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Abstract. This paper introduces the concept of discrete multidimen-
sional size function, a mathematical tool studying the so-called size
graphs. These graphs constitute an ingredient of Size Theory, a geomet-
rical/topological approach to shape analysis and comparison. A global
method for reducing size graphs is presented, together with a theorem
stating that size graphs reduced in such a way preserve all the informa-
tion in terms of multidimensional size functions. This approach can lead
to simplify the effective computation of discrete multidimensional size
functions.

1 Introduction
In the last twenty years, Size Theory has revealed to be a suitable geometri-
cal/topological approach to shape analysis and comparison, which are probably
two of the main issues in the fields of Computer Vision, Computer Graphics and
Pattern Recognition. In this context, the main tool proposed by Size Theory is
the concept of size function, a shape descriptor able to capture the qualitative
aspects of a shape, and describing them quantitatively. More precisely, the basic
idea is to model a shape by means of a topological space M and a continuous
function ϕ : M → R, called measuring function. The role of the measuring func-
tions is to describe those properties that are considered relevant for the shape
comparison or the shape analysis problem at hand. In this setting, the size func-
tion ℓ(M,ϕ) encodes part of the topological changes occurring in the lower level
sets induced on M by ϕ. In this way, the starting problem of comparing shapes
modeled by pairs (topological space,measuring function) can then be recast
into the one of comparing the associated size functions. For details and more
references about Size Theory the reader is referred to [3].

More recently, similar ideas have been re-proposed by Persistent Homology
from the homological point of view [14, 15]. More precisely, the notion of size
function coincide with the one of 0th persistent homology group.

Since their introduction, size functions have been extensively used especially
in the fields of Computer Vision [8, 13, 25], where the objects under study are
images, and Computer Graphics, comparing, e.g, 3D-models [4]. The success of
size functions in such applicative contexts is due to the fact that they admit a
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very simple and compact representation [17], and they are stable with respect to
a suitable distance [10, 11]. Moreover, size functions show resistance to noise and
modularity [16]: In particular, they inherit their invariance properties directly
from the considered measuring functions. For example, in [8] an effective system
for content-based retrieval of figurative images, based on size functions, is pre-
sented. Three different classes of image descriptors are introduced and integrated,
for a total amount of 25 measuring functions. The evaluation of this fully au-
tomatic retrieval system has been performed on a benchmark database of more
than 10,000 real trademark images, supplied by the United Kingdom Patent
Office. Comparative results have been performed, showing that the proposed
method actually outperforms other existing whole-image matching techniques.

As the previous considerations suggest, a common scenario in applications
is when two or more properties characterize the objects under study. Moreover,
sometimes it could be desirable to consider properties of shapes that are intrinsi-
cally multidimensional, such as the coordinates of a point into the 3-dimensional
space or the representation of color in the RGB model. These motivations re-
cently drove the attention to extending Size Theory to a multidimensional con-
text [2, 6] (see [7] for the multidimensional version of Persistent Homology).
Here the term multidimensional (or, equivalently, k-dimensional) refers to the
fact that the measuring functions take values in Rk and has no reference with the
dimensionality of the objects under study. Therefore, such an enlarged setting
leads to model a shape as a pair (M,ϕ), with ϕ : M → Rk, and consequently
to consider the so called multidimensional size functions.

Even in this multidimensional setting Size Theory gave encouraging results
when applied to shape analysis and comparison problems, see, e.g., [2, 5]. In those
papers it has been shown that, besides enabling the study of multidimensional
properties of the objects under study, the advantage of working with multidimen-
sional measuring functions is that shapes can be simultaneously investigated by
k different 1-dimensional measuring functions. In other words, k different func-
tions cooperate to produce a single shape descriptor. The higher discriminatory
power of multidimensional size functions in comparison to 1-dimensional ones
has been formally proved in [2].

