nextk[d

′′](line 24). In the same way, let us denote by p′′ the index of the last
iteration of Algorithm 4 associated to d′′. The successive values taken by
next[d′′] are thus equal to (nextj [d

′′])j∈{0,...,p′′}.
If p′′ ≤ k, the sequence (nextj [d

′′])j∈{0,...,p′′} terminates at or before iter-
ation k. Using our recurrence hypothesis we have minp′′ [d

′′] = i + 2. More-
over, since mink[d] < i + 2 by hypothesis we have mink[d] < minp′′ [d

′′] and
mink+1[d] is set to minp′′ [d

′′] = i + 2 (line 18 and 22).
Otherwise, using our recurrence hypothesis on d′′, and the fact that

nextk+1[d] = nextk[d
′′]:

min(level(nextk+1[d]), i + 1) + 1 ≤ mink[d
′′] < i + 2

86

• If mink[d
′′] ≤ mink[d], mink+1[d] is set to mink[d].

min(level(nextk+1[d]), i + 1) + 1 ≤ mink[d
′′] ≤ mink+1[d] < i + 2

• If mink[d
′′] > mink[d] we have mink+1[d] = mink[d

′′](line 22). Thus:

min(level(nextk+1[d]), i + 1) + 1 ≤ mink[d
′′] = mink+1[d] < i + 2

The condition holds thus at iteration k + 1. 2

Note that since the array First(., d) is filled up to mink[d]−2 Algorithm 4
(lines 7,8 and 20,21) the value of mink[d] may be deduced from Tables 4 to 9
by adding 2 to the Column’s index of the last filled entries on each line. Let us
consider the dart −11 (line 2) on Table 4. The value of next0[d] is indicated
on the second column and equal to −5 for the dart −11. Since First(.,−11)
is filled up to index 3 we have min0[−11] = 3 + 2 = 5. Moreover, the level of
next0[−11] = −5 being equal to 4 we have:

min(level(−5), 4 + 1) + 1 = 5 ≤ min0[−11] = 5 < 6

Since the dart −5 is removed at level 4, the value of d′′ in Algorithm 4 is equal
to −5 with min0[−5] = 0 + 2 = 2. We have thus: next1[−11] = next0[−5] =
6. Since min0[−5] ≤ min0[−11], the value of min0[−11] remains unchanged
at iteration 1 and:

min(level(next1[−11]), 4+1)+1 = 2 ≤ min0[−5] ≤ min0[−11] = min1[−11] < 6

Conversely, let us consider the dart 7 on Table 4. since the dart next0[7] = 1
is contracted at level 1, the value of d′′ in Algorithm 4 is equal to −1 with
min0[7] = 2 < min0[−1] = 3 and next1[7] = next0[−1] = 8. The value of
min1[7] is thus set to min0[−1] and we have:

min(level(next1[7]), 4 + 1) + 1 = 3 ≤ min0[−1] = min1[7] < 6

Lemma 1 With the same notations as Proposition 14, given a dart d ∈ D, if
next0[d], . . . , nextp[d] and min0[d], . . . , minp[d] denote respectively the values
of next[d] and min level[d] during the successive iterations of Algorithm 4,
the following conditions are invariant for each iteration:

• If d is removed before level i + 1 or if state(i) = Removed.

87

1. For each k ∈ {0, . . . , p−1}, any dart in the sequence]d, . . . , nextk[d]]
� CDSi(d

i) has a level strictly lower than mink[d]:

∀k ∈ {0, . . . , p − 1} ∀b ∈]d, . . . , nextk[d]] level(b) < mink[d]

2. For each k ∈ {0, . . . , p} and each j ∈ {0, . . . , mink[d]−2}, First(j, d)
is the first dart of the sequence]d, . . . , nextk[d]] with a level strictly
greater than j:

∀j ∈ {0, . . . , mink[d]−2}

{

level(First(j, d)) > j and
∀b ∈]d, . . . , F irst(j, d)[level(b) ≤ j

• If d is contracted before level i + 1 or if state(i) = Contracted

1. For each k ∈ {0, . . . , p−1}, any dart in the sequence]α(d), . . . , nextk[d]]
� CDSi(α(d)i) has a level strictly less than mink[d].

∀k ∈ {0, . . . , p − 1} ∀b ∈]α(d), . . . , nextk[d]] level(b) < mink[d]

2. For each k ∈ {0, . . . , p} and each j ∈ {0, . . . , mink[d]−2}, First(j, d)
is the first dart of the sequence]α(d), . . . , nextk[d]], with a level
strictly greater than j:

level(First(j, d)) > j and
∀b ∈]α(d), . . . , F irst(j, d)[level(b) ≤ j

Proof:
The following demonstration will be restricted to the case d is removed

before level i + 1 or state(i) = Removed, since the other case may be easily
adapted from it.

