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Abstract. This paper presents a method that detects elliptical parts of
a given elongated shape. For this purpose, first, the shape is represented
by its skeleton. In case of branches, the skeleton is partitioned into a
set of lines/curves. Second, the ellipse parameters are estimated using
the thickness profile along each line/curve, and the properties of its first
and second derivatives. The proposed method requires no prior infor-
mation about the model, number of ellipses and their parameter values.
The detected ellipses are then used in our second proposed approach for
ellipse-based shape description. It can be applied for analysing motion
and deformation of biological objects like roots, worms, and diatoms.
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1 Introduction

The advantages of modelling the structure of the shape with ellipses cover various
aspects. Human perceptual system interprets the significant parts of the shape
or the rigid parts of articulated objects with the ellipses [10]. Also the ellipsoids
and super quadrics provide a strong cue about the orientation of anisotropic
phenomena [11]. Indeed, the major axis of the ellipse, when interpreted as an
orientation, becomes useful for judging the motion direction or for constraining
the motion of articulated parts of the object [29]. The eccentricity of the ellipse, ε,
characterizes its elongation, and is estimated as (

√
a2 − b2)/a, where a and b are

the lengths of the semi-major and semi-minor axes of the ellipse respectively. It
can be applied for analysis of deformations like shrinking and stretching. Tuning
the ellipse elongation along its orientation can be used to enhance the traditional
skeletonization algorithms for the problem of representing the intersection of two
straight lines (or, alternatively, a cross), compare cases (a) and (d) in Fig. 1.
Another advantage of using ellipses refers back to the paper of Rosenfeld [23].
He defines the ribbon-like shapes that can be represented given a spine and a
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generator (disc or line segment). There are also algorithms that use ellipse as
the generator [27]. To the best of our knowledge the ellipse was not assumed as
a unified generator that can degenerate into a disc (ε = 0) and/or into a line
segment (ε = 1). On one side, this provides a smooth transition between the
rectangular parts of the object that have different properties, compare Fig. 1,
cases (b) and (e). On the other side, symmetric shapes with a high positive
curvature can be represented by a single spine instead of a branched skeleton,
compare Fig. 1, cases (c) and (f).

Fig. 1. Advantages of using ellipses as a generator for improving the skeletonization in
case of intersection of two straight lines [(a) and (d)]; a union of two distinct rectangles
[(b) and (e)]; a shape with a high positive curvature [(c) and (f)]. Blue indicates a type
of generator, and the skeleton is shown in pink. (Color figure online)

The goal of this paper is twofold: (1) detect elliptical parts of the given elon-
gated shape, and (2) describe its structure with ellipses and their degenerations
(line segments and discs). Existing approaches for ellipse detection either try to
minimize the deviation between a single ellipse and the given shape (based on
Least-Squares [8,19]), or require an information about a number of ellipses and
their parameters (based on Hough Transform [4,22] and Gaussian Mixture Mod-
els [14]). In contrast, the proposed method does not have the above constraints.
Taking the skeleton of the shape, we, first, decompose it into a set of simple
lines/curves w.r.t. branches. Then, for each line/curve we analyse its thickness
profile and detect the parameters of ellipses. To obtain invariance to deforma-
tion, we find the ellipses on the flattened version of the shape, while preserving
the mapping to the original shape [1,13].

The remaining of the paper is structured as follows. Section 2 discusses the
state-of-the art in the area of ellipse detection. Then we explain the proposed
methods for ellipse detection and shape description in Sects. 3 and 4 respectively.
Specific algorithms and the related research are directly described in the corre-
sponding subsections. In Sect. 5 we provide the experimental results, and give
the final remarks in Sect. 6.

2 Related Work

Wong et al. [28] distinguished three major categories of approaches that aim at
finding ellipses: (1) based on Least-Squares (LS), (2) based on voting scheme,
(3) uncategorized (statistical, heuristic, and hybrid techniques).