Motivations and contributions of the paper. Obviously, dealing with
applications involves the development of a discrete counterpart of the theory.
In this perspective, a shape can be discretized by a graph G = (V (G), E(G))
endowed with a function ϕ : V (G) → Rk, being V (G) the set of vertices of
G. This leads to consider pairs of the type (G,ϕ), called size graphs. In this
mathematical setting, discrete k-dimensional size functions count the number of
connected components in G〈ϕ � y 〉 containing at least one vertex of G〈ϕ � x 〉
where, for t ∈ Rk, G〈ϕ � t 〉 is defined as the subgraph of G obtained by erasing
all vertices of G at which ϕi takes a value strictly greater than ti, for at least
one index i ∈ {1, . . . , k}, and all the edges connecting those vertices to others.

Therefore, in computing discrete k-dimensional size functions, we have to
count the connected components of particular subgraphs of a size graph. It is
reasonable to argue that, the greater the dimension k, the higher the discrimina-
tory power of k-dimensional size functions. On the other hand, the smaller the
graph, the faster the computation. Moreover, in applications we often have to
deal with big graphs, implying high computational costs. According to these con-
siderations, it follows that the problem of reducing a size graph without changing
the associated discrete k-dimensional size function is a desirable target.
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In previous works ([12, 18]), it has been proved that, in the case k = 1, a
size graph can be reduced by means of a global method (its application requires
the knowledge of all the size graph) and a local method (it requires only a local
knowledge of a size graph), obtaining a very simple structure.

In this paper, we present a first attempt for a reduction procedure for size
graphs in the case k > 1. More precisely, we provide a global reduction method
for size graphs, together with a theorem stating that reduced size graphs preserve
all the information in terms of k-dimensional size functions.

Related works. The ideas underlying the concept of size functions are partly
shared in introducing the so-called maximally stable extremal regions (MSERs)
[21]. MSERs are image elements useful in wide-baseline matching. Given a gray-
level image I, the basic intuition is to study the evolution of the thresholded
image It, varying the parameter t. The formal definition of MSERs is then de-
rived by considering the set of all connected components of all thresholded images
It. These image elements are characterized by a number of nice properties, such
as the invariance to affine transformation of image intensities and stability.

Besides being related to [12] and [18], the present work fits in the cur-
rent research and interest in strategies for reducing data structures preserving
some topological/homological information, motivated by Pattern Recognition
and data analysis problems. For example, in [24] the authors propose a method
for computing homology groups and their generators of a 2D pixel image, by
using a hierarchical structure called irregular graph pyramid. Their method is
based on two operations, preserving the homology information contained in each
region of an image, but progressively simplifying the starting graph representing
the image, and constituting the base level of the pyramid. The desired homo-
logical information is then computed at the top of the pyramid. This approach
finds its roots in a more general framework firstly introduced in [20]. Motivated
by problems coming from discrete dynamics, in [19] the authors propose an al-
gorithm for computing homology of a finitely generated chain complex. Such
an algorithm is based on reducing the size of the complex preserving homology
information in each step of the reduction. Computing the homology of the chain
complex is then postponed until the complex is acceptably small. The same phi-
losophy leads the authors of [23] to provide a reduction algorithm for simplifying
the computation of homology information for cubical sets and polytopes.

The remainder of the paper is organized as follows. In Section 2 we introduce
the standard facts and some basic definitions about discrete multidimensional
size functions. Section 3 is devoted to present our main result, together with
some experiments. Some discussions in Section 4 conclude the paper.

2 Basic definitions

In this section we provide some basic definitions about discrete k-dimensional
size functions. The following relations are introduced in Rk: for every x =
(x1, . . . , xk) and y = (y1, . . . , yk), we shall say x � y (resp. x ≻ y, x � y)
if and only if xi ≤ yi (resp. <, xi ≥ yi) for every index i = 1, . . . , k. Moreover,
we shall write x � y (resp. x ≺ y) when the relation between x and y expressed
by the operator � (resp. �) is not verified. Finally, we recall that ∆+ is defined
as the open set {(x,y) ∈ Rk × Rk : x ≺ y}.

