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Abstract—In this paper the properties of the generalized
conics are used to create a unified framework for generating
various types of the distance fields. The main concept behind
this work is a metric that measures the distance from a point
to a line segment according to the definition of the ellipse.
The proposed representation provides a possibility to efficiently
compute the proximity, arithmetic mean of the distances and
a space tessellation with regard to the given set of polygonal
objects, line segments and points. In addition, the weights can
be introduced for objects, their parts and combinations. This
fact leads to a hierarchical representation that can be efficiently
obtained using the pixel-wise operations. The practical value of
the proposed ideas is demonstrated on an example of applications
like skeletonization, smoothing and optimal location finding.

I. INTRODUCTION

Generalized conics are the level set functions that accept
infinitely many focal points. Historically, the main interest
to this subject comes from mathematics. For example, a
multifocal ellipse (or alternatively a polyellipse) is essential
in optimization tasks. For every point in space it measures
the weighted arithmetic mean distance to the given focal
points [1]. The novelty and the educational value of the present
paper is to analyse the properties of the generalized conics with
the purpose of bringing them to an image processing domain.

The special cases of the generalized conics, an ellipse and a
hyperbola, have been studied by Gabdulkhakova et al. [2], [3]
and Langer et al. [4]. For instance, the sum of the distances to
the foci is constant for all points of an ellipse. This fact enables
to create a metric, Confocal Ellipse-based Distance (CED),
that computes the distance from a point to a line segment.
Incorporating it in the image processing technique called the
Distance Transform (DT) [5], makes it possible to create a
generalization of the Voronoi Diagram (VD), called Elliptic-
Line Voronoi Diagram (ELVD). One of the main observations
about the ELVD is an implicit prioritization of the longer
edges and acute angles, as opposed to classical VD. With
this regard, Langer et al. [4] analysed the effect of various
sampling density on the skeletonization of 2D shapes.

In the present paper the research is continued by analysing
the effect of explicit weighting of the points, line segments and
polygonal objects. By definition, an ellipse and a hyperbola
have a pair of focal points. The notion of the generalized
conics enables to introduce any number of focal points, that
are represented by any type of shape, for example, a point,
a line segment or a polygon. This fact makes a basis for

a hierarchical representation. When using the DT for repre-
senting the distance values distribution, the combination of
several clusters is efficiently computed by a pixel-wise sum or
minimum operations.

The remaining of the paper is organized as follows. Sec-
tion II discusses the theory and properties behind the general-
ized conics: from special cases (ellipse and hyperbola) to more
generic (multifocal ellipse and hyperbola). Then, Section III
overviews the CED metric as presented in [2]. It enables
to compute the Confocal Elliptic Fields (CEF) for the line
segments and polygons, and further enrich the definition of
the generalized conics (Section IV). Section V discusses the
properties of the proposed representations from the perspective
of a shape descriptor. The proposed findings have a potential to
enrich the existing view on the distances between the objects,
especially, in relation to applications and will be discussed in
Section VI. Finally, Section VII concludes the paper.

II. GENERALIZED CONICS

Consider the Euclidean distance, denoted as δ, between the
two 2D points P = (p1, p2) and Q = (q1, q2):

δ(P,Q) =
√
(p1 − q1)2 + (p2 − q2)2 (1)

Definition 1. An ellipse, denoted as E(F1, F2; a), is the locus
of points P ∈ R2 such that the sum of their distances to the
given pair of focal points F1 and F2 is constant:

E(F1, F2; a) = {P ∈ R2|δ(P, F1) + δ(P, F2) = 2a} (2)

where a ≥ f = 1
2δ(F1, F2) is the half-length of the major

axis of the ellipse, and f is half the distance between the focal
points. For a = f the ellipse degenerates into a line segment,
whereas for a = 0 - into a circle.

