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Abstract. In this paper, we investigate the problem of analyzing the
shape of obstacle-avoiding paths in a space. Given a d-dimensional space
with holes, representing obstacles, we ask if certain paths are equiva-
lent, informally if one path can be continuously deformed into another,
within this space. Algebraic topology is used to distinguish between topo-
logically different paths. A compact yet complete signature of a path is
constructed, based on cohomology theory. Possible applications include
assisted living, residential, security and environmental monitoring. Nu-
merical results will be presented in the final version of this paper.
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1 Introduction.

In the recent years, there has been growing interest in topics such as assisted
living, residential, security and environmental monitoring [1, 2]. This is closely
related to the area of remote sensing, which aims at delivering a description of
the chosen aspects of the sensed environment by aggregating information from
an array of sensors.

The information gathered by individual sensors ranges from visual data (Vi-
sual Sensor Networks [3]) to the presence of smoke in the air. Visual Sensor
Networks are the most closely related to the computer vision field. In this pa-
per we treat the sensors in an abstract way, therefore the method should be
applicable in a number of settings.

One important question that arises is how to arrange such sensors. In [1],
which largely inspired us to write this paper, straight laser beams are used as
sensors. Prompted by some of the questions posed in the summary of that paper,
we consider the following questions. How does this scenario generalize to sensors
of different shapes? Can we generalize these concepts to higher dimensions (the
original considerations were done in 2D)?

As a simple example, consider a network of paid highways. Since exact track-
ing the movement of each vehicle is prohibitively expansive, simplified measure-
ments have to be performed. Gates serve as sensors, enabling us to roughly



estimate the movement of the vehicle. While we fail to capture the precise ge-
ometry of the path of the vehicle, we are able to capture what we consider the
topology.

This is closely related to the recent concept of minimal sensing, where sensors
are very limited in their capabilities. In such a setting, sensors are typically
unable to capture the actual geometry of the space. See [2] and references
therein, to see how this problem was tackled, often using algebraic topology.

While the above example is trivial and can be described with basic graph
algorithms, the situation is much more interesting (and challenging) in higher
dimensions. Since our approach is based on algebraic topology, especially coho-
mology theory, it is dimension-independent.

Our additional aim is to to expose cohomology theory to the CAIP commu-
nity. We believe that the mathematical robustness and intuitivity make it an
interesting tool, which can be applied more generally.

The paper is structured as follows: In Section 2 a rigorous formulation of
the considered problem is presented. In Section 3 the complexes used in this
paper are discussed. In Section 4 an intuitive introduction to homology and
cohomology theory is given. In Section 5 the main result of this paper is stated.
In Section 6 an algorithm to compute signature of a given path is presented.
Finally in Section 7 the conclusions are drawn.

2 Problem formulation.

We analyze movement, from point S to T , of a number of agents in a known
space. Simply put, we ask how to place sensors, so that we are able to describe the
topology of each path, based only on how it intersects these sensors. We encode
these intersections as a signature, which is sufficient to discriminate between
paths having different topology (more precisely: homology). We will prove that
the sensors need to be placed in the support of cohomology generators.

The problem of analyzing paths of moving agents in a 2-dimensional space,
in the presence of obstacles and linear (beam) sensors was introduced in [1].
We present a variation for a d-dimensional, orientable space, where ”sensors”
are represented by certain (d− 1)-dimensional hypersurfaces (possibly with self-
intersections). For the 2−dimensional case the difference is that our sensors can
have arbitrary shape and are allowed to intersect. While the idea of a sensor
of arbitrary shape might seem contrived, imagine that such a sensor is actually
composed of a number of small sensing units covering a given hypersurface.