Definition 1 (Size Graph). Let G = (V (G), E(G)) be a finite, ordered simple
graph with V (G) set of vertices and E(G) set of edges. Assume that a function
ϕ = (ϕ1, . . . , ϕk) : V (G) → Rk is given. The pair (G,ϕ) is called a size graph.
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Definition 2. For every y = (y1, . . . , yk) ∈ Rk, we denote by G〈ϕ � y 〉 the
subgraph of G obtained by erasing all vertices v ∈ V (G) such that ϕ(v) � y, and
all the edges connecting those vertices to others. If va, vb ∈ V (G) belong to the
same connected component of G〈ϕ � y 〉, we shall write va ∼=G〈ϕ�y 〉 vb.

We are now ready to introduce discrete k-dimensional size functions.

Definition 3 (discrete k-dimensional size function). We shall call discrete
k-dimensional size function of the size graph (G,ϕ) the function ℓ(G,ϕ) : ∆

+ → N
defined by setting ℓ(G,ϕ)(x,y) equal to the number of connected components in
G〈ϕ � y 〉 containing at least one vertex of G〈ϕ � x 〉.

Example 1. Figure 1 shows an example of size graph, together with the related
discrete 1-dimensional size function. We remark that in the case k = 1 the
symbols ϕ,x,y are replaced by ϕ, x, y respectively. As can be seen, in the 1-
dimensional case the domain ∆+ of ℓ(G,ϕ) is a subset of the real plane. In each

region of ∆+, the value of ℓ(G,ϕ) in that region is displayed.
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Fig. 1. A size graph and the associated discrete size function.

For example, to compute the value of ℓ(G,ϕ) at the point (a, b), it is suffi-
cient to count how many of the three connected components in the subgraph
G〈ϕ ≤ b〉 contain at least one vertex of G〈ϕ ≤ a〉: It can be easily checked that
ℓ(G,ϕ) (a, b) = 2.

In what follows, we will assume that the set of vertices V (G) of the graph G is
a subset of a Euclidean space.

3 A global method for reducing (G,ϕ): the L-reduction
As stressed before, our goal is to reduce a size graph (G,ϕ) without changing
the related discrete k-dimensional size function: This can be done by erasing all
those vertices of G that do not contain, in terms of discrete k-dimensional size
functions, “meaningful information”. Indeed, in order to compute the discrete
k-dimensional size function of (G,ϕ), we are only interested in capturing the
“birth” of new connected components and the “death”, i.e. the merging, of the
existing ones: As will be shown, these events are strongly related to particular
vertices of G, that can be seen, in some sense, as “critical points” of the function
ϕ with respect to the relation �. The proposed reduction method allows us to
detect these particular vertices and to introduce the concept of L-reduction of



5

(G,ϕ), a new size graph (GL,ϕL) that is obtained by considering only such
vertices instead of the entire set V (G). The importance of the L-reduction is
shown by our main result, stated in Theorem 1, which will be formally proved
at the end of this section and can be rephrased as follows:

Theorem 1 (rephrased). The k-dimensional size functions of (GL,ϕL) and
(G,ϕ) coincide.

From now on, we assume that a size graph (G,ϕ) is given. Moreover, for every
vi ∈ V (G) we define Ai as the set of the “lower adjacent vertices” for vi, i.e.
Ai = {vj : (vi, vj) ∈ E(G),ϕ(vj) � ϕ(vi)} ∪ {vi}.

Definition 4 (Single step descent flow operator). Let L : V (G) → V (G) be
the function defined as follows: For every vi ∈ V (G) let Bi ⊆ Ai be the set whose
elements are the vertices w ∈ Ai for which the Euclidean norm ‖ϕ(w)− ϕ(vi)‖
takes the largest value. Finally, we choose the vertex vh ∈ Bi for which the index
h is minimum. Then, we set L(vi) = vh. We shall call L the single step descent
flow operator.