After the initialization step, since d is removed, next0[d] = σ(d) either
belongs to CDSi(d

i) or is equal to ϕi(d
i) or σi(d

i) according to Ki (Propo-
sition 14).

Case 1: next0[d] = σ(d) ∈ {σi(d
i), ϕi(d

i)}.

We have level(σ(d)) > i(Corollary 6) and min0[d] = i+2(Proposition 16).
Moreover, the variable max level (Algorithm 4, line 4) is initialized to
i + 1 and the array First(., d) is filled by σ(d) from level 0 to level i
(Algorithm 4, lines 7,8). The condition level(First(j, d) = σ(d)) > j
for each j in {0, . . . , i} is thus insured.

88

Since σ(d) follows d in Si(d
i), the interval]d, . . . , F ist(j, d)[is empty

for any j ∈ {0, . . . , i}. The second property of the second invariant
is thus trivially satisfied. Nothing remains to be demonstrated in this
case since p = 0.

Case 2: next0[d] = σ(d) ∈ CDSi(d
i).

We have level(σ(d)) ≤ i(Corollary 6).The variable max level (Algo-
rithm 4, line 4) is thus initialized to level(σ(d)) and the array First(., d)
is filled up to level(σ(d))(lines 7,8) by σ(d). Note that we have in this
case min0[d] = max level + 1 = level(σ(d)) + 1(line 10), moreover:

∀j ∈ {0, . . . , level(σ(d)) − 1} level(First(j, d)) = level(σ(d)) > j

The first property of the second invariant is thus satisfied.

Since σ(d) follows d in CDSi(d
i), the interval]d, . . . , next0[d] = σ(d)]

is reduced to {next0[d]} with:

level(next0[d]) = level(σ(d)) < min0[d] = level(σ(d)) + 1

The first invariant is thus satisfied.

As previously, the interval]d, . . . , F irst(j, d)[is empty for any j ∈
{0, . . . , level(σ(d)}. The second property of the second invariant is
thus trivially true.

The conditions are thus true before the loop. Let us suppose them true until
level k. If k = p nothing remains to be demonstrated. Otherwise, Using our
recurrence hypothesis we have:

∀b ∈]d, . . . , nextk[d]] level(b) < mink[d] (24)

Case 3: nextk[d] is removed before level i + 1 or state(i) = Removed.

Using Proposition 14, nextk[d] ∈ CDSi(d
i). Moreover, by definition of

the sequence (nextj[d])j∈{0,...,p} we have nextk+1[d] = nextk[nextk[d]].
Let us first suppose that level(nextk+1[d]) ≤ i. In this case, the Algo-
rithm 4 associated to nextk[d] performs at least k + 1 iteration (Corol-
lary 6). Using our recurrence hypothesis on nextk[d] we obtain:

∀b ∈]nextk[d], . . . , nextk[nextk[d]] = nextk+1[d]] level(b) < mink[nextk[d]]

89

• If mink[nextk[d]] ≤ mink[d], using equation 24 we have:

∀b ∈]d, . . . , nextk+1[d]] level(b) < mink[d]

Therefore, since mink[d] and the array First(., d) are not modified
(line 18) both invariants remain true at iteration k + 1.

• If mink[nextk[d]] > mink[d], then mink+1[d] is set to mink[nextk[d]]
(line 22). Using equation 24 we obtain:

∀b ∈]d, . . . , nextk[d]] level(b) < mink[d] < mink+1[d]
∀b ∈]nextk[d], . . . , nextk+1[d]] level(b) < mink[nextk[d]] = mink+1[d]

}

=⇒ ∀b ∈]d, . . . , nextk+1[d]] level(b) < mink+1[d]

Moreover, the array First(., nextk[d]) is copied in First(., d) from
the index mink[d]−1 to mink[nextk[d]]−2(lines 20,21). Since this
copy preserves the indexes we have:

∀j ∈ {mink[d] − 1, . . . , mink[nextk[d]] − 2},

F irst(j, nextk[d]) = First(j, d) > j

The above property is also true for any j ∈ {0, . . . , mink[d] −
2} by our recurrence hypothesis. Therefore, since mink+1[d] =
mink[nextk[d]]:

∀j ∈ {0, . . . , mink+1[d] − 2} First(j, d) > j

The first property of the second invariant is thus preserved at level
k + 1.