Definition 2. A hyperbola, denoted as H(F1, F2; a), is the
locus of points P ∈ R2 such that the absolute difference
between their distances to the given pair of focal points F1

and F2 is constant:

H(F1, F2; a) = { P ∈ R2| |δ(P, F1)− δ(P, F2)| = 2a} (3)

Definition 1 and 2 can be generalized to consider the
weighted sum/difference of the distances to the focal points to
be constant [6]:

Ew(F1, F2; c) = {P ∈ R2|w1δ(P, F1) + w2δ(P, F2) = c}
(4)
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Hw(F1, F2; c) = { P ∈ R2| |w1δ(P, F1)− w2δ(P, F2)| = c}
(5)

Here the weights w1 and w2 are the positive rational
numbers, whereas the elliptic curve transforms to an oval.
Consider a case illustrated in Figure 1. Given two focal points
F1 and F2, w1 = 1.1, w2 = 0.7 the isolines represent the
distribution of the distance values computed as c.

Fig. 1: Isolines of the weighted sums of the distances to the
given focal points F1 and F2.

In principle, dividing both sides of the Equation 4 by
max(w1, w2) results in varying a single weighting parameter
0 ≤ α = min(w1,w2)

max(w1,w2)
≤ 1. The corresponding example

is shown in Figure 2. After division, the parameter α is
multiplied by the distance values of F2. The transformation of
the isoline depending on α is shown using the distinct colors.
In the case of α = 0, the isoline forms a circle originating
from F1. When α = 1, the distance field contains confocal
ellipses with the focal points at F1 and F2. A special case
corresponds to the isoline that passes through the focal point
F2 - it forms a sharp corner. Otherwise, the isoline resembles
an oval.

Similar reasoning can be applied to the hyperbola. Consider
a division of both sides in Equation 5 by max(w1, w2) that
results in a parameter 0 ≤ α = min(w1,w2)

max(w1,w2)
≤ 1. Analogically,

α is multiplied by the distance values corresponding to the
focal point with a smaller weight. Observe the transformation
of the isoline depending on the weight of F2 (see Figure 3).
Here, varying α from 0 to 1 changes the curve from circle to
the hyperbola branch respectively.

Fig. 2: Evolution of the elliptic isoline depending on α.

Fig. 3: Evolution of the hyperbolic isoline depending on α.

Definition 3. A family of ellipses/hyperbolas (with weights or
without) that share the common focal points, F1 and F2, are
called the confocal ellipses/hyperbolas (see Figure 4).

(a) non-weighted (b) weighted

Fig. 4: A family of confocal ellipses (green) and hyperbo-
las (orange).

Property 1. Given any point P ∈ R2 there is exactly one
curve from the family of confocal ellipses/hyperbolas that
passes through it [7]. In other words, a family of confocal
ellipses/hyperbolas covers the complete 2D plane:

∞⋃
c=f

E(c;α) = R2 (6)
∞⋃
c=f

H(c;α) = R2 (7)

The conic sections can be further generalized into a class of
higher-order curves by considering more than two focal points.

Definition 4. A multifocal ellipse (alternatively, n-ellipse or
polyellipse) is a generalization of the ellipse that has N focal
points F1, F2, ..., FN . It represents a locus of points P ∈ R2

with a constant sum of the distances to the N focal points:

ME =
N∑
i=1

δ(P, Fi) = const (8)

When dividing both sides of the Equation 8 by N , the
multifocal ellipses represent the level set functions that average

Gabdulkhakova2020, ICPR#3018



the distance to the given set of focal points [8]. This property
plays a crucial role in optimization problems [1].

Property 2. Equation 8 reaches the minimum in exactly one
point, when the focal points are non-collinear [9].

Property 3. Consider an odd number of ordered collinear fo-
cal points. The Equation 8 reaches the minimum at FN+1

2
[10].

Property 4. Consider an even number of ordered collinear
focal points. The Equation 8 reaches the minimum in all the
points of the line segment FN

2
FN

2 +1 [10].

Definition 5. A multifocal hyperbola is a generalization of
the hyperbola defined on two sets of focal points F and G
that have M and N elements correspondingly. It represents
a locus of points P ∈ R2 such that the following absolute
difference of the distances remains constant:

MH = |
M∑
i=1

δ(P, Fi)−
N∑
j=1

δ(P,Gj)| = const (9)

(a) ME(F1, F2, F3, F4, F5) (b) MH(F1, F2, F3|F4, F5)

(c) MEw(F1, F2, F3, F4, w5F5) (d) MHw(F1, F2, F3|F4, w5F5)

Fig. 5: A family of multifocal confocal ellipses and hyperbo-
las: (a)-(b) non-weighted, (c)-(d) weighted.