From the definition of L and the finiteness of V (G), if follows that for ev-
ery v ∈ V (G) there must exist a minimum index m(v) ≤ |V (G)| such that
Lm(v)(v) = Lm(v)+1(v) (if L(v) = v we will set m(v) = 0).

Definition 5 (Descent flow operator). For every v ∈ V (G) we set L(v) =
Lm(v)(v). We shall call the function L : V (G) → V (G) the descent flow operator.

In other words, the descent flow operator takes each vertex vi ∈ V (G) to
a sort of “local minimum” vj = L(vi) of the function ϕ, with respect to the
relation �. This implies that, starting from vj we are not able to reach a vertex
w adjacent to it with ϕ(w) � ϕ(vj), strictly decreasing the value of at least one
component of ϕ. During the descent, indexes are used to univocally decide the
path in case the set Bi contains more than one vertex.

Example 2. Figure 2 shows some possible cases arising from the action of the
operators L and L when ϕ = (ϕ1, ϕ2). As can be seen, the vertex v1 is taken
by the operator L to v4 = L5(v1). Since it is not possible to reach another
vertex from v4 decreasing the values of both ϕ1 and ϕ2, we shall set v4 = L(v1).
Analogously, we have v5 = L(v2). The last considered case is represented by the
vertex v3: it can be seen as a fixed point with respect to the operator L, i.e. it
holds that L(v3) = v3, so we shall set L(v3) = v3.

Definition 6 (Minimum vertex). Each vertex v for which L(v) = v will be
called a minimum vertex of (G,ϕ). Call M the set of minimum vertices of
(G,ϕ).

We point out that M is the set of all those vertices representing the “birth”
of new connected components in (G,ϕ): Indeed, by increasing the values of
ϕ1, . . . , ϕk, such an event occurs only when the values labeling a minimum vertex
are reached.

The following two definitions characterize the “death-points” of existing con-
nected components of (G,ϕ).

Definition 7 (Ridge pair). Let vj1 , vj2 ∈ V (G) be two distinct minimum
vertices of (G,ϕ). Suppose vi1 , vi2 are two adjacent vertices of G, such that
{L(vi1),L(vi2)} = {vj1 , vj2}; we shall call {vi1 , vi2} a ridge pair adjacent to the
minimum vertices vj1 and vj2 .
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Fig. 2. The operators L and L in action: Some examples when ϕ = (ϕ1, ϕ2).

Definition 8 (Main saddle). Let vj1 , vj2 ∈ V (G) be two distinct minimum
vertices of (G,ϕ). Let also {vi1 , vi2} be a ridge pair adjacent to the minimum
vertices vj1 , vj2 such that the following statements hold:

1. there does not exist another ridge pair {vi3 , vi4} adjacent to the minimum
vertices vj1 , vj2 with

{

max{ϕh(vi3), ϕh(vi4)} ≤ max{ϕh(vi1), ϕh(vi2)}, h = 1, . . . , k;
∃h̄ : max{ϕh̄(vi3), ϕh̄(vi4)} < max{ϕh̄(vi1), ϕh̄(vi2)}, h̄ ∈ {1, . . . , k};

(1)

2. if {vi3 , vi4} is another ridge pair adjacent to the minimum vertices vj1 , vj2
with

max{ϕh(vi3), ϕh(vi4)} = max{ϕh(vi1), ϕh(vi2)}, h = 1, . . . , k,(2)

then (i1, i2) precedes (i3, i4) in the lexicographic order. We shall call the set
{vi1 , vi2} the main saddle adjacent to the minimum vertices vj1 , vj2 and S the
set of main saddles of (G,ϕ).

Roughly speaking, the set of ridge pairs of (G,ϕ) can be partially ordered
by means of the relation �. In this sense, the main saddles will be the lowest
ridge pairs.