Gabdulkhakova2016



414 A. Gabdulkhakova and W.G. Kropatsch

LS approaches minimize the deviation between the computed ellipse points
and the original set of points [8,19]. The disadvantage of the standard LS method
is that it finds only a single ellipse and is sensitive to noise and outliers. Voting
scheme based methods mainly operate with the Hough Transform (HT) [4,16,20,
22,24]. Ellipse has five parameters - orientation, length of the semi-major axis a,
length of the semi-minor axis b, coordinates of a center x and y. The complexity
of searching a combination of these parameters is high - O(n5), where n is the
number of input points [7]. In order to optimize the computation and reduce
the complexity of the parameter space, the ellipse-specific properties are used
(symmetry, tangents, locus, edge grouping, etc.). The hybrid method by Cicconet
et al. [5] combines LS and HT within a single system. The disadvantage lies in
specifying parameters for the HT, such as the maximum number of ellipses,
range of semi-major and semi-minor axes lengths. Another group of methods
uses the statistical techniques like Gaussian Mixture Models (GMM) [14,29], or
RANdom SAmple Consensus (RANSAC) [18]. The limitation of this idea is that
the elliptical model of the shape should be given a priori.

3 Thickness-Based Ellipse Detection (TED)

The TED algorithm aims at finding the parameters of ellipse according to the
thickness profile along the skeleton of the shape, or, in case of branches, along
the lines/curves that form a skeleton. The finest detection is achieved on the
symmetric shape that satisfies the following criterion. Consider a symmetric
2D shape, S1, in a Cartesian XY plane. Its major symmetry axis coincides
with the abscissa. Rotate S1 about the abscissa (Fig. 2(a)), project the resultant
3D volume (Fig. 2(b)) orthogonally w.r.t. the original XY plane (Fig. 2(c)). The
criterion requires the original shape S1 to be identical to the resultant projection
S2. In general, the present work aims at the above type of symmetric shapes
and/or at their combination. To emphasize the fact that points of the skeleton
are equidistant from the opposite borders of the shape, we will also refer to it as
a symmetry axis.

Fig. 2. Description of the target shape: (a) original shape S1 (b) 3D volume, which
is obtained by rotating S1 about X-axis (c) projection of the 3D volume onto the XY
plane - S2. For the target shape, S1 is identical to S2.

The pipeline of the proposed TED contains three algorithmic steps: Step 1 -
skeletonization, Step 2 - computation of the thickness profile along the skeleton,
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Step 3 - ellipse parameter estimation w.r.t. the thickness profile. When the shape
is deformed, the algorithm has an additional step of flattening the shape after
skeletonization. In the scopes of this paper we will call this modification as a
Straightened TED, or S-TED.

3.1 Skeletonization

Numerous skeletonization techniques exist. The majority of them refers to the
concept of Medial Axis Transformation (MAT), introduced by Blum [3]. The
underlying principle is to fit the circles of maximum radii inside the shape and
sequentially connect their centres. The resultant representation does not contain
the ridges of the contour, as opposed to grass-fire skeleton [3] and the Distance
Transform (DT) [26]. By the definition, DT is an operator that yields a distance-
valued image by assigning to each pixel of the given binary image its distance
to the nearest background pixel.

Another group of methods evolves from Voronoi diagrams [21]. The idea is to
use the boundary points of the shape in order to produce the Voronoi tesselation.
After that the skeleton is obtained as the set of points and of the Voronoi diagram
that belongs to the given shape.

The last approach within this overview is homotopic thinning [9] (a recent
survey on skeletonization was conducted by Saha et al. [25]). It iteratively peels
the surface of the object, while preserving topology. The result is a one-pixel-
thick skeleton.

In general, all the above approaches suffer from noise. This impact is reflected
by spurious branches that do not correspond to the essential parts of the shape.