Analogically to the case with two focal points, it is possible
to introduce the weighting scheme for the multifocal ellipse
and hyperbola correspondingly:

MEw =
N∑
i=1

wiδ(P, Fi) = const (10)

MHw = |
M∑
i=1

wiδ(P, Fi)−
N∑
j=1

νjδ(P,Gj)| = const (11)

As can be seen from the Equations 10 and 11, multifocal
hyperbola can be considered as a multifocal ellipse whose
weights have the different signs.

Property 5. The interior of the multifocal ellipse is convex [6].

The families of multifocal confocal ellipses and hyper-
bolas are illustrated in Figure 5. Given a set of five foci
F1, F2, F3, F4 and F5, the unweighted sum of their distances
to the points in space is shown in Figure 5a. Adding a weight
to the point F5 modifies the distance field by moving the
global minimum towards it (see Figure 5c). For multifocal
hyperbolas, it is important to define two sets of focal points.
In this example, first set contains F1, F2, F3 and the second
- F4, F5. Figure 5b corresponds to the unweighted focal
points, thus, the shift of the isolines is caused by the density
of the points. Figure 5d illustrates the multifocal confocal
hyperbolas, when the point F5 has a weight.

III. CONFOCAL ELLIPSE-BASED DISTANCE

With regard to the Property 1 of confocal ellipses, it is
ensured that each point on the 2D plane has a single distance
value (equal to 2a) associated with it. This can be used to
measure the distance between the ellipses [2].

Definition 6. Consider two confocal ellipses, E(a1) and
E(a2). Then, the Confocal Ellipse-based distance (CED),
e : R2 × R2 → R, can be defined as an absolute difference
between the lengths of the semi-major axes a1 and a2 of these
ellipses:

e(E(a1), E(a2)) = |a1 − a2| (12)

Lemma 1. CED is a metric.

A specific case of CED is related to measuring the distance
from a point to a line segment. An ellipse has an important
geometric property - it can degenerate into a line segment,
when the eccentricity value is equal to 1. In Equation 12
consider one of the ellipses, E(a2), to be a line segment
connecting the focal points F1 and F2, i.e. a2 = f2. Then,
for each point on an ellipse E(a1) the distance to the line
segment F1F2 with regard to CED equals:

e(E(a1), E(a2)) = |a1 − f2| (13)

An alternative representation of the Equation 13 considers
the Definition 1 of the ellipse:

e(P, l) =
δ(P, F1) + δ(P, F2)− δ(F1, F2)

2
(14)

Here, P is a point in R2 and l is a line segment defined
by the two end points F1 and F2. The distribution of the
distance values forms the confocal ellipses with zero values
on the line segment F1F2. In contrast to Hausdorff Distance,
it takes only the end points of the line segment (taken as focal
points) to compute the distance to P . This fact simplifies the
computational costs by N − 2 operations, where N is the
number of points belonging to the line segment. Since using
a combination of Euclidean distances, CED can be extended
to higher dimensions.

Gabdulkhakova2020, ICPR#3018



IV. DISTANCE FIELDS USING THE PROPERTIES OF THE
GENERALIZED CONICS

Previous section discussed a metric, CED, that computes
the distance between the points belonging to the confocal
ellipses [2]. In order to provide an intuitive explanation of
the continuous distance value distribution, we will refer to
a classical image processing approach called the Distance
Transform (DT) [5].

Definition 7. Consider a binary image B and a set of the seeds
f ⊂ B = [0, n]× [0,m] ⊂ Z2. Distance Transform (DT) is an
operator that converts a binary image into a gray-scale image,
D : B 7→ R. The value of each pixel equals its distance to
the nearest seed with regard to the selected metric: D(M) =
min{δ(M,F )|F ∈ f}.

CED metric in Equation 14 takes the absolute difference
between a1 and f2. In this regard the confocal ellipses in terms
of DT can be defined as follows.