Example 3. Figure 3(a), 3(b), 3(c) shows some examples of ridge pairs and main
saddles, when function ϕ takes values in R2.

G′ G′′ G′′′

ϕ1ϕ1 ϕ1

ϕ2 ϕ2ϕ2

vj1vj1
vj2vj2

vj1
vj2

vi1vi1

vi2vi2

vi1

vi2

vi3

vi4

vi3

vi4

(a) (b) (c)

Fig. 3. Some examples of ridge pairs and main saddles.

To clarify the role of main saddles, let us study the changing in the number
of connected components of the subgraphs G′〈ϕ � y 〉, G′′〈ϕ � y 〉 and G′′′〈ϕ �
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y 〉, with y ∈ R2, just for y � (max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}):
Indeed, we want to capture the merging of the connected components arising
from the minimum vertices vj1 and vj2 in the three instances. According to this
consideration, by means of the chosen assumption on y we ensure that both vj1
and vj2 belong to the subgraphs G′〈ϕ � y 〉, G′′〈ϕ � y 〉 and G′′′〈ϕ � y 〉.

In Figure 3(a) a main saddle adjacent to the minimum vertices vj1 and vj2
is displayed. In this setting, by varying the values taken by y under the as-
sumption y � (max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}), it holds that for
y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}) the subgraph G′〈ϕ � y 〉
consists of the two connected components arising from vj1 and vj2 , reducing to
a unique one when y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}).

Figure 3(b) shows an example of two ridge pairs that can be considered “un-
comparable”, due to the fact max{ϕ1(vi1), ϕ1(vi2)} < max{ϕ1(vi3), ϕ1(vi4)},
while max{ϕ2(vi1), ϕ2(vi2)} > max{ϕ2(vi3), ϕ2(vi4)}. Thus, both {vi1 , vi2} and
{vi3 , vi4} will be main saddles. In this case, when y varies under the assump-
tion y � (max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}), the number of the con-
nected components in the subgraph G′′〈ϕ � y 〉 decreases (from 2 to 1) when the
relation y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}) (or, alternatively,
the relation y � (max{ϕ1(vi3), ϕ1(vi4)},max{ϕ2(vi3), ϕ2(vi4)})) becomes true.

Finally, Figure 3(c) shows two comparable ridge pairs, hence the “lower”
one, that is {vi1 , vi2}, will be a main saddle, while the other will be not. Con-
sider G′′′〈ϕ � y 〉, assuming that y varies according to the restriction y �
(max{ϕ1(vj1), ϕ1(vj2)},max{ϕ2(vj1), ϕ2(vj2)}): It consists of two connected com-
ponents arising from vj1 and vj2 , merging into a unique one as soon as the relation
y � (max{ϕ1(vi1), ϕ1(vi2)},max{ϕ2(vi1), ϕ2(vi2)}) becomes true.

As Example 3 suggests, S is the set of all those couples of vertices representing
the “death”, i.e. the merging, of existing connected components in the given size
graph (G,ϕ).

We are now ready to introduce the concept of L-reduced size graph:

Definition 9 (L-reduced size graph). Let GL = (V (GL), E(GL)) be the
graph with V (GL) = M ∪ S and E(GL) defined as follows: (u, v) ∈ E(GL)
(and hence u and v are adjacent) if and only if either u or v is a minimum
vertex and the other is a main saddle adjacent to it (in the sense of Definition
8). Let also ϕL : V (GL) → Rk be a function defined in this way: ϕL(v) = ϕ(v)
if v ∈ M and ϕL(u) = (max{ϕ1(vi1), ϕ1(vi2)}, . . . ,max{ϕk(vi1), ϕk(vi2)}) if
u = {vi1 , vi2} ∈ S. The size graph (GL,ϕL) will be called the L-reduction of
(G,ϕ).