Using the second property of the second invariant on nextk[d] we
have:

∀j ∈ {mink[d] − 1, . . . , mink[nextk[d]] − 2}
∀b ∈]nextk[d], . . . , F irst(j, nextk[d])[

}

level(b) ≤ j

(25)
Note that First(j, nextk[d]) is equal to First(j, d) due to the
copy of First(j, nextk[d]) into First(j, d) for j ∈ {mink[d] −
1, . . . , mink[nextk[d]] − 2}(Algorithm 4, lines 21,22 and above).

Using the first invariant on d we obtain:

∀b ∈]d, . . . , nextk[d]] level(b) < mink[d]

90

Thus:

∀j ∈ {mink[d] − 1, . . . , mink[nextk[d]] − 2}
∀b ∈]d, . . . , nextk[d]]

}

level(b) ≤ mink[d] − 1 ≤ j

Therefore, using the above equation and equation 25 we obtain:

∀j ∈ {mink[d] − 1, . . . , mink[nextk[d]] − 2}
∀b ∈]d, . . . , F irst(j, d)[

}

level(b) ≤ j

Since this property is also valid for j ∈ {0, . . . , mink[d] − 2} by
hypothesis, the second invariant is true at level k + 1.

If level(nextk+1[d]) > i, the Algorithm 4 associated to d terminates
on nextk+1[d] (Corollary 6) and we have k + 1 = p. In this case,
the processor running Algorithm 4 on nextk[d] has terminated before
iteration k. We have thus mink[nextk[d]] = i+2(Proposition 16). Since
mink[d] < i + 2 we have mink[d] < mink[nextk[d]] and mink+1[d] is set
to mink[nextk[d]] = i + 2. As previously, the array First(., nextk[d]) is
copied in First(., d) from index mink[d] − 1 to mink[nextk[d]] − 2 = i.
Since this copy preserves the indexes we have:

∀j ∈ {0, . . . , i} level(First(j, d)) > j

The first property of the second invariant is thus preserved at level
k + 1 = p. Since the demonstration of the second property of the
second invariant do not use the first invariant on nextk[d] (which is not
valid for the last iteration of the algorithm associated to nextk[d]) it
may be demonstrated as previously by using equation 25. We obtain
thus:

∀j ∈ {0, . . . , i}

{

level(First(j, d)) > j and
∀b ∈]d, . . . , F irst(j, d)[level(b) ≤ j

Case 4: nextk[d] is contracted before level i + 1 or state(i) = Contracted

The proof of this case being similar to the one of the case (3), we will
just outline the main parts of the proof.

Using Proposition 14, nextk[d] ∈ Si(α(d)i). Moreover, by definition of
the sequence (nextj [d])j∈{0,...,p} we have nextk+1[d] = nextk[α(nextk[d])].

91

If level(nextk+1[d]) ≤ i, Algorithm 4 associated to α(nextk[d]) performs
at least k+1 iteration. Using our recurrence hypothesis on α(nextk[d])
we obtain:

∀b ∈]α(α(nextk[d])) = nextk[d], . . . , nextk+1[d]] level(b) < mink[α(nextk[d])]

• If mink[α(nextk[d])] ≤ mink[d], we obtain by using equation 24:

∀b ∈]d, . . . , nextk+1[d]] level(b) < mink[d]

Moreover, since in this case, the array First(., d) and the variable
mink[d] remain unchanged(line 18) the invariants remain true at
iteration k + 1.

• If mink[α(nextk[d])] > mink[d] then mink+1[d] is set to mink[α(nextk[d])]
(line 22). Using equation 24 we obtain:

∀b ∈]d, . . . , nextk+1[d]] level(b) < mink+1[d]

As previously, the copy of First(j, α(nextk[d])) to First(j, d) for
j ∈ {mink[d] − 1, . . . , mink+1[d]} preserves the indexes. We have
thus:

∀j ∈ {0, . . . , mink+1[d] − 2} level(First(j, d)) > j

The first property of the second invariant is thus preserved at
iteration k +1. Using the second property of the second invariant
on α(nextk[d]) we have:

∀j ∈ {mink[d] − 1, . . . , mink[α(nextk[d])] − 2}
∀b ∈]α(α(nextk[d])) = nextk[d], . . . , F irst(j, d)[

}

level(b) ≤ j

Since mink[α(nextk[d])] = mink+1[d], using the above equation
and the first invariant on d we obtain as previously:

∀j ∈ {0, . . . , mink+1[d] − 2}
∀b ∈]d, . . . , F irst(j, d)[

}

level(b) ≤ j

The second invariant remains thus true at level k + 1.