Definition 8. Consider a line segment defined by the two
seeds, f = {F1, F2}, that represent the focal points. Confocal
ellipses can be defined as the distance field Cf , where each
pixel is mapped to a CED value with respect to the focal points
F1 and F2:

Cf (M) = DF1
(M) +DF2

(M)−DF1
(F2) =

= DF1
(M) +DF2

(M)−DF2
(F1)

(15)

Here the notation DX(Y ) means the value of the pixel Y in
the distance field generated from the pixel X . Analogically, let
us define the distance field comprised of confocal hyperbolas.

Definition 9. Let f1 = {F1, F2}, and f2 = {F3, F4} be the
seed sets representing two line segments. The distance field
Hf1f2 containing the confocal hyperbolas assigns to each
pixel M ∈ B the difference of its values in the distance fields
Cf1 and Cf2 :

Hf1f2(M) = Cf1(M)− Cf2(M) (16)

Note, in contrast to Equation 9, the point M of the confocal
hyperbola Hf1f2 can be associated with the negative value. It
means, that the point M is closer to f1 than to f2.

Inclusion of the weights in relation to Equations 4 and 5,
can be implemented by multiplying the corresponding distance
fields by w1 and w2:

Cf (M) = w1DF1
(M) + w2DF2

(M)− w1DF1
(F2) =

= w1DF1
(M) + w2DF2

(M)− w2DF2
(F1)

(17)

Let us now define a Confocal Elliptic Field (CEF) [2], that
creates a field containing the minimum distances to the given
set of focal points.

Definition 10. Consider a set f representing N line segments
and C = {Cf1 , Cf2 , .., CfN } to be the corresponding distance
fields containing the confocal ellipses. The Confocal Elliptic

Field (CEF) is defined as a pixel-wise minimum operation that
is applied to the distance fields in C:

CEF (M) = min{Cfi(M)|i = [1, ..., N ],∀M ∈ B} (18)

Definition 10 can be extended by adding the weights to the
fields of confocal ellipses:

CEF (M) = min{wiCfi(M)|i = [1, ..., N ],∀M ∈ B} (19)

The essence of the CEF is to enable a creation of the
distance fields for complex objects like the collections of
points, the line segments, the polygons and to represent their
joint minimal proximity to any point in space. Therefore, it is
possible to apply the pixel-wise minimum operation to several
CEFs (that can be additionally weighted) and generate more
complex objects:

CEF (M) = min{wiCEFi(M)|i = [1, ..., N ],∀M ∈ B}
(20)

Figure 6 shows the distance fields comprised of two CEFs
of the line segments F1F2 and F3F4. In Figure 6a the end
points and the line segments are not weighted, the isolines
depend on the length and mutual arrangements of the line
segments. Figure 6b shows the deformation of the distance
field due to a weight added to F1F2. In Figure 6c, F1 and
F4 have a larger weight than F2 and F3 correspondingly. This
field is then further modified by adding an extra non-equal
weight to the line segments F1F2 and F3F4 (see Figure 6d).
Generally speaking, the proposed weighting schemes enable
to reflect the significance of the objects and/or their parts.

CEF has a specific property, as mentioned in [2]. It
implicitly prioritizes the line segments of a greater length by
shifting the isolines towards the smaller line segments, and the
acute angles over the obtuse angles by pushing the isolines
away from the acute angles.

The next group of the distance fields corresponds to multifo-
cal ellipses. With regard to Equation 8, it can be computed as
a sum of DTs generated from the focal points F1, F2, ..., FN :

CMEF =

N∑
i=1

wiDFi (21)

Here CMEF stands for Confocal Multifocal Elliptic Field.
For normalization purposes, it is proposed for every pixel to
subtract the minimum distance value in CMEF. By Defini-
tion 4 the foci are represented by the points. With regard to
Definition 10 it is possible to further generalize the notion of
CMEF and provide more complex objects as foci, such as line
segments or polygons. Though, in this case the convexity of
the interior is not guarantied:

CMEF =
N∑
i=1

wiCEFi (22)

In order to build a hierarchical representation, multiple
CMEF distance fields can be combined by the pixel-wise sum
operation:
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(a) non-weighted (b) weight added to F1F2

(c) weights added to F1 and F4 (d) weights added to F1, F4,
F1F2 and F3F4

Fig. 6: Examples of CEF of two line segments generated using
the various weighting schemes.