3 Representing spaces with holes.

In this section we present some theory related to computational topology, used
later in the paper. For simplicity the concept of simplicial complex is used to
represent the space. The definition of simplicial complex can be found in [4].
Imagine that a simplicial complex is a decomposition of the space into a set of



simplices, that is vertices, edges, triangles etc. In general, n−simplex is a convex
hull of n+ 1 points lying in general position. The number n is the dimension of
a simplex S and is denoted by dim(S). We assume that vertices of a simplicial
complex are uniquely enumerated with integers, allowing to index each simplex
with the set of its vertices. Each simplex in the simplicial complex has an orien-
tation (this is discussed in details in [5]). In the implementation presented in [6],
enumeration of vertices of complex K is used in orienting the edges and higher
dimensional simplices. For instance every edge E is oriented from its higher ver-
tex to lower vertex. From now on the orientation of all simplices in the complex
is assumed to be fixed. A subset of simplices is chosen to represent the obstacles.
During the computation of cohomology, the interior of obstacles is removed from
the complex. Later by K we will denote the complex after this removal.

There are two vertices chosen in our complex, marked as S and T from Source
and Target. An oriented path is the formal sum of edges joining those points
with +1,−1 coefficients, which induce orientation.

The goal is to provide an efficient algorithm to describe and distinguish paths
from S to T , which avoid all the obstacles3. An example of a 2−dimensional
simplicial complex can be found in Figure 1(a).

(a) (b)

Fig. 1. a) Simple example of a complex. Obstacles are marked with black, paths with
green (solid). b) Graphical representation of complexes that we will use for clarity of
images. Imagine that the complex is very finely subdivided, but paths and generators
are still composed of edges of the complex, which is not displayed. Cohomology gener-
ator is depicted as the red (dotted) curve. In both cases point S is placed in the lower
left, and point T in the upper right corner of the picture.

4 Cohomology theory.

In this section an intuitive exposition of homology and cohomology theory is
given. For a full introduction consult [5]. Both homology and cohomology groups
give a compact description of topology of a simplicial complex.

3 Note that the number of homologically different paths is unbounded for non-trivial
cases.



In homology theory one uses a concept of chain, being a formal sum of
simplices with integer coefficients. A group of chains of dimension n is denoted
by Cn(K) := {

∑
S∈K,dim(S)=n αSS}. A boundary operator ∂ : Cn → Cn−1 is

then introduced for a simplex S = [v0, . . . , vn]:

∂S =

n∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vn] (1)

and extended linearly to Cn(K). As an example, let us calculate the boundary
of a full triangle: ∂[0, 1, 2] = [1, 2]− [0, 2] + [0, 1].

A group of n dimensional cycles Zn(K) := {c ∈ Cn(K) | ∂c = 0}. In short, a
cycle is a chain whose boundary vanishes. A group of n− dimensional boundaries
Bn(K) := {c ∈ Cn(K)|∃d ∈ Cn+1(K)|∂d = c}. The idea behind cycles and
boundaries is presented in Figure 2(a).

(a) (b)

Fig. 2. a) Right chain is a cycle and a boundary. Left cycle surrounds a hole, so it
is not a boundary b) Red (dotted) and green (dashed) cycles are homologous. Blue
(bold) is not homologous with any of them. Red (or green) and blue cycles constitute
a homology basis.

It is straightforward to verify from Formula 1 that ∂∂ = 0. Therefore we have
Bn(K) ⊂ Zn(K) and we can define the homology group Hn(K) as a classes of
cycles which are not boundaries, namely Hn(K) := Zn(K)/Bn(K). Two n-cycles
c1 and c2 such that c1 − c2 ∈ Bn(K) are said to be homologous. By homology
generators we mean any representants of classes of cycles that generate Hn(K).
In absence of torsions the rank of homology group can be interpreted as number
of holes in the considered space. Idea of homology groups is given in Figure 2(b).

In this paper we restrict ourselves to connected simplicial complexes K which
are torsion-free in dimension one (i.e. after the obstacles are removed from the
complex, the resulting complex is connected and torsion free). Torsions in ho-
mology mean that elements of a homology group have finite order (they generate
a subgroup Zp of homology group for p ∈ Z being the order of an element).