3.2 Shape Flattening

One way to flatten the shape is to compute the curvature along the symmetry
axis. Starting at the origin, the points of the symmetry axis are sequentially
translated towards the alignment direction [12]. Such an approach has a high
computational cost, and fails on the spiral shapes.

Our idea is to transform the Cartesian coordinates of each point of the shape
in image space to the object-specific space. For this purpose we use Straightened
Curved Planar Reformation (CPR) [13]. It takes longitudinal values along one
axis and latitudinal values along the other axis.

The longitudinal axis reflects the length of the main axis of the object. One
of the two end points is used as the origin. The values range from 0 to N , where
N equals the number of points that form the axis. The latitudinal axis reflects
the thickness of the object for each point along the longitudinal axis. The advan-
tages of the above method include (1) the stability to deformations (excluding
crossing), (2) the invariance to affine transformations, (3) the reconstruction of
the straightened representation of the shape without an additional computation.
The method can be extended to 3D case.
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3.3 Thickness Profile

Given a symmetry axis of the object, SA, a position function, pos : R+ → R
2,

associates the point P = (x, y) ∈ SA to the arc length s between the point P
and the origin. In this context, thickness profile, f : R → R+ , is a 1D function
of arc length s along SA that returns the thickness of the object at pos(s):

f(s) = {lthick(pos(s))|s ∈ [0, . . . , length(SA)]} (1)

By lthick we denote a distance metric which defines the local thickness of the
object at the point P . This metric is chosen such that it satisfies the requirements
of the particular problem. Indeed, in TED algorithm, the target objects have a
straight symmetry axis, and are rotated such that this axis is parallel to abscissa.
Let us assume that local thickness equals the width of a cut taken along the
normal at the given skeletal point. Then, lthick can be defined as a double value
of a chamfer DT [26] with a City-Block metric at this skeletal point. The reason
is that (1) in this problem statement, the City-Block metric provides a better
thickness estimation than the Euclidean metric since having a 4-neighbourhood,
(2) as opposed to computing the number of the shape points corresponding
to each cut along the skeleton, chamfer DT is less sensitive to noise and local
perturbations, (3) chamfer DT has a linear time complexity.

In S-TED algorithm lthick can be defined by latitudinal values along the flat-
tened shape. Computing the latitudinal values with the normals to the symmetry
axis is sensitive to noise. The linear LS algorithm enables to reduce the impact
of such local perturbations. Also, the algorithm enables to build a hierarchy of
ellipses by smoothing the thickness profile with the Gaussian filter. Starting at
a fine level with many ellipses that correspond to every local perturbation (in
case of a noisy data), and finishing at a coarse level that represents the whole
shape with a single ellipse.

In literature also exist another thickness-estimation algorithms, such as [6],
that may improve the performance. Though, comparison of various distance
metrics for thickness was not the goal of the present paper.

3.4 Ellipse Parameter Estimation

The idea of detecting the parameters of ellipse is derived from the properties
of the thickness change along the elongated shape. The centre of an ellipse-
candidate corresponds to the position of the local maximum (C in Fig. 3), and/or
to the position of the bending point (C1, C2 in Fig. 3). The local minimum cor-
responds to some point on the ellipse-candidate (P1, P2 in Fig. 4).

Position of the Ellipse Centre. The algorithm for detecting the centres of
ellipses is described in relation to three possible configurations of the target
shapes: (1) a single ellipse, (2) a union of multiple ellipses, and (3) a union of
multiple ellipses with a smooth transition.
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Single ellipse. Thickness profile of a single ellipse monotonically increases to the
length of the semi-minor axis, b, and then monotonically decreases. Thus, the
position of the ellipse centre is exactly at the local maximum of the thickness pro-
file. Indeed, consider the canonical ellipse representation (see Fig. 4). Its centre
is at the origin, O = (0, 0), minor and major axes are correspondingly collinear
with the ordinate and abscissa. The canonical ellipse equation is:

x2

a2
+

y2

b2
= 1,where P = (x, y) is a point on the ellipse. (2)

Substituting x with s, and assuming that y = ±f(s) w.r.t. Eq. 1 gives:

s2

a2
+

f2(s)
b2

= 1 ⇒ f2(s) =
b2

a2
(a2 − s2) ⇒ 2f(s)f ′(s) =

b2

a2
(−2s)

f ′(s) = 0, a �= 0, b �= 0 ⇒ s = a, x = 0
(3)

Fig. 3. Example of multiple
ellipses with smooth transi-
tions. The positions of the
centres are detected w.r.t. to
the local maximum at the
point C, and the bending
points - C1 and C2.