CMEF =

N∑
i=1

wiCMEFi (23)

Let us now illustrate this statement. Consider a set of line
segments F1F2 and F3F4 from the previous example (see
Figure 6). Sum of the corresponding CEFs without any weights
according to the Equation 22 is shown in Figure 7a. Similarly
to CEF, there is a possibility to weigh an object (for example,
a line segment F1F2 in Figure 7b), individual points (for
example, points F1 and F4 in Figure 7c) and both, object and
its points (for example, points F1 and F4, and line segments
F1F2 and F3F4 in Figure 7d).

The final group of the distance fields described in this paper
corresponds to multifocal hyperbolas. As followed from the
Definition 5, it needs two sets of objects and can be computed
as the pixel-wise difference of their sums. Thus, the Confocal
Multifocal Hyperbolic Field (CMHF) can be computed as
follows:

CMHF =

M∑
i=1

wiDFi −
N∑
j=1

νjDGj (24)

According to Equation 24, CMHF can also be represented
as the difference between the corresponding CMEF fields.

CMHF = CMEF1 − CMEF2 (25)

As can be observed, the zero values in CMHF correspond
to the set of points equidistant from CMEF1 and CMEF2 in

(a) non-weighted (b) weight added to F1F2

(c) weights added to F1 and F4 (d) weights added to F1, F4,
F1F2 and F3F4

Fig. 7: Examples of CMEF of two line segments generated
using the various weighting schemes.

terms of a minimal total average distance. Moreover, the pixel
associated with a negative distance value is closer to CMEF1,
while with the positive value - to CMEF2.

Assume that the focal points are represented by any type
of objects, for example, a line segment and a polygon. In this
situation, CMHF is the difference between the corresponding
pair of CEF fields:

CMHF = w1CEF1 − w2CEF2 (26)

Here, the isolines reflect the proximity to the given pair of
objects. In principle, Equation 26 represents rather a hyper-
bola (see Definition 2), where the focal points are complex
objects. When the number of object sets is larger than 2, such
hyperbolas are computed for each pair independently.

In general, the essence of CMHF is to find a set of points
that have an identical value in several distance fields with
regard to some metric.

The CMHF distance fields can be illustrated for the same
cases as CMEF. First, consider the given set to be divided into
two groups: F1F2 and F3F4. Then, the CMHF with regard
to Equation 25 without any weights is shown in Figure 8a.
The weighting schemes are identical to the ones shown in
Figure 6 and Figure 7. The corresponding CMHFs fields can
be observed in Figure 8b, 8c and 8d accordingly.

V. DISCUSSION

The presented methods for computing the distance fields
were visually presented with regard to various types of input
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(a) non-weighted (b) weight added to F1F2

(c) weights added to F1 and F4 (d) weights added to F1, F4,
F1F2 and F3F4

Fig. 8: Examples of CMHF of two line segments generated
using the various weighting schemes.

data. In this section the proposed representations are analysed
from the perspective of the shape descriptor.

Efficiency. A substantial contribution to the state-of-the-art
considers an efficient computation of the distance fields by
using a combination of DTs. The existing approaches consider
the Hausdorff distance from a point to a line segment, where
the latter is represented by the set of its points. The proposed
approach takes only a pair of the end points.

Completeness. From the point of representing the space tes-
sellation, the proposed approaches do not have the algorithmic
limitations related to the type and number of objects. The
formulation enables the extension to higher dimensions.

Invariance. The Euclidean metric that is used in CED
can be easily substituted by other distance functions such as
Manhattan or Chebyshev distance. Though, in this case the
invariance to translation, rotation and scaling will be lost.

Uniqueness. The proposed distance fields uniquely represent
the given set of objects. It stems from the fact that the
computation is based on the Euclidean distance.