Remark 1. We stress that each main saddle {v, w} of a size graph (G,ϕ) will
be represented, in the L-reduced size graph, by a unique vertex labeled by the
k-tuple (max{ϕ1(v), ϕ1(w)}, . . . ,max{ϕk(v), ϕk(w)}).

Remark 2. The global reduction method we have just defined is strongly related
to the concept of Pareto-Optimality, a well-known topic in Economy, especially
in the field of Multi-Objective Optimization. For a detailed treatment about
Pareto-Optimality, the reader is referred to [22]. Another related notion is the
one of pseudocritical point studied in [9]

The importance of the L-reduction is shown by our main result, stating that
discrete k-dimensional size functions are invariant with respect to this global
reduction method.
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Theorem 1. For every (x,y) ∈ ∆+, it holds that ℓ(G,ϕ)(x,y) = ℓ(GL,ϕL)(x,y).

In order to prove Theorem 1, we need the following lemma.

Lemma 1. Let v1, v2 be two minimum vertices of (G,ϕ). Then, for every y ∈
Rk, it holds that v1 ∼=G〈ϕ�y〉 v2 if and only if v1 ∼=GL〈ϕL�y〉 v2.

Proof. Suppose that v1 ∼=G〈ϕ�y〉 v2. Then, by definition there exists a sequence
(v1 = vj1 , vj2 , . . . , vjm−1

, vjm = v2) such that (vjn , vjn+1
) ∈ E(G) for every n =

1, . . . ,m− 1, and vjn ∈ G〈ϕ � y〉 for every n = 1, . . . ,m. Consider the sequence
(L(v1) = v1,L(vj2), . . . ,L(vjm−1

),L(v2) = v2) of minimum vertices. Substituting
each subsequence of equal consecutive vertices by a unique vertex representing
such a subsequence, we obtain a new sequence (v1 = w1, w2, . . . , ws−1, ws = v2)
(in other words, the sequence (u1, u1, . . . , u1, u2, u2 . . . , u2, . . . , un, un, . . . , un) is
substitute with (u1, u2, . . . , un)). It is easy to prove that, for every index j < s,
there exists at least one main saddle σj adjacent to wj and wj+1, such that
σj ∈ G〈ϕ � y〉. Then, consider the sequence (w1, σ1, v2, σ2, . . . , ws−1, σs−1, ws):
such a sequence proves that v1 ∼=GL〈ϕL�y〉 v2.

Conversely, suppose that v1 ∼=GL〈ϕL�y〉 v2. By definition there exists a se-
quence (v1 = w1, σ1, w2, σ2, . . . , ws−1, σs−1, ws = v2) of vertices of GL〈ϕL � y〉
such that every vertex wj is a minimum vertex and every σj is a main saddle adja-
cent to wj and wj+1. Therefore, we can modify such a sequence in order to obtain
the following one: for every index j < s, between wj and σj = {vij , vnj

} insert the

sequence (Lm(vij
)−1(vij ), L

m(vij
)−2(vij ), . . . , L

2(vij ), L(vij )), while between σj e

wj+1 insert the sequence (L(vnj
), L2(vnj

), . . . , Lm(vnj
)−2(vnj

), Lm(vnj
)−1(vnj

))
(we are assuming wj = L(vij ) and wj+1 = L(vnj

)). Finally, by substituting the
vertices vij e vnj

(taken in this order) for every main saddle σj , we obtain a new
sequence proving that v1 ∼=G〈ϕ�y〉 v2.

Now we are ready to prove Theorem 1.

Proof. Let (x,y) ∈ ∆+. We have to prove that there exists a bijection F :
G〈ϕ � x〉/ ∼=G〈ϕ�y〉→ GL〈ϕL � x〉/ ∼=GL〈ϕL�y〉. For every equivalence class
C ∈ G〈ϕ � x〉/ ∼=G〈ϕ�y〉 we choose a minimum vertex vC ∈ C. Obviously, vC is
also a vertex of GL〈ϕL � x〉. Therefore in GL〈ϕL � x〉/ ∼=GL〈ϕL�y〉 there exists
an equivalence class D containing vC . We shall set F (C) = D. From Lemma 1
it follows that F is equivalence class in GL〈ϕL � x〉/ ∼=GL〈ϕL�y〉 contains at
least one minimum vertex of G〈ϕ � x〉.