If level(nextk+1[d]) > i we have k + 1 = p (Corollary 6) and minp[d] =
i+2. Since the demonstration of the second invariant does not require
the use of the first invariant on α(nextk[d]) (which is not valid) the
same demonstration as in the case level(nextk+1[d]) ≤ i holds.

92

2

The propositions seen in this section were mainly devoted to the prop-
erties of the objects used by Algorithm 4. The following propositions use
these properties to connect the objects of Algorithm 4 with the ones used by
Theorems 2 to 5. This section concludes with Proposition 19 which shows
that the arrays First(j, d) contain the σj successors of the darts d at the end
of the algorithm.

Proposition 17 Using the same hypothesis and notations as Proposition 14,
given a dart d ∈ D:

1. If i ∈ DSd and d is removed before level i + 1 or state(i) = Removed:

∀j ∈ {0, . . . ,L i(d) − 1} First(j, d) = dsucci,d(j+1)

2. If i ∈ DSα(d) and d is contracted before level i + 1 or state(i) =
Contracted:

∀j ∈ {0, . . . ,L i(α(d)) − 1} First(j, d) = dsucci,α(d)(j+1)

Proof:

Property 1: Since i ∈ DSd, L i(d) and the function succi,d are defined.
The function succi,d is defined by (Definition 8):

∀d ∈ D

∀j ∈ {1, . . . ,L i(d)}

}

succi,d(j) = min{k ∈ {Indi(d) + 1, . . . , p} | level(dk) ≥ j} (26)

with CDSi(d
i) = d1, . . . , dp. This last definition is equivalent to:

∀d ∈ D

∀j ∈ {0, . . . ,L i(d) − 1}

}

succi,d(j + 1) = min{k ∈ {Indi(d) + 1, . . . , p} | level(dk) > j} (27)

We have by Lemma 1,]d . . . , F irst(j, d)[� Si(d) Moreover,

93

∀b ∈]d . . . , F irst(j, d))[� Si(d), level(b) ≤ j

Therefore, given one j ∈ {0, . . . ,L i(d)−1}, succi,d(j+1) is defined and
d.F irst(j, d) �pre d.dsucci,d(j+1) .Therefore, since dsucci,d(j+1) ∈
CDSi(d

i), First(j, d) ∈ CDSi(d
i). Moreover, using the first property

of the second invariant of Lemma 1: level(First(j, d)) > j. Thus:

dsucci,d(j+1) = First(j, d)

Property 2: Since i ∈ DSα(d), L i(α(d)) and the function succi,α(d) are
defined. For any j ∈ {0, . . . ,L i(α(d))−1} the value of succi,α(d)(j +1)
is defined as the index of the first dart in CDSi(α(d)i) with a level
strictly greater than j. Using Lemma 1:

∀b ∈]α(d), . . . , F irst(j, d)[� Si(α(d)i), level(b) ≤ j

We have thus:

α(d).F irst(j, d) �pre α(d).dsucci,,α(d)(j+1) � Si(α(d)i)

Since succi,α(d)(j + 1) is defined, dsucci,,α(d)(j+1) ∈ CDSi(α(di)) and

First(j, d) ∈ CDSi(α(d)i). Moreover, since level(First(j, d)) > j:

dsucci,,α(d)(j+1) = First(j, d)

2

Proposition 18 Using the same hypothesis and notations as Proposition 14,
given a dart d ∈ D:

1. If i ∈ DSd and d is removed before level i + 1 or state(i) = Removed:

∀j ∈ {L i(d), . . . , i} First(j, d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

2. If i ∈ DSα(d) and d is contracted before level i + 1 or state(i) =
Contracted:

∀j ∈ {L i(α(d)), . . . , i}First(j, d) =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

94

Proof:

Property 1: According to the second invariant of Lemma 1 at iteration
k = p:

∀j ∈ {0, . . . , i}

{

level(First(j, d)) > j and
∀b ∈]d, . . . , F irst(j, d)[level(b) ≤ j

Given one j ∈ {0, . . . , i}, according to Lemma 1, First(j, d) has an
index in Si(d

i) strictly greater than the one of d. Therefore, if Ind
denotes the index of each dart in Si(d

i) we have Ind(di) ≤ Ind(d) <
Ind(First(j, d)). Therefore, First(j, d) cannot be equal to di. More-
over, according to the definition of L i(d) we have:

∀b ∈ CDS∗
i (d

i) level(b) ≤ L i(d)