Since dealing with the discrete space, f ′(s) is
approximated by the differences between the neigh-
bouring points of the profile. Therefore, local maxi-
mum is the point, where f ′(s) changes from positive
to zero/negative value.

Multiple ellipses. In general, a union of multiple
ellipses along the symmetry axis results in multi-
ple local maxima. So, the positions of the centres
are found w.r.t. f ′(s) as for the single ellipse. Spe-
cific case is the union of two identical ellipses with
the common major or minor axis - there is only
one local maximum, and, thus, one detected ellipse.
Another issue is the union of two ellipses of dif-
ferent sizes, that overlap along the minor axis of
the smaller ellipse. For the small ellipse, the local
maximum cannot be detected, since the sign of the
derivative does not change. This case is discussed
in the next paragraph. For the complete enclosure
case, estimation of the ellipse centre positions w.r.t.
the local maxima is possible, if performed for each
object separately.

Multiple ellipses with smooth transitions. Consider
a shape that consists of ellipses and smooth tran-
sitions between them which cover at most a half
of each ellipse (see Fig. 3). In this case, the ellipse
centre positions C1 and C2 w.r.t. the local maxima
cannot be estimated. At these points, the sign of
f ′(s) stays the same, but its value is changing by Δ while connecting two differ-
ent monotonic functions. As a result, there is a Dirac function like peak at f ′′(s)
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with a negative Δ amplitude at the corresponding positions. We call C1 and C2

bending points.
The algorithm for detecting bending points has 2 steps. First, we find the

set of the peak-candidates by comparing the ratio between the maximum and
median values of the f ′′(s). This is done, in order to eliminate the impact of
noise. As opposed to mean, median is not distorted by the maximum values.

In the second step we fit ellipses inside the peak-candidates, and compute
their eccentricities using the equation (

√
a2 − b2)/a. For the Dirac function like

peaks this ratio converges to 1.

The Lengths of the Semi-major and Semi-minor Axes. Let us consider
that pos(C) = (xC , yC) is the center of the ellipse-candidate, pos(P1) = (xP1 , yP1)
and pos(P2) = (xP2 , yP2) are the points on it, detected as the closest local minima
to C (Fig. 4). Then the length of the minor axis b equals:

b = f(C) (4)

The length of the semi-major axis a is then computed w.r.t. the thickness profile
(see Fig. 4) and implicit ellipse representation:

(Pi − C)2

a2
+

(f(Pi) − 0)2

b2
= 1 ⇒ a = arg min

1≤i≤2

|Pi − C|√
1 − f2(Pi)

b2

(5)

Fig. 4. Estimation of the ellipse parameters. C is the ellipse centre (found as the local
maximum); P1 and P2 are some points on the ellipse (found as local minima). Two
ellipse candidates are computed w.r.t. P1, P2 and the implicit ellipse representation.

3.5 Complexity of the Algorithms

TED contains 3 algorithmic steps. Step 1 - skeletonization of the shape using
the chamfer DT - O(n), where n is the number of shape points. Next, in Step 2,
the thickness profile is computed by taking the maximum DT value along the
skeleton. The complexity remains O(n). Step 3 - finding the local extrema and
the bending points has a linear complexity. Since the above steps are performed
sequentially, the resultant complexity equals O(n).