Stability. An important property is related to an ability
of preserving the space representation under the changes of
the input objects. Especially in a digital domain it relates to
inevitable numerical errors that lead to a different position of
the sites, their size, or structure [11]. The proposed distance
fields are not stable under the motion of the objects. Indeed,
the small change in their position implies the small change in
the representation. Additionally, the stability is affected by the

operations such as insertion and deletion of the seeds.
Abstraction. The proposed method enables the abstraction

to multiple hierarchical levels. On one hand, it provides the
opportunity to vary the level of sensitivity by changing the
weights of the objects. On the other hand, it is possible to
create representations that combine existing distance fields.

VI. APPLICATIONS OF GENERALIZED CONICS

The properties of the generalized conics, that were discussed
in this paper, have a practical value. The existing applications
include architecture, urban and spatial planning [12], geomet-
ric tomography [13].

Gabdulkhakova et al. [2] and Langer et al. [4] use the
CEF distance field for skeletonization in 2D. The prioritization
of the longer line segments and acute angles was used for
smoothing of the noisy shape boundaries [3]. In [3] the
hyperbolic distance field was discussed from the perspective
of the new Voronoi Diagram type - Elliptic Line Voronoi
Diagram (ELVD). Langer et al. [4] proposed a linear in time
and memory implementation of ELVD. It is using CED as
a metric, and the line segment site is represented only by its
endpoints. This reduces the complexity of computing the prox-
imity to all points belonging to the line segment. As opposed
to the continuous case the discretization of the space leads to
an accuracy problem. For example, there is a possibility of
having a two-pixel Voronoi edges that do not have a unique
intersection pixel. In the case of Voronoi regions, the accuracy
can be defined by

√
2
2 × (length of the pixel edge), which

is half of the maximum distance between the centers of two
diagonal pixels [4].

A. Optimal Location Problem

Consider a classical optimization problem: given a set of
N point-locations with the positive weights w1, w2, ..., wN ,
find a point that minimizes the sum of the weighted distances
to them [14]. Originally it was formulated by P. Fermat who
considered only three points of the triangle [1]. In practical
domain it is known as a problem of locating the facilities
such that the transportation costs are minimized. The existing
approaches consider the exact analytical solutions, enumera-
tion of all the possible combinations, approximate statistical
and heuristic methods, and linear programming [15], [16].
The complexity of the solution increases with the number of
points [17]. This paper uses a discrete approach for computing
CMEF with DTs, in order to solve the optimal location
problem in linear time.

The formulation of the problem falls exactly into the
definition of the multifocal ellipses. The CMEF generated
from N seeds reaches the minimum either in one point (see
Property 2,4), or in all points belonging to a line segment (see
Property 3). An example is illustrated in Figure 9. For N = 7
non-collinear focal points the smallest total sum of the dis-
tances to them is achieved at the red point (see Figure 9a).
The position of such a global minimum can be shifted by
introducing the weights to the focal points (see Figure 9b).
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(a) non-weighted (b) weighted

Fig. 9: Optimal location solution for the given set of focal
points. A red point has the minimum value in the distance
fields and is connected to all the focal points.

(a) Hausdorff Distance (b) CED

Fig. 10: Optimal location solution for the given set of poly-
gons. A red point has the minimum value in the distance fields.

According to the Equation 21 and 22, it is also possible
to solve the optimal location problem, when the objects are
represented by the line segments or polygons (see Figure 10).
In the classical Hausdorff Distance case, the resulting distance
field is comprised of the sums to all points belonging to
the contours of the polygons (see Figure 10a). The global
minimum, shown in red, is not influenced by the length of the
edges, but the number and density of their points. In contrast,
when considering the distance value distribution with regard
to CEF (Equation 22), there is an implicit prioritization of the
longer edges. Assume the situation illustrated in Figure 10b.
As can be observed, the large polygon located on the top of
the image pulls the global minimum, shown in red, towards
the smaller polygons. Similarly the bottom-right polygon
shifts the global minimum towards the bottom-left polygon.
Finally, it should be noted, that there are configurations of
polygonal objects or line segments, when a single minimum
is not guarantied. For example, consider a pair of disjoint line
segments F1F2 and F3F4 that belong to the same line. The
minimum is achieved in all points of the line segment F2F3.