Therefore, since Si(d
i) is equal to CDSi(d

i)σi(d
i) or CDSi(d

i)ϕi(d
i)

according to Ki, the only two darts of Si(d
i) whose level is greater

than L i(d) are di and ϕi(d
i) or σi(d

i). Therefore:

∀j ∈ {L i(d), . . . , i} First(j, d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

Property 2: According to the second invariant of Lemma 1 at iteration
k = p:

∀j ∈ {0, . . . , i}

{

level(First(j, d)) > j and
∀b ∈]α(d), . . . , F irst(j, d)[level(b) ≤ j

As previously, First(j, d) cannot be equal to α(d)i for any j ∈ {0, . . . , i}.
Moreover, since:

∀b ∈ CDS∗
i (α(d)i) level(b) ≤ L i(α(d))

First(j, d) must be equal to ϕi(α(d)i) or σi(α(d)i) according to Ki for
any j ∈ {L i(α(d)), . . . , i}.

2

Let us consider the state of the variables next[d] and First(., d) during the
third iteration of Algorithm 4 displayed in Table 7 respectively in Columns 2

95

and 3 to 7. For example, the value of next[−9](line 4, column 2) during this
iteration is equal to 9 and the array First is initialized up to index 2 with:

First(0,−9) = −4, F irst(1,−9) = −8, F irst(2,−9) = −3

The value of min3[−9] is thus equal to 2 + 2 = 4.
The dart −9 is removed at level 2 and belongs to CDS4(−11). According

to Lemma 1, all the darts between −9 and 9 in CDS4(−11) have a level less
than 4(see Figure 16). In the same way, the sequences defined by the array
First(.,−9) are equal to:

] − 9, . . . , F irst(0,−9)[=] − 9, . . . ,−4[= ε
] − 9, . . . , F irst(1,−9)[=] − 9, . . . ,−8[= (−4)
] − 9, . . . , F irst(2,−9)[=] − 9, . . . ,−3[= (−4,−8)

Since level(−4) = 1 and level(−8) = 2, the second invariant of Algorithm 4
is satisfied.

During the fourth iteration next[−9] is set to next[9] = 11 with min4[9] =
6 (the line associated to the dart 9 is completely filled). Since min4[9] ≥
min4[−9], min4[−9] is set to min4[9] = 6 and the array First(., 9) is copied
in First(.,−9) from the index min4[−9]− 1 = 3 to min4[9]− 2 = 4 (Table 8,
line 4).

The line associated to −9 is thus completely filled during the fourth it-
eration and the processor associated to this dart stop at this iteration. In
the same way, the line associated to −11 (line 2) is filled during the fifth
iteration (Table 9) and its array First(.,−11) is equal to:

First(0,−11) = −5, F irst(1,−11) = −5, F irst(2,−11) = −5
First(3,−11) = −5, F irst(4,−11) = 11

Note that we have (Figure 4):

σ0(−11) = −5, σ1(−11) = −5, σ2(−11) = −5, σ3(−11) = −5, σ4(−11) = 11

This equality between First(j, d) and σj(d) is justified by the following propo-
sition:

Proposition 19 With the same notations as Proposition 14 the array First
initialized by Algorithm 4 satisfies the following property:

∀d ∈ D, ∀j ∈ {0, . . . , min(level(d) − 1, i)} First(j, d) = σj(d)

96

Proof:
Let us first consider a dart d ∈ SDi. We have thus level(d) > i and

min(level(d) − 1, i) = i.

Case 1: Ki is a removal kernel (state(i) = Removed).

If CDSi(d) = d, then Si(d) = d.σi(d), moreover according to Theo-
rem 2:

∀j ∈ {0, . . . , i} σj(d) = σi(d)

The proof is in this case provided by Proposition 15.

If CDSi(d) 6= (d), Li(d) is defined (Definition 4). Moreover, we have
in this case (Propositions 12 and 17):

∀j ∈ {1, . . . , Li(d)} dli,d(j) = First(j − 1, d)

Using Theorem 3 we have:

∀j ∈ {0, . . . , Li(d) − 1} σj(d) = dli,d(j+1) = First(j, d)

Using Proposition 18 we have:

∀j ∈ {Li(d), . . . , i} First(j, d) = σi(d)

Note that in this case L i(d) = Li(d) (Proposition 11) and di = d.