For a formal introduction to the cohomology theory consult [5], for an intu-
itive introduction consult [6]. Further in the paper we need a concept of n-cochain



c∗ being a map assigning any chain c ∈ Zn(K) a number4 〈c∗, c〉 ∈ Z. A group
of n−cochains is denoted as Cn(K). Dually to homology, a so-called coboundary
operator δ : Cn(K) → Cn+1(K) is introduced. It is defined as 〈δc∗, c〉 = 〈c∗, ∂c〉
for every c∗ ∈ Cn−1(K) and c ∈ Cn(K). Again, cochain c∗ is a cocycle if δc∗ = 0.
Cochain c∗ is a coboundary if there exists a cochain d∗ ∈ Cn−1(K) such that
δd∗ = c∗. Cocycles are denoted as Zn(K), and coboundaries as Bn(K). Finally,
cohomology group is defined as the quotient Hn(K) := Zn(K)/Bn(K).

It might appear that for torsion-free spaces all (co)homology computations
could be performed with Zp coefficients for p ∈ Z, p ≥ 2. This is not the case.
Without going into details: we must use Z coefficients to handle the case of paths
crossing certain cohomology generators np-times for n ∈ Z.

For our purposes it is sufficient to consider cohomology group basis in di-
mension one. For torsion-free spaces, there is a straightforward correspondence
between homology and cohmology group generators (see Theorem 4.8, [7]).
Theorem 4.8 states that for any set of cycles representing homology gener-
ators h1, . . . , hn there exist dual cohomology generators h1, . . . , hn such that
〈hi, hj〉 = δij . This theorem allows us to use the so-called ”cutting analogy” to
describe a cohomology basis. In fact, in the considered case the generator hi, for
i ∈ {1, . . . , n}, can be seen as a fence that blocks any cycles in the class of hi.
This idea is illustrated in Figure 3(a). The concept of the presented ”cut anal-
ogy” was developed in the so-called Discrete Geometrical Approach to Maxwell’s
equations [6].
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Fig. 3. a) The ”cut analogy”. When one cuts a complex along the red (dashed) co-
homology generator, the left homology class vanishes. Cutting along blue (dotted)
generator makes the right homology class vanish. b) Completion of chain c.

With the algorithm described in [6], we obtain cohomology generators (rep-
resented as a set of pairs (edge, integer)) of any simplicial complex. Note that

4 Operation 〈c∗, c〉 is called evaluation of a cocycle c∗ on a cycle c. In order to compute
〈c∗, c〉, note that the set of maps {S∗|〈S∗,K〉 = δSK for any K ∈ K}S∈K constitutes
a basis of Cn(K). Therefore every cochain c∗ is equal to

∑
S∈K αSS

∗ for dim S = n.
Then for a chain c =

∑
S∈K βSS we have 〈c∗, c〉 = 〈

∑
S∈K αSS

∗,
∑

S∈K βSS〉 =∑
S∈K αSβS .



cohomology generators are allowed to intersect. See the Borromean Rings phe-
nomenon in [8] for an example of a 3-dimensional space, where it is impossible
to find a non-intersecting cohomology basis.

5 Path characterization using signatures.

In this section a formal proof of the main result of the paper is provided. Sup-
pose a simplicial complex K is given. As previously, we assume that H1(K) is
torsion-free and K itself is connected. Let h1, . . . , hn be cocycles representing
first cohomology group generators of K. Moreover, let h1, . . . , hn be the homol-
ogy generators dual to h1, . . . , hn according to Theorem 4.8 in [7] (they are only
needed for the proof). We fix h1, . . . , hn and their dual h1, . . . , hn for the rest of
this section. Let c ∈ C1(K) be a path from S to T .

Definition 1. For a path c the vector Sc = [a1, . . . , an] such that ai = 〈hi, c〉,
for i ∈ {1, . . . , n}, is called a signature of c.

In this section we show that paths having the same signature are homologous
and, conversely, that paths having different signature are non-homologous. It
is necessary to assume that all paths lead from S to T . A signature of a path
provides an efficient way of distinguishing non-homologous paths and identifying
homologous ones. Let us start with a lemma, the proof of which can be found
in [7].

Lemma 1. Let c∗ ∈ Z1(K) be a cocycle and let b ∈ B1(K) be a boundary. Then
〈c∗, b〉 = 0.

Let us now define the completion of a chain. Let us take any chain A joining
point S with the boundary of the complex K, B joining point T with the bound-
ary of a complex and D lying entirely on the boundary of K joining endpoints
of chains A and B. With any path c ∈ C1(K) from S to T we can assign a cycle
c ∪A ∪B ∪D. This cycle is called a completion of chain c (see Figure 3(b)).