B. Route planning

The property of edge prioritization becomes useful for
another application - route planning. Consider an example
in Figure 11. The trajectories are represented by the skeletal
points of the medial axis using the classical Hausdorff Dis-

Fig. 11: Comparison of the routes generated using the Haus-
dorff Distance (red) and CED (green).

tance (red) and CED (green). Let the scene model contain
a corridor with several turns and a room. The Hausdorff
Distance based route contains the points that are equally
distant from the opposite “walls”. In contrast, the CED shifts
towards the shorter edges (for example, at the turns) and
converges to a classical solution when the edges have a similar
length (for example, in a room). As a result the CED-based
route represents an optimal solution in terms of the total length
of the trajectory.

VII. CONCLUSION

The paper introduces a study of the generalized conics and
describes them from the image processing perspective. The
considered properties are used to create various types of the
distance fields. The Confocal Ellipse-based distance (CED)
defines the proximity measure between a point and a line
segment. The Confocal Elliptic Field (CEF) uses the CED to
represent the distance fields of the line segments and the polyg-
onal objects. The Confocal Multifocal Elliptic Field (CMEF)
defines for each point in space the arithmetic mean of the
distances to the given set of focal points. The Confocal
Multifocal Hyperbolic Field (CMHF) defines the closeness
of each point in space to one of the focal points. An image
processing technique, called the Distance Transform (DT),
enables to efficiently compute the CEF, CMEF and CMHF
as a combination of pixel-wise minimum, sum and differ-
ence operations applied to the distance fields of the given
focal points. The properties of the above fields enable to
apply various weighting schemes for objects, their parts and
groups, and promote a hierarchical representation. This leads
to a possibility of using them for solving practical problems
like skeletonization, smoothing, optimal location problem and
route planning. The idea of measuring the distance from a
point to a line segment using the CED, in general, opens a
new vision to the classical problems.
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pp. 81–96, 2015.

[2] A. Gabdulkhakova and W. G. Kropatsch, “Confocal ellipse-based dis-
tance and confocal elliptical field for polygonal shapes,” in 24th Interna-
tional Conference on Pattern Recognition (ICPR), 2018, pp. 3025–3030.

[3] A. Gabdulkhakova, M. Langer, B. W. Langer, and W. G. Kropatsch,
“Line Voronoi diagrams using elliptical distances,” in Joint IAPR In-
ternational Workshops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recognition (SSPR), 2018,
pp. 258–267.

[4] M. Langer, A. Gabdulkhakova, and W. G. Kropatsch, “Non-centered
Voronoi skeletons,” in International Conference on Discrete Geometry
for Computer Imagery, 2019, pp. 355–366.

[5] G. Borgefors, “Distance transformations in digital images,” Computer
vision, graphics, and image processing, vol. 34, no. 3, pp. 344–371,
1986.

[6] C. Groß and T.-K. Strempel, “On generalizations of conics and on a
generalization of the Fermat-Torricelli problem,” The American mathe-
matical monthly, vol. 105, no. 8, pp. 732–743, 1998.

[7] D. Hilbert and S. Cohn-Vossen, “The cylinder, the cone, the conic sec-
tions, and their surfaces of revolution,” Geometry and the imagination,
pp. 7–9, 1999.

[8] Z. Melzak and J. Forsyth, “Polyconics. i. polyellipses and optimization,”
Quarterly of Applied Mathematics, vol. 35, no. 2, pp. 239–255, 1977.

[9] P. Vincze and I. Erdös, “On the approximation of convex, closed plane
curves by multifocal ellipses,” Journal of Applied Probability, vol. 19,
no. A, pp. 89–96, 1982.

[10] J. Sekino, “n-ellipses and the minimum distance sum problem,” The
American mathematical monthly, vol. 106, no. 3, pp. 193–202, 1999.

[11] D. Reem, “The geometric stability of Voronoi diagrams with respect to
small changes of the sites,” in Proceedings of the 27th annual symposium
on Computational Geometry, 2011, pp. 254–263.

[12] M. Petrovic, B. Banjac, and B. Malesevic, “The geometry of trifocal
curves with applications in architecture, urban and spatial planning,”
SPATIUM International Review, no. 32, pp. 28–33, 2014.
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