S-TED contains shape flattening in addition to Step 1. The complexity of
this procedure is O(n), where n is the number of shape points. Steps 2–3 are
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identical to those described in TED. Therefore, the overall complexity of the
S-TED is O(n). In contrast, the approach proposed by Cicconet et al. [5] has a
higher complexity of O(m · n2), where n is the number of shape contour points,
and m is the number of ellipses.

4 Shape Description

Given a shape as a single ellipse, or a union of multiple ellipses along the symme-
try axis, the shape description contains a set of detected ellipses. Given a shape
as a union of smoothly connected ellipses, the shape description contains a set
of detected ellipses and line segments. The centres of these line segments corre-
spond to the points of the skeleton that connect the neighbouring ellipses. The
length of each line segment equals to the corresponding local shape thickness.

Our approach enables to describe the shapes which parts have a high positive
curvature. If function f(s) at some point P changes from concave to convex, or
vice versa, then P is a point of inflection. In this case the sign of f ′′(s) should
change from positive to zero/negative value or from negative to zero/positive
value. In contrast, axial representations with a single generator are not able to
handle the shape with round ends and high positive curvature [23].

5 Experiments and Discussion

The performance of TED and S-TED was compared to the state-of-the-art app-
roach of Cicconet et al. [5]. As opposed to standard LS-based methods [8,19],
[5] can detect multiple overlapping ellipses, and does not require an a priori
model, in contrast to GMM-based methods [14,29]. As reported, [5] outper-
formed the algorithm of Prasad et al. [22], which in turn showed better results
than [2,15,17,18,20].

The test dataset contains 80 synthetic images of one and two ellipses, 500 by
500 pixels. As discussed with the authors [5], the test shapes closely resemble
ellipses, and contain boundary points of each ellipse. For the proposed method we
use the union of binary masks of these ellipses. With the reference to the target
shape definition, there are 8 classes of possible configurations, 10 images each
(see Table 2). For a single ellipse: (1) different degree of elongation (a varies from
40 to 200 pixels, b - from 4 to 40 pixels), (2) rotation, (3) distortion with a white
Gaussian noise, (4) distortion with a ”sinusoidal” noise1. For two ellipses: (5) a
union of ellipses of the same size, (6) a union of ellipses of the different sizes,
(7) ellipses with mutually orthogonal major axes, and (8) configurations that
approximate an articulated motion. Since targeting the elongated shapes without
holes, having more than two ellipses will not reveal additional test cases. The
quantitative comparison was performed in Precision/Recall manner, as described
in [5] (see Table 1, Ellipse Detection).

1 Sinusoidal noise takes every i-th sin wave value, and adds it to the original signal.
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Table 1. Interpretation of Precision/Recall methods w.r.t. the experiment type

True positive (tp) False positive (fp) False negative (fn) Precision (P) Recall (R)

Ellipse detection a, b, xC , yC deviate

from the ground

truth by at most 20

pixels, and rotation

angle by at most 5◦

N−1 True positives a, b, xC , yC deviate

from the ground

truth by more than

20 pixels, and rota-

tion angle by more

than 5◦

tp
(tp+fp)

tp
(tp+fn)

Shape description Pixels that belong

to both original

and reconstructed

shapes

Pixels that belong

to the recon-

structed shape

only

Pixels that belong

to the original

shape only

Table 2. On the left: the results of TED and S-TED as compared to Cicconet et al. [5].
On the right: the examples of ellipse configurations w.r.t. 8 classes, and examples of
the input data for the compared algorithms.

