
Head detection and localization from sparse 3D data 

Markus Clabian 1, Harald Rötzer 1, Horst Bischof 2, and Walter Kropatsch 3 

1 Advanced Computer Vision GmbH, Donau City Str.1, A-1220 Vienna, Austria 
{markus.clabian, harald.roetzer}@arcs.ac.at 

2 Institute for Computer Graphics and Vision, Graz University of Technology,  
Inffeldgasse 16 , A-8010 Graz, Austria 
bischof@icg.tu-graz.ac.at 

3 Pattern Recognition and Image Processing Group, Institute of Computer Aided 
Automation, Computer Science Department, Vienna University of Technology, Favoritenstr. 9, 

A-1040 Vienna, Austria 
krw@prip.tuwien.ac.at 

Abstract. Head detection is an important, but difficult task, if no restrictions 
such as static illumination, frontal face appearance or uniform background can 
be applied. We present a system that is able to perform head detection under 
very general conditions by employing a 3D measurement system namely a 
structured light distance measurement. An algorithm of head detection from 
sparse 3D data (19x19 data points) is developed that reconstructs a 3D surface 
over the image plane and detects head hypotheses of ellipsoidal shape. We 
demonstrate that detection and rough localization is possible in up to 90% of 
the images. 1 

1. Introduction 

Head detection is the starting point of several methods that are elaborated in the fields 
of face recognition, gesture recognition and man machine interaction. Usually the 
detection can be based on the robust detection of an outline (shape) [3] or based on 
general appearance [10]. The outline of the head can only be obtained reliably when a 
uniform background and non varying illumination is assumed Appearance based 
methods perform well in case of frontal face appearance but show high false detection 
rates, when the head of a person shall be detected in arbitrary pose i.e. [11]. 

Some authors have proposed to use 3D information for head detection [3,4,6,8]. 
All these approaches either use a pre-selected set of data points that are known to lie 
at the person, or they use a very dense data set coming from stereo/disparity imaging. 
In this paper we present a novel system that performs fast detection of head 
hypotheses using sparse 3D information derived by a simple structured light 
technique (19x19 points). The head search is performed by surface reconstruction and 
an ellipse search within equidistant planar cuts parallel to the image plane. 
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The paper is organized as follows: First the acquisition system similar to [2] is 
presented. Improvements of the technique are summarized and a new method to solve 
the correspondence problem is presented in section 2. Section 3 explains the head 
detection method that comprises surface reconstruction, ellipse search using planar 
surface cuts and ellipse hypothesis selection. Section 4 presents the results based on 2 
real sequences, section 5 gives a summary and draws conclusions for future 
algorithms and applications. 

2. Acquisition System 

The acquisition system is based on the well known technique of structured light 
projection [7,12] and acquires a 3D point cloud of 361 points at maximum. It consists 
of the four steps: (i) projection of a dot matrix pattern (ii) dots detection (iii) dot 
labeling (iv) distance calculation. 

2.1. Structured light technique to acquire distance points 

Structured light is a well known technique for obtaining 3D information in various 
applications [13,14]. It is used to measure distances by projecting artificial feature 
points (patterns) onto a scene of interest. These points are emitted from a light 
projector and therefore lie on a line (epipolar line) in the image. The location of the 
point on the line (disparity) measures the position of the projected point in 3D space. 
The 3D coordinates can then be calculated via triangulation using the known positions 
of the calibrated camera and the projector. 

Our implementation of the structured light system comprises two main devices: a 
camera and a pattern generation unit. The camera is a CCD-video camera with 752(H) 
x 582(V) picture elements and a chip size of 4.9mm (H) x 3.7mm (V). The pattern 
generation unit consists of a laser light source (LASIRIS-model: 670 nm, 10 mW), 
and a changeable beam shaping optics to generate the projection pattern (19x19 dot 
matrix). Both devices are mounted on a stable board at same height, without any 
horizontal tilt.  From a top view the camera is pointed inwards at a distance of 
12.5mm to the projector. The camera was calibrated by using the techniques 
presented by [5] and [17]. The projected dot pattern was rotated against the horizontal 
line to achieve a near-degenerate epipolar alignment [1]. 

2.2. Dot detection  

To segment the projected dots from the rest of the image the simple thresholding 
procedure [2] was improved by applying a difference of Gaussian (DoG) filter 
operation to the Image I, which gives IF. This filter checks the property that projected 
dots can be found as a small area of pixels that have higher intensity as the pixels in 
its surrounding. After filtering IF is thresholded to get a binary output IT that is used to 
determine the central point of each dot by calculating the center of gravity (CoG). 