Using Corollary 2:

∀j ∈ {Li(d), . . . , i} σj(d) = σi(d) = First(j, d)

Case 2: Ki is a contraction kernel (state(i) = Contracted)

We have in this case Si(α(d)) = CDSi(α(d))ϕi(α(d)) = CDSi(α(d))σi(d).
If CDSi(α(d)) = α(d), we have Si(α(d)) = α(d)σi(d). Moreover, ac-
cording to Theorem 2:

∀j ∈ {0, . . . , i} ϕj(α(d)) = σj(d) = ϕi(α(d)) = σi(d)

The proof is in this case provided by Proposition 15.

If CDSi(α(d)) 6= (α(d)), Li(α(d)) and the functions li,α(d) are defined.
Using Proposition 17 we have:

∀j ∈ {1, . . . , Li(α(d))} dli,α(d)(j) = First(j − 1, d)

97

Using Theorem 3:

∀j ∈ {0, . . . , Li(α(d))−1} ϕj(α(d)) = σj(d) = dli,α(d)(j+1) = First(j, d)

As previously, using Proposition 18 we have:

∀j ∈ {Li(α(d)), . . . , i} First(j, d) = σi(d)

Using Corollary 2:

∀j ∈ {Li(d), . . . , i} ϕj(α(d)) = σj(d) = ϕi(α(d)) = σi(d) = First(j, d)

Let us now consider a dart d contracted or removed before level i + 1. The
sequence Si(d

i) is thus equal to CDSi(d
i)σi(d

i) if Ki is a removal kernel or
CDSi(d

i)ϕi(d
i) if Ki is a contraction kernel. Moreover, since level(d) ≤ i we

have min(level(d) − 1, i) = level(d) − 1.

Case d is removed: If i ∈ Id, d is the last dart of CDSi(d
i) and we have

by Proposition 8:

∀j ∈ {0, . . . , level(d)−1} σj(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

The proof is then provided by Proposition 15.

If i 6∈ Id, L i(d) and the functions succi,d are defined. Using either
Theorem 4 or Theorem 5 according to CDS level(d)−1(α(d)) we obtain:

∀j ∈ {0, . . . ,L i(d) − 1} σj(d) = dsucci,d(j+1)

We have thus by Proposition 17:

∀j ∈ {0, . . . ,L i(d) − 1} σj(d) = dsucci,d(j+1) = First(j, d)

If L i(d) = level(d) nothing remains to be demonstrated. Otherwise
L i(d) < level(d) and we have (Proposition 13) i ∈ Jd and L i(d) =
Llevel(d)−1(α(d)). Note that since i ∈ Jd and i 6∈ Id we must have
CDS∗

level(d)−1(α(d)) 6= ε (Definition 6 and TR-63, Proposition 21).
Therefore, using Corollary 5:

∀j ∈ {L i(d), . . . , level(d)−1} σj(d) =

{

ϕi(d
i) If Ki is a contraction kernel

σi(d
i) If Ki is a removal kernel

The proof is then provided by Proposition 18.

98

Case d is contracted: First note that α(d) is contracted at level(d).

If i ∈ Iα(d), α(d) is the last dart of CDSi(α(d)i) and we have by Corol-
lary 8:

∀j ∈ {0, . . . , level(d) − 1}

ϕj(α(d)) = σj(d) =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

(28)

The proof is then provided by Proposition 15.

If i 6∈ Iα(d), L i(α(d)) and the functions succi,α(d) are defined. Using
either Theorem 4 or Theorem 5 according to CDS level(d)−1(α(d)) we
obtain:

∀j ∈ {0, . . . ,L i(α(d)) − 1} ϕj(α(d)) = σj(d) = dsucci,α(d)(j+1)

As previously, we have by Proposition 17:

∀j ∈ {0, . . . ,L i(α(d)) − 1} σj(d) = dsucci,α(d)(j+1) = First(j, d)

If L i(α(d)) = level(α(d)) = level(d) nothing remains to be demon-
strated. Otherwise L i(α(d)) < level(d) and we have by Corollary 5:

∀j ∈ {L i(α(d)), . . . , level(d) − 1}

ϕj(α(d)) =

{

ϕi(α(d)i) If Ki is a contraction kernel
σi(α(d)i) If Ki is a removal kernel

(29)

We have thus by Proposition 18:

∀j ∈ {L i(α(d)), . . . , level(d) − 1} ϕj(α(d)) = σj(d) = First(j, d)

2

References

[1] M. Bister, J. Cornelis, and A. Rosenfeld. A critical view of pyramid seg-
mentation algorithms. Pattern Recognit Letter., 11(9):605–617, Septem-
ber 1990.