1 ellipse

1 2 3 4

P R P R P R P R

Cicconet et al. [5] 1 0.6 1 0.91 1 0.9 1 1

TED (σ = 5,
n = 15, L = 30)

0.91 1 1 1 1 1 1 1

TED (σ = 5,
n = 15, L = 15)

0.75 0.75 1 1 1 1 1 1

TED (σ = 5,
n = 15, L = 5)

0.7 0.54 0.9 1 0.89 0.61 0.9 0.75

S-TED (σ = 5,
n = 15, L = 15)

0.91 1 1 1 1 0.67 1 1

S-TED (σ = 5,
n = 15, L = 30)

1 1 1 0.6 1 0.64 1 1

2 ellipses

5 6 7 8

P R P R P R P R

Cicconet et al. [5] 1 0.5 1 0.55 1 0.15 1 0.2

TED (σ = 5,
n = 15, L = 30)

1 0.75 0.93 0.7 1 0.25 - -

TED (σ = 5,
n = 15, L = 15)

1 0.85 0.79 0.75 1 0.3 - -

TED (σ = 5,
n = 15, L = 5)

1 1 0.6 0.75 0.55 0.29 - -

S-TED (σ = 5,
n = 15, L = 30)

1 0.9 1 0.75 - - 0.88 0.7

S-TED (σ = 5,
n = 15, L = 15)

1 0.85 1 0.75 - - 1 0.65

Table 3. The results of shape reconstruction as tested on a diatom dataset.

Number of images tp fp fn P R

TED (σ = 5, n =
15, L = 5)

357 20532911 1266345 291387 0.942 0.986

The experimental results2 are summarized in Table 2. The proposed detection
of the ellipse parameters relies on f ′(s) and f ′′(s). So, both TED and S-TED
2 According to the algorithm description, TED focuses on shapes with a straight sym-

metry axis. Thus, it was tested on configurations (1)–(7). The current implementa-
tion of S-TED considers the symmetry axis to be the longest path of the given
skeleton. In case of cross intersection of the ellipses, configuration (7), a different
strategy for skeleton decomposition should be considered.
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are sensitive to perturbations, and on a single ellipse their Recall rate worsens
under the noise impact. Applying Gaussian function, G(n) = 1

σ
√
2π

e−0.5(n/σ)2 ,
to the thickness profile enables to decrease the impact of noise, and achieve the
highest Precision and Recall rates for TED (σ = 5, n = 15, and L = 30). Here
n is the size of the Gaussian window, σ - a standard deviation, L is the number
of smoothing iterations. The method of Cicconet et al. [5] assumes the number
of ellipses to be given a priori. As a result, it demonstrates a high Precision rate
on a single ellipse, as well as on two ellipses (always 1). Though, the Recall rates
are lower as compared to TED and S-TED, and decrease sufficiently (from the
minimum of 0.6 for a single ellipse to the minimum of 0.15 for two ellipses).

The quality of the shape reconstruction from the proposed shape description
was tested on a part of a diatom dataset3, that contains 357 real images. Figure 5
shows the main steps of processing a diatom image: segmentation (b), shape
description (c), and shape reconstruction (d). Elliptical parts of the diatoms were
detected w.r.t. TED algorithm. We performed the evaluation using the Preci-
sion/Recall method (as described in Table 1, Shape Description), and achieved
the results as shown in Table 3.

Fig. 5. Example of the shape description and reconstruction of a diatom: (a) original
image, (b) binary shape of the diatom, (c) shape description that includes detected
ellipses (in yellow) and line segments (in blue), (d) reconstructed shape (Color figure
online)

6 Conclusion and Future Work

The paper presents a novel approach that finds the parameters of ellipses by
tracking the thickness change along the symmetry axis. The shape does not
have to be a combination of fine ellipses. The proposed method enables to build
a hierarchy of ellipse-based descriptions by smoothing the thickness profile with
the Gaussian filter. The presented shape description approach has a high recov-
erability rate. In future we plan to use it for motion, growth and deformation
analysis of the biological objects like roots, worms, and diatoms. A hierarchy of
descriptions will enable to describe the motion at multiple levels of abstraction:
from local movements of the parts to global behaviour of the entire object.

3 ADIAC Diatom Dataset. http://rbg-web2.rbge.org.uk/ADIAC/pubdat/downloads/
public images.htm Accessed: 2016-10-22.
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