Remark 3. The L-reduction of a size graph (G,ϕ) is not unique. In particular,
changing the ordering of the set V (G) can produce different, non-isomorphic
L-reduced size graphs. On the other hand, Theorem 1 shows that we will always
obtain L-reductions of (G,ϕ) with the same associated discrete k-dimensional
size function.

Therefore, Theorem 1 allows us to evaluate the discrete k-dimensional size func-
tion of a size graph (G,ϕ) directly dealing with one of its L-reductions.

3.1 Experimental results

Table 1 shows how our global reduction method can facilitate the computa-
tion of ℓ(G,ϕ), simplifying the structure of (G,ϕ) but preserving the same in-
formation in terms of discrete k-dimensional size functions. We considered four
graphs obtained from as many triangle meshes (available at [1]) by taking the 0-
dimensional simplexes as vertices and the 1-dimensional simplexes as edges. For
each graph, we considered the 2-dimensional measuring function ϕ = (ϕ1, ϕ2)
taking each vertex v of coordinates (x, y, z) to the pair ϕ(v) = (|x|, |y|).
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tie space shuttle x wing space station

|V (G)| 2014 2376 3099 5749
|E(G)| 5944 6330 9190 15949
|V (GL)| 588 262 571 1935
|E(GL)| 826 328 838 2778
V%− E% 29.2% - 13.9% 11% - 5.2% 18.4% - 9.2% 33.66% - 17.42%

Table 1. Some experimental results.

Table 1, from row 1 to 4, shows respectively the number of vertices |V (G)| and
edges |E(G)| for each considered size graph (G,ϕ) and for the associated L-
reduction (GL,ϕL) (i.e. |V (GL)| and |E(GL)|). In particular, if M and S are
respectively the set of minimum vertices and of main saddles for a size graph
(G,ϕ), it easily follows from Definition 9 that |V (GL)| = |M ∪S| and |E(GL)| =
2|S|. For each considered (G,ϕ), the last row of Table 1 shows respectively the
ratios V% = |V (GL)|/|V (G)| and E% = |E(GL)|/|E(G)|, expressing them in
percentage points. In other words, the lower those ratios, the higher the reduction
rate. As can be seen, these experiments gave encouraging results, enabling the
reduction of a size graph up to the 11% of the starting number of vertices and
the 5.2% of the starting number of edges (space shuttle case).

To conclude, we report the most salient part, at least in our perspective,
of the algorithm we implemented to obtain our experimental results, i.e. the
computation of the descent flow operator introduced in Definition 5. All the
rest can be easily derived from the theoretical setting discussed in the previous
sections, combined with what follows. The symbol SSDFO(v) denotes the single
step descent flow operator computed at a vertex v.

Algorithm 1 Computation of the descent flow operator L(v) for v ∈ V (G)

L(v)← SSDFO(v)
while L(v) 6= v do

v ← L(v);
L(v)← SSDFO(v);

end while

L(v)← L(v)

4 Conclusion
In this paper we presented a global method for reducing size graphs together
with a theorem, stating that discrete multidimensional size functions are invari-
ant with respect to this reduction method. This result can lead us to easily and
fast compute discrete multidimensional size functions for applications, as high-
lighted by some experiments showing the feasibility of the proposed reduction
scheme. This work can be seen as a contribution in finding reduction methods for
data structure encoding multidimensional information of shapes, in a way that
the topological/homological information carried with them is preserved. For the
next future, it could be interesting to study the existence of a local reduction
method for k-dimensional size graphs preserving the information in terms of
multidimensional size functions.
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