99

[2] J. P. Braquelaire, P. Desbarats, J.-P. Domenger, and C. Wüthrich. A
topological structuring for aggregates of 3d discrete objects. In Wal-
ter Kropatsch and J.-M. Jolion, editors, 2nd IAPR-TC-15 Workshop
on Graph-based Representations, volume 126, pages 145–154, Haindorf,
Austria, May 1999. Österreichische Computer Gesellschaft.

[3] Jean Pierre Braquelaire and Luc Brun. Image segmentation with topo-
logical maps and inter-pixel representation. Journal of Visual Commu-
nication and Image representation, 9(1):62–79, 1998.

[4] L. Brun. Segmentation d’images couleur à base Topologique. PhD the-
sis, Université Bordeaux I, 351 cours de la Libération 33405 Talence,
December 1996.

[5] L. Brun and J. P. Domenger. Incremental modifications on segmented
image defined by discrete maps. Technical report, RR-112696 LaBRI,
may 1996. Submitted.

[6] L. Brun and Walter. Kropatsch. Dual contraction of combinatorial maps.
In Walter Kropatsch and J.-M. Jolion, editors, 2nd IAPR-TC-15 Work-
shop on Graph-based Representations, volume 126, pages 145–154, Hain-
dorf, Austria, May 1999. Österreichische Computer Gesellschaft.

[7] L. Brun and Walter Kropatsch. The construction of pyramids with
combinatorial maps. Technical Report 63, Institute of Computer Aided
Design, Vienna University of Technology, lstr. 3/1832,A-1040 Vienna
AUSTRIA, June 2000.

[8] L. Brun and Walter Kropatsch. Irregular pyramids with combinatorial
maps. In Adnan Amin, Francesc J. Ferri, Pavel Pudil, and Francesc J.
Iñesta, editors, Advances in Pattern Recognition, Joint IAPR Interna-
tional Workshops SSPR’2000 and SPR’2000, volume Vol. 1451 of Lec-
ture Notes in Computer Science, pages 256–265, Alicante, Spain, August
2000. Springer, Berlin Heidelberg, New York.

[9] Luc Brun, Jean Philipe Domenger, and Jean Pierre Braquelaire. Discrete
maps : a framework for region segmentation algorithms. In Workshop on
Graph based representations, Lyon, April 1997. published in Advances
in Computing (Springer).

100

[10] Luc Brun and Walter Kropatsch. Dual contractions of combinatorial
maps. Technical Report 54, Institute of Computer Aided Design, Vi-
enna University of Technology, lstr. 3/1832,A-1040 Vienna AUSTRIA,
January 1999.

[11] Luc Brun and Walter Kropatsch. Pyramids with combinatorial maps.
Technical Report PRIP-TR-057, PRIP, TU Wien, 1999.

[12] Peter Burt, Tsai-Hong Hong, and Azriel Rosenfeld. Segmentation and
estimation of image region properties through cooperative hierarchial
computation. IEEE Transactions on Sustems, Man and Cybernetics,
11(12):802–809, December 1981.

[13] H. Elter and P. Lienhardt. Extension of the notion of map for the
representation of the topology of cellular complexes. In Proc. 4th Canad.
Conf. Comput. Geom., pages 65–70, 1992.

[14] A. Jones Gareth and David Singerman. Theory of maps on orientable
surfaces. Proceedings of the London Mathematical Society, 3(37):273–
307, 1978.

[15] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh optimization. In James T. Kajiya, editor, Com-
puter Graphics (SIGGRAPH’93 Proceedings), volume 27, pages 19–26,
August 1993.

[16] Walter G. Kropatsch. Building Irregular Pyramids by Dual Graph
Contraction. IEE-Proc. Vision, Image and Signal Processing,
Vol. 142(No. 6):pp. 366–374, December 1995.

[17] Walter G. Kropatsch. Property Preserving Hierarchical Graph Trans-
formations. In Carlo Arcelli, Luigi P. Cordella, and Gabriella Sanniti di
Baja, editors, Advances in Visual Form Analysis, pages 340–349. World
Scientific Publishing Company, 1998.

[18] Walter G. Kropatsch and Souheil BenYacoub. Universal Segmentation
with PIRRamids. In Axel Pinz, editor, Pattern Recognition 1996, Proc.
of 20th ÖAGM Workshop, pages 171–182. OCG-Schriftenreihe, Österr.
Arbeitsgemeinschaft für Mustererkennung, R. Oldenburg, 1996. Band
90.

101

[19] Walter G. Kropatsch and Mark Burge. Minimizing the Topological
Structure of Line Images. In Adnan Amin, Dov Dori, Pavel Pudil, and
Herbert Freeman, editors, Advances in Pattern Recognition, Joint IAPR
International Workshops SSPR’98 and SPR’98, volume Vol. 1451 of
Lecture Notes in Computer Science, pages 149–158, Sydney, Australia,
August 1998. Springer, Berlin Heidelberg, New York.