Now we are ready to give the two main theorems of this paper.

Theorem 1. Two homologous paths c1 and c2 have the same signature, Sc1 =
Sc2 .

Proof. Since c1 and c2 are homologous, there exists b ∈ C2(K) such that ∂b =
c1− c2. Therefore c1 = c2 + ∂b. From Lemma 1 we have, that 〈hi, c1〉 = 〈hi, c2 +
∂b〉 = 〈hi, c2〉+〈hi, ∂b〉 = 〈hi, c2〉+0 = 〈hi, c2〉 for every i ∈ {1, . . . , n}. Therefore
Sc1 = Sc2 . ut

Theorem 2. Two non-homologous paths c1 and c2 have different signatures,
Sc1 6= Sc2 .

Proof. Suppose by contrary that c1 and c2 are non-homologous and Sc1 = Sc2 .
Therefore d1 = c1∪A∪B∪D and d2 = c2∪A∪B∪D are also non-homologous.
But h1, . . . , hn is a homology basis dual to cohomology basis h1, . . . , hn. Then we



have d1 =
∑n

i=1 αihi + ∂e and d2 =
∑n

i=1 βihi + ∂f for some e, f ∈ C2(K) and
αi, βi ∈ Z for i ∈ {1, . . . , n}. Since d1 and d2 are not homologous there exists
an index i ∈ {1, . . . , n} such that αi 6= βi. But from the hypothesis we have
Sc1 = Sc2 . It implies, that Sd1 = Sd2 . We have 〈hi, d1〉 = 〈hi,

∑n
i=1 αihi〉 = αi

and 〈hi, d2〉 = 〈hi,
∑n

i=1 βihi〉 = βi. Therefore from the hypothesis we have
αi = βi for every i ∈ {1, . . . , n}, which gives a contradiction. ut

6 Computing the Signature of a path.

In this section we present an algorithm which, for fixed cocycles h1, . . . , hn,
constituting a cohomology basis and a path c from A to B outputs Sc, the
signature of c. We assume that simplicial complex is represented as a pointer-
based data-structure as in [6]. Moreover, let each edge E of simplicial complex
K be equipped with a vector v of n integers such that vE [i] = 〈hi, E〉 for every
i ∈ {1, . . . , n}. Let a path c be given as a vector of pointers to edges in K.

It remains to resolve the subtlety of orientation of simplices versus an orien-
tation of a path c. The path is oriented from point S to T . Let us define o(c, E)
in the following way: o(c, E) := 1 if orientation of c is the same as orientation
of E and −1 otherwise. Now we list the algorithm. Also, see Figure 4 for a vi-
sual example. Note that this two-dimensional example is very simple and can be
solved with basic tools, but our method works for general dimension.

Algorithm 1 Computing signature of a path

Input: path c, simplicial complex K with cohomology generators h1, . . . , hn

Output: s - signature of path c
1: Let v be the vector encoding the intersections of c with cohomology generators
2: Let s be an n-tuple
3: for i ∈ {1, . . . , n} do
4: s[i]←

∑
E∈c o(c, E)vE [i]

5: return s

7 Conclusions

The ideas presented in this paper generalize the approach using ”laser beams”
presented in [1]. We use topological tools to distinguish between different obstacle-
avoiding paths, based only on their intersections with selected sensors. The
usage of algebraic topology enables us to use sensors of arbitrary shape and
abstract away from the actual geometry of the space. Topological information
(cohomology generators and their intersections with paths) sufficiently repre-
sents the space. Additionally, the usage of algebraic topology makes our method
dimension-independent, which extends the area of applications.
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Fig. 4. We use the presented procedure to compute s[1] for the blue (dotted) path. vE [1]
is nonzero only for the edges in the support of the cohomology generator. Therefore
s[1] = 1, as the orientation of this path is the same as the orientation of cohomology
generator (bold black). As for the green (dashed) path s[1] = 0, since the path do not
cross the cohomology generator. Blue (dotted) and green (dashed) paths are clearly
non-homologous.
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