2.3. Dot labeling 

Dot labeling is the task of assigning the detected dots to the corresponding epipolar 
line, defined by the projector and camera positions. This is necessary to allow a 
proper distance calculation and can be accomplished by using spatial and temporal 
constraints as intensively discussed in [2]. Here we add an alternative that can be used 
especially to improve the speed of the initialization procedure. It is based on the 
principle that the surfaces on which the dots are projected are locally approximately 
planar and therefore the projected dot pattern of rectangular shape is transformed by 
an affine transformation. The algorithm has two major steps:  

First every four epipolar lines that belong to a rectangular part of the projected dot 
pattern are tested, whether their corresponding dots satisfy the affine transformation 
condition. This is tested by calculating the parameters of an affine transformation in a 
least square sense. If the error of the transformation is less than a limit ε, the dots are 
assigned to the corresponding epipolar lines. 

The second step is performed by region growing. Stepwise all lines are labeled that 
are close to already assigned lines. The condition that neighboring dots satisfy the 
affine transformation condition is also applied. The algorithm increases the allowed 
deviation limit ε, if the number of assigned dots per iteration step is low (<5). This 
guarantees that the region grows in planar region first. After that discontinuities are 
overleaped due to the increase of allowed deviation limit ε. The two main 
assumptions of rectangular shaped pattern and projection on a planar surface may be 
violated to a limited degree which is given by the size of the deviation limit ε. 

If the dots are detected and labeled correctly and if the camera is calibrated, 
distance calculation can be done by triangulation using the distance between camera 
and projector. 

3. Head detection module 

The structured light system measures surface points in 3D. The described system 
yields 361 (maximal) or fewer points (usually 20 to 70 points are occluded). The 
critical information that should be extracted from the point cloud is: 
- Foreground/background separation: The background can be an arbitrary scene, 

the foreground is the head/thorax region of a human. This separation is simple, if 
the background can be modeled very accurate. All points that do not lie on the 
background model belong to the foreground.  

- Localization of the head region: To localize the head, a model is fitted to the 
point cloud. This can be done either directly or by determining several 
parameters of the surface that is spanned by the given points. 

In the following it is assumed that the background model is not available. Therefore 
the foreground/background separation can either be determined by searching for the 
relevant depth discontinuities in the point cloud which is a non-trivial problem for 
sparse (19x19) depth measurements, or by fitting a foreground (head/thorax) model 
onto the data. Trying to fit i.e. an ellipsoid model to the data points was not robust, 
because of the usually small amount of points that lie on the head surface. 



3.1. Depth surface reconstruction 

The depth of the surface is a function that arises over the image plane (x,y). The given 
data points P(x,y,z) define this surface z=f(x,y).  The surface reconstruction can 
therefore be seen as an approximation problem. The data points define a function z 
that shall be approximated. The approximation shall exhibit following properties: 
- Robust approximation: outliers should have no influence on the approximation. 
- Strong separation: different objects should appear separated in the representation. 

Therefore depth discontinuities should be preserved. 
- Correct extrapolation: as data points are defined in a certain area, the behavior of 

the function at the borders should not influence its behavior in the defined area.  
This surface can be approximated by a sum of basis functions B(x,y) 
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The coefficients cn are determined by solving the system of linear equations given 
by the coordinates of the data points P in a least square sense. The choice of the basis 
function Bn is critical to achieve the mentioned properties. Different multiquadrics 
and Gaussians were tested. It turned out that head and shoulder region contrasts from 
the background by applying  

( ) 1, 22 ++= yxyxB . (2) 

The advantage of a basis function that tends to ∞ lies in the fact, that head regions that 
lies at the edge of the working area stays a convex region, while it appears to be 
concave for functions that tend to 0. 

3.2. Planar surface cuts (isodistance lines) 

To analyze the resulting surface z, different representations can be used. For the 
specific task of finding the head region, the surface was represented by its planar cuts 
at equal distances. Therefore the surface was cut by parallel planes of equal distances 
and the resulting polygons were analyzed.  

By taking the polygons stepwise from the nearest cut to the furthest, the center of 
gravity of closed polygons mark the extremas of the function. Growing confocal 
polygons are minimas (convex, from camera perspective), shrinking polygons 
(concave) are maximas. Minimas can be marked as head/thorax-hypotheses. Every 
closed polygon that surrounds a minimum is marked as supporting the corresponding 
hypothesis. Therefore each hypothesis consists of a sequence of growing polygons. 

Open polygons must be handled differently (Fig.1). As they cannot be assigned to 
a certain hypothesis, they are cut into parts, where at least one polygon part has the 
following properties: (i) it is of elliptical shape (ii) it surrounds and therefore supports 
an existing hypothesis. If such a cut is not possible, the open polygon is not used. 
After considering all polygons usually a small number (~5) of elliptical hypotheses 
remain.  



3.3. Ellipse search and hypothesis analysis 

When a hypothesis is found, this represents a convex surface part of the overall 
surface. Every hypothesis is tested, whether it is a head region or not. Following tests 
are applied: 
(i) Area limits: A head must have a certain minimum and maximum size. 

Hypotheses that violate those limits can be removed. 
(ii) Curvature limits: The head can be approximated by an ellipsoid. Therefore 

planar cuts are ellipses that have same focus and have increasing area. The 
increase from one slice of the ellipsoid to the next can be used to calculate 
the curvature of the ellipsoid. If this curvature is beyond a certain interval, 
the corresponding hypothesis can be removed. 