[20] Walter G. Kropatsch and Herwig Macho. Finding the structure of con-
nected components using dual irregular pyramids. In Cinquième Col-
loque DGCI, pages 147–158. LLAIC1, Université d’Auvergne, ISBN 2-
87663-040-0, September 1995.

[21] Pascal Lienhardt. Subdivisions of n-dimensional spaces and n-
dimensional generalized maps. In Kurt Mehlhorn, editor, Proceedings
of the 5th Annual Symposium on Computational Geometry (SCG ’89),
pages 228–236, Saarbrücken, FRG, June 1989. ACM Press.

[22] Annick Montanvert, Peter Meer, and Azriel Rosenfeld. Hierarchical im-
age analysis using irregular tessellations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 13(4):307–316, APRIL 1991.

[23] Jean-Gerard Pailloncy, Walter G. Kropatsch, and Jean-Michel Jolion.
Object Matching on Irregular Pyramid. In Anil K. Jain, Svetha
Venkatesh, and Brian C. Lovell, editors, 14th International Conference
on Pattern Recognition, volume II, pages 1721–1723. IEEE Comp.Soc.,
1998.

[24] Azriel Rosenfeld, editor. Multiresolution Image Processing and Analysis.
Springer Verlag, Berlin, 1984.

[25] W.T. Tutte. A census of planar maps. Canad.J.Math., 15:249–271,
1963.

[26] Dieter Willersinn and Walter G. Kropatsch. Dual graph contraction for
irregular pyramids. In International Conference on Pattern Recogntion
D: Parallel Computing, pages 251–256, Jerusalem, Israel, 1994. Interna-
tional Association for Pattern Recognition.

102

9 Index of Definitions and Notations

• Darts :

D : initial set of darts,
SDi : set of surviving darts at level i,

α : involution encoding the edges of the combinatorial
maps. Remains constant along the pyramid in this tech-
nical report,

σi : permutation σ encoding the vertices of the combinato-
rial map defined at level i,

ϕi : permutation ϕ encoding the faces of the combinatorial
map defined at level i,

di : surviving dart at level i whose connecting dart sequence
contains d (section 4).

• Functions

Li(d) : greatest level contained in CDS∗
i (d) (Definition 4,

page 19),
li,d(j) : index of the first dart in CDSi(d) with a level greater

or equal to j (Definition 5, page 23),
Indi(d) : index d in the connecting dart sequence which contains

it at level i (Definition 8, page 43),
L i(d) : minimum between level(d) and the greater level of the

darts which follow d in CDSi(d
i) (Definition 8, equa-

tion 14, page 43),
succi,d(j) : index of the first dart with a level greater than j

which follows d in CDSi(d
i) (Definition 8, equation 15,

page 43).

• Kernels :

Alternate sequence of kernels: sequence of kernels such that two
successive kernels does not have the same type (Definition 1,
page 9),

Equivalent sequence of kernels: conditions under which two sequence
of kernels produce a same combinatorial pyramid (Definition 2,
page 9).

• Levels :

103

Jd : set of levels included in {level(d), . . . , n} such that
dCDS∗

level(d)−1(α(d)) is a suffix of CDS∗
i (d

i) (Defini-
tion 6, page 36),

Id : set of levels such that d is the last dart of the connecting
dart sequence which contains it (TR-63 Proposition 21),

DSd : set of levels such that d is neither the last nor the only
dart of CDSi(d

i) (Definition 7, page 42).

• Sequences of darts

CDSi(d) : connecting dart sequence of d defined at level i (TR-
63 [7] Definition 11, and this report pages 8 and 15),

CDS∗
i (d) : connecting dart sequence of d at level i without its first

dart d,
CWi(d) : connecting walk of d at level i (TR-57 [11]),

� : sub-word relationship between two sequences of darts
(Definition 3, page 3),

� : strict sub-word relationship between two sequences of
darts (Definition 3, page 3),

�pre : prefix relationship between two sequences of darts (Def-
inition 3, page 3),

≺pre : strict prefix relationship between two sequences of darts
(Definition 3, page 3),

�suff : suffix relationship between two sequences of darts (Def-
inition 3, page 3),

≺suff : strict suffix relationship between two sequences of darts
(Definition 3, page 3),

ε : empty sequence of darts (Definition 3, page 3),
|S| : number of darts of the sequence S.

104