(iii) Shape limits: The polygon must be of elliptical shape. Additionally the ratio 
of the axis of the ellipse must be in a certain range, as very narrow ellipses 
are not allowed. Hypotheses that violate this condition are removed. 

All remaining hypotheses are assumed to be head regions. 

4. Results 

We have tested the reconstruction and ellipsoid finding algorithm on 2 sequences of 
50 image frames each. The sequences show one sitting person (46 frames each), some 
frames show an empty seat (4 each). Sequence 1 had no hand movements, whereas in 
Sequence 2 the hands were moved strongly, partly occluding the head or regions close 
to the head. The results can be summarized as follows: Sequ.1.: In all images showing 
a person the head location is found as elliptical hypothesis (46 out of 46). In 37 cases 
the head was found without any ambiguity. Sequ.2: From the 46 images showing a 
person the head location is found as elliptical hypothesis in 41 cases. In 13 cases the 
head was found correctly,  in 18 cases more than one hypothesis was selected and in 3 
cases no hypothesis was selected. 

Fig. 3.: Contour plot of reconstructed surface with ellipse hypothesis. Darker lines are contours that are closer to the camera. 
Dashed line shows an example of an open polygon and a cut of an elliptical part of the polygon. Ellipses show hypothesis, dark 
ellipse fulfills all head conditions, bright ellipses violates curvature condition. 
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Fig.1.: Contour plot of reconstructed surface with ellipse hypotheses. Darker lines are contours 
that are close to the camera. Dashed line shows an example of an open polygon and a cut of an 
elliptical part of the polygon. Ellipses show hypothesis, dark ellipse fulfils all head conditions, 
bright ellipses violates curvature condition. 



Table 1.: Result of head detection process of two sequences. In most frames the head was 
detected as elliptical hypotheses. The selection of the correct hypothesis as head is ambiguous 
or fails, if hands are occluding the head or are in regions close to the head. 

 
As demonstrated in Fig. 2 the head is found robustly as ellipsoid hypothesis. Two 

errors occur in frames 4 and 7, due to the facts that the surface reconstruction is not 
perfect in small parts of the image (frame 4) and the curvature constraint is violated 
(frame 7). However seven frames show exact head ellipse detection from which the 
distance to the camera can be calculated correctly.  

The head is not detected in the following cases: (i) The head is not fully within the 
dot projection area or rather close to the margin of that area.(ii) The head does not 
separate enough from its background. This is only the case if the background is 
concave in the way that the head fits well into it and forms a rather planar surface. 
Other possible errors occur, if close objects influence the surface in the way that it 
does not separate the head. This can occur i.e. if hands are close to the head. Objects 
are detected as heads if they form surfaces that are similar to that of heads. These 
cases cannot be detected from the 3D information of the region alone. 

5. Summary and Conclusions 

We have presented a fast method based on a simple structured light system that 
performs head hypotheses detection in situations, where methods using shape or 
appearance fail. Using sparse 3D data up to 100% location detection and up to 80% 
correct hypothesis selection is possible. Ambiguities occur only in very specific cases 
(see section 4). To avoid these situations, the following improvements are proposed: 
- using model information: in this work the underlying head model is very simple. 

It assumes that the head is an ellipsoid of a certain size, defined by all possible 
human head sizes. If specific properties of the person are known, this could lead 
to a more exact description of the person’s head. Additionally information about 
the body size and position can be included to remove wrong hypothesis. 

- using sequence information (tracking): as each frame is treated independently, we 
expect significant improvements, if frame-to-frame dependencies are considered. 

- using 2D (gray value) information: each hypothesis can be tested by applying 
facial feature detection algorithms to the 2D part of the image that corresponds to 
the detected head area. If facial features are found, the hypothesis is confirmed.  

The 3D range information is the main information that is used by our head detection 
method. As this is not limited to 3D information derived from a structured light  

head detected 
as ell. hyp. 

head selection from ell. hyp.   total showing  

yes no correct 
without amb.

correct with amb. wrong not done 

head 46 46  37 1 3 5 Sequ 1 50 

no head 4      4 

head 46 41 5 13 18 7 3 Sequ 2 50 

no head 4      4 
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Fig.2.: Nine consecutive frames of  a sequence showing a moving person. Upper part: control 
images. Lower part: contour plot of the reconstruction surface. The ellipse hypotheses and the 
selected head hypotheses are shown. The estimated distance to the camera is given. Seven 
(nr.1,2,3,5,6,8,9) show correct head detection, nr.4 shows a wrong head detection due to bad 
reconstruction in the area between ellipse 2 and 4, nr. 7 shows a non-detection due to the fact that 
ellipse 1 violates the curvature constraint. 
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system, other systems such as stereo or multiple camera views can be used 
alternatively. The algorithm of finding the suitable ellipsoids in the 3D view can be 
applied to any 3D range data that can be described as a function arising from the 
image plane